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Abstract

High order Discontinuous Galerkin discretization schemes are considered for steady

state problems. We discuss the issue of oscillations arising when Newton's method

is employed to obtain a steady state solution. It will be demonstrated that ux

approximation near ux extrema may produce spurious oscillations propagating over

the domain of computation. The control over the numerical ux in the problem allows

to obtain non-oscillating convergent solutions.
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Introduction. 1

In resent years a variety of discretization methods have been developed

to solve complex problems of physics and engineering. One of them is a

Discontinuous Galerkin (DG) discretization scheme. Introduced in [11] and

further developed by many authors (see [4] for the review of DG schemes),

the DG method is a �nite element scheme which uses a piecewise polynomial

approximation in space. The method also involves an approximate Riemann

solver, since the approximate solution is discontinuous at grid interfaces.

The hyperbolic systems of conservation laws present a wide class of prob-

lems where the DG method can be successfully applied. The DG discretiza-

tion scheme a�ords optimal orders of convergence for smooth problems by

using high order approximating spaces. For the problems which solution has

strong gradients and/or discontinuities, solution oscillations may occur when

a high order DG scheme is used to discretize a conservation law. Since the

nonphysical oscillations have a disastrous impact on the convergence of the

approximate solution, a limiting procedure which eliminates the oscillations

near discontinuities should be addressed. A number of authors have con-

tributed to the issue of limiters for DG schemes in resent years (e.g. see

[5], [6], [9]). It has been demonstrated many times that stabilization of the

scheme by means of local limiters allows to obtain accurate non-oscillating

solutions to nonlinear hyperbolic problems.

The local limiters are not always helpful, however, when steady state so-

lutions to conservation laws are considered. In practice, a time dependent

algorithm (e.g. a backward Euler integration) is used to approach a steady

state solution. The time step is usually scaled as a function of the norm of

the residual, so that the scheme with an in�nitely large time step is equiv-

alent to Newton's method. Thus it seems to be a reasonable strategy to

solve time dependent equations only at the early stages of computations.

Once the basin of attraction has been approached, the Newton method may

be exploited in order to provide a faster convergence rate. Meanwhile, our

numerical experience shows that a transient solution may exhibit strong os-

cillations over the entire domain of computation, if the Newton iteration

method is used to solve a system of nonlinear equations obtained as a result

of a high order DG discretization in space. Those oscillations may appear

for a smooth solution as well as a discontinuous one, and their excitation

does not depend on how close the initial guess for the Newton method is to

1This work was supported by The Boeing Company under contract
No 104AE and Russian Foundation for Basic Research, grant No 03-01-
00063.
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the �xed point considered as a steady state solution for the problem. The

spurious oscillations propagating over the domain cannot be eliminated by

means of a standard limiting procedure [5], and their nature requires careful

study.

In our work, we consider two nonlinear scalar equations in order to exam-

ine a high order DG discretization for steady state solutions. Simple enough,

they, nevertheless, demonstrate the diÆculties arising in solution of steady

state problems. In our �rst example the exact solution is smooth, while the

solution to the second problem has a discontinuity. It will be shown that

in both cases a standard high order DG discretization yields a divergent

solution.

Based on our consideration, we conclude that a high order DG scheme

is not able to recognize ux extrema that may result in a singular Jacobian

when Newton's method is used to solve the problem. Moreover, a transient

solution may generate nonphysical ux extrema which lead to a singular

matrix as well. Thus, spurious solution oscillations occur in the problem

due to incorrect ux approximation, so that a high order DG discretization

requires ux control over each grid cell. We present a ux control procedure

which allows to obtain convergent solutions.

1. The problem statement.

We consider an ordinary di�erential equation written for a function u(x)

in the conservative form

Fx(x; u) = 0; x 2 
 = [0; 1]; (1)

where F (x; u(x)) is a ux function. An appropriate boundary condition

Bu = 0 (2)

is provided for the equation (1), where B denotes a boundary condition

operator.

For numerical solution of the boundary problem (1), (2) we introduce the

element partition G of the region, G =
NS
i=1

ei, ei = [xi; xi+1]; 1 � i � N ,

where xi is a nodal coordinate, and hi = xi+1�xi is a grid step size. We also

use the notation xi � 0 and xi + 0 for the left and right limits at the point

xi.

Let u(x) be the solution to the problem (1),(2). In order to �nd the ap-

proximate solution uh(x), a weak formulation of the problem is used. Mul-

tiplying the equation (1) by test function �k(x), de�ned on the cell ei for
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k = 0; 1; : : : ; K as

�k(x) =

�
x� xi

hi

�
k

; x 2 ei;

and integrating by parts over the cell ei, we obtain

F (xi+1; u(xi+1))�k(xi+1)� F (xi; u(xi))�k(xi)�

xi+1Z
xi

F (x; u)
d�k(x)

dx
dx = 0;

k = 0; 1:::; K

(3)

We now replace the function u(x) in (3) by the approximate solution uh(x).

The DG discretization seeks for the approximation uh(x) to the solution u(x)

such that uh(x) is a piecewise polynomial function over 
. The approximate

solution uh(x) is expanded on the cell ei as

uh(x) =

KX
k=0

uk�k(x); k = 0; 1; : : : ; K; x 2 ei: (4)

Since uh(x) is discontinuous at cell interfaces, the equation (3) considered

for the solution uh(x) requires to de�ne numerical ux ~F (uh). Suppose that

the ux ~F (uh), which generally depends on the two values of the approximate

solution at any grid point, is chosen for a given problem. Then the DG

discretization scheme reads

~F (uh(xi+1))�k(xi+1)� ~F (uh(xi))�k(xi)�

xi+1Z
xi

F (x; uh(x))
d�k(x)

dx
dx = 0;

k = 0; 1; : : : ; K:

(5)

For steady state problem (1), (2), the DG space discretization over the

grid results in the following system of nonlinear equations

R(u) = 0; (6)

where the vectorR(u) is the residual of the DG method given by (5) on each

grid cell, and u is the solution vector. We use Newton's iteration method

to solve the nonlinear equations (6). Let un and un+1 be the solution vector

at n-th and n + 1 -th solution iteration, respectively. Then the linearized

system is

J(un)(un+1 � un) = �R(un); (7)
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where the Jacobian matrix J(u) = [@R=@u] and residualR(u) are taken from

the n-th iteration. The GMRES algorithm ([12], [2]) is used to solve numer-

ically the algebraic system of linear equations obtained at each Newton's

iteration.

In the remainder of our paper we discuss oscillations appearing in solution

(5), (7). One important observation about the DG scheme is that for the

steady state problem (1), (2) the solution on the i-th grid cell impacts on

the solution on neighboring cells only by means of the numerical ux ~F (uh).

Hence, the two possible ways of the excitation of oscillations at the n-th

Newton iteration are as follows.

1. The numerical ux required to de�ne the DG discretization on the cell

ei is correct, but the solution approximation is not consistent. That

may happen, for instance, when a discontinuity presented in the cell is

approximated by smooth function (4). The solution overshoots arising

as a result of such approximation are local and do not a�ect the solution

on other cells.

2. The numerical ux is not correct on the i-th cell. The incorrect ux ap-

proximation produces solution oscillations which will propagate over the

domain at next Newton's iterations and result in a divergent solution.

While local limiters can be successfully used to smooth the local solution

overshoots, another approach is required to recognize and eliminate the spu-

rious oscillations propagating over the grid. That approach will be discussed

below.

2. The numerical ux in steady state problems.

In this section, we address a numerical ux used in the formulation of the

DG discretization. Usually, oscillations arising in the approximate solution

are associated with solution discontinuities. Thus, our aim is to verify the

de�nition of the numerical ux and demonstrate that the oscillations may

appear for a smooth solution as well as a discontinuous function.

We begin our consideration with a simple example of the equation (1)

which illustrates the problem. Let the ux F (x; u) be

F (x; u) = p(x)f(u); p(x) =
1

((x� x0)(x� x1))
2
; f(u) = (u�A)2: (8)

The problem parameters x0, x1, A and the boundary condition are chosen

to provide a smooth solution to the problem,

U(x) = A+ C(x� x0)(x� x1); x 2 [0; 1];
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where C is a constant. Namely, we take A = 1:0, C = �1:0, x0 = �0:5,

and x1 = 1:5, so that bifurcation points x = x0 and x = x1 lie outside the

domain of computation. The boundary condition is

1Z
0

u(x)dx = B; (9)

where the value B is de�ned by integrating the exact solution with the pa-

rameters above.

The model problem (1), (8) is numerically solved by using the DG dis-

cretization approach. We choose the Engquist - Osher de�nition [10] to

approximate the ux at grid interfaces. Let ul and ur be the left and right

states at the interface xi, respectively. The numerical ux reads

~FEO(ul; ur) =
urR
0

min(F 0(s); 0)ds+
ulR
0

max(F 0(s); 0)ds+ F (0): (10)

For the problem (8), the ux has a single extremum point, u = A. Hence,

the numerical ux (10) is as follows

~f(ul; ur) =

8>><
>>:

f(ul); ul > A; ur > A;

f(ur); ul < A; ur < A;

f(A); ul < A; ur > A;

f(ul) + f(ur)� f(A); ul > A; ur < A:

(11)

The numerical experience with the problem shows that the convergence of

the Newton method depends strongly on the choice of initial guess. Consider

a sine wave function

u0(x; s0) = sin(2�x) + s0;

where s0 is a parameter. Let us consider sI0 = 2:3 and s
II

0 = 1:8. For the

initial guess uI0 = u0(x; s
I

0), the ux f(u) is a monotone function over the

domain of de�nition u0 2 [uI
min

; u
I

max
]. For the function u

II

0 = u0(x; s
II

0 ), we

have uII
min

< A, uII
max

> A, so that the ux approximation is required at the

extremum point u = A at the �rst Newton step.

Despite the curves uI0 and u
II

0 are close to each other, jjuII0 � u
I

0jjL1 =

jsII0 � s
I

0j; x 2 [0; 1], the convergence results are quite di�erent for the two

functions. Starting with the initial guess uI0, the Newton method rapidly con-

verges to the approximate solution uh(x). The convergence results obtained

on a sequence of uniform grids con�rm the consistency of the approxima-

tion (5), (11). In particular, the DG scheme with polynomial degree k = 2

provides a precise reconstruction of the quadratic function U(x).
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Meanwhile, the choice of uII0 as initial guess for the problem results in a

divergent solution for any polynomial degree k > 0.

Let us look in more detail at the numerical ux used in the problem.

For a scalar ux function, the de�nition of the numerical ux is essentially

based on the analysis of the ux derivative, which results depend on how the

solution variation ur � ul is determined. In the de�nition (10), the solution

variation is assigned to the grid interface xi, ul = uh(xi�0), ur = uh(xi+0).

In other words, the de�nition (10) implies that the ux variation is only due

to the solution variation at grid interfaces, i.e. F (u) = const within a grid

cell. Evidently, this assumption will be correct, if the solution is constant

over each cell.

Meanwhile, for a high order DG discretization scheme the approximate so-

lution varies in the domain [xi; xi+1]. The solution variation Æuh = uh(xi+1�

0)�uh(xi+0) may generate a ux extremum at the interior point of the cell

ei, while the ux remains a monotone function at the both interfaces xi and

xi+1. Thus, the ux approximation on the cell ei will not be correct, unless

the ux is monitored over the cell.

To identify the extremum point for a DG discretization with polynomial

degree k > 0, we consider the boundary values of the approximate solution on

a given cell. For the initial guess uII0 , the ux approximation at the extremum

point is required in two cells. One of them is ei1 : uh(xi+0) > A; uh(xi+1�

0) < A, and another one is ei2 : uh(xi + 0) < A, uh(xi+1 � 0) > A. The

ux approximation near the extremum point in the cell ei1 is illustrated for

the numerical ux (11) in �g.1, where the solution values required to de�ne

the ux at the interfaces are shown in black. For the piecewise constant

DG discretization displayed in �g.1a, the extremum point at the interface is

taken into account in the de�nition of the numerical ux. The high order

(e.g. linear) solution reconstruction is shown in �g.1b. It can be seen from

the �gure that the ux extremum is not detected by the discretization. For a

high order DG scheme, the "phantom" solution on the cell ei1 is not involved

into the ux de�nition.

We de�ne local Jacobian on the cell ei1 as jk1k2 =
@Rk1

@uk2

; where local indices

k1; k2 = 0; 1; : : : ; K are used to denote the residual and solution components

on the cell. Let us show that the "phantom" solution on the cell ei1 results

in the singular local Jacobian. According to (11), the DG equations on the

cell ei1 are as follows
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Figure 1: The numerical ux near the extremum point for the problem (1), (8).

The solution values at the interfaces required to de�ne the numerical ux are

schematically shown in black.(a) Piecewise constant solution approximation

captures the ux extremum. (b) Higher order solution approximation misses

the extremum point inside the grid cell.
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p(xi+1)f(u
r

2)� p(xi)f(u
l

1) = 0;
...

p(xi+1)f(u
r

2)�
K

h
K

i

xi+1Z
xi

p(x)f(u)(x� xi)
K�1

dx = 0;

(12)

where ul1 = uh(xi � 0) and u
r

2 = uh(xi+1 + 0) are the solution values recon-

structed in the adjacent cells (see �g.1b). Each of the DG equations (12)

considered for the polynomial degree k > 0 contains an integral term, which

linearization ensures nonzero entries in the local Jacobian. However, a dis-

crete conservation law, i.e. the �rst of the equations (12), only requires the

ux balance at the cell interfaces. Hence, if the de�nition of the numerical

ux only concerns the solution on the adjacent cells, a zero row will appear

in the matrix jk1k2.

Consequently, the singularity of the local matrix a�ects the Jacobian in

the case that the linearized system (7) is solved. Consider the block Jlm of

the Jacobian which is related to the discretization on the cell ei1. Here the

indices l and m are as follows

l 2 L = 1; 2; : : : ; N(K + 1) + 1; m 2M =M1;M1 + 1; : : : ;M1 +K;

where M1 = (i1� 1)(K +1)+ 1, and N is the number of grid cells. Let now

m1 be a �xed number from the set M . Since the rank of the local Jacobian

is rank(jk1k2) = K < dim(jk1k2) = K + 1, we can obtain by reordering the

rows and columns of the matrix Jlm that

Jlm1
= 0; 8l 2 L : M1 � l � M1 +K:

On the other hand, we have

Jlm1
= 0; 8l 2 L : l < M1 or l > M1 +K;

since the de�nition (11) provides the exact ux splitting for the problem.

Hence, a zero column appears in the Jacobian of the system (7). The singular

Jacobian leads to an incorrect transient solution (which appearance depends

strongly on the robustness of the GMRES solver used in the problem). That

solution, in turn, will impact on the ux at next Newton's iterations, so

that the oscillations will rapidly propagate over the domain resulting in the

divergence of the method.

An obvious way to correct the numerical ux in order to avoid nonphysical

oscillations is to reduce the solution to piecewise constant approximation near
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a ux extremum. If the ux extremum generates a "phantom" solution in a

given grid cell ei (i.e. ul � uh(xi+0) > A and ur � uh(xi+1� 0) < A) at the

n-th Newton iteration, then we compute �u =
1

hi

xi+1Z
xi

uh(x)dx and de�ne the

approximate solution on the cell ei as uh(x) = �u. In other words, we attach

the extremum to the grid interface, so that the discretization (5), (11) is able

to recognize it. The following equations

p(xi+1) ~f(uh)� p(xi) ~f(uh) = 0; k = 0;

uk = 0; k = 1; : : : ; K;

are then considered on the cell ei to obtain the solution at the n + 1 -

th Newton iteration. A modi�ed DG discretization allows to obtain the

convergent solution with the polynomial degree k > 0 for the function uII0 (x)

considered as initial guess.

Let us mention again that the nature of oscillations arising in steady state

problem (8), (9) is di�erent from that appearing in approximate solution to

hyperbolic conservation laws. In the latter case the oscillations arise near a

solution discontinuity, and the approximation implies a well de�ned numeri-

cal ux over the computational domain. Now the numerical ux ~f(u) is not

correct approximation to the ux function f(u) at the extremum point, while

the solution remains a smooth monotone function near the ux extremum.

3. The numerical ux for time - dependent problems.

Approximate Riemann solvers have been successfully used many times in

solution of the hyperbolic systems of conservation laws (e.g. see [7] and the

references therein). Thus, it is instructive to compare the results obtained

for the steady state problem above with the convergence of a nonlinear solver

for a time - dependent problem. The inviscid Burgers equation

@u

@t
+ u

@u

@x
= 0 (13)

is a well known example of a nonlinear hyperbolic equation which provides us

with a quadratic ux function f(u) =
u
2

2
similar to that in (8). We solve the

equation (13) in the domain x 2 [0; 1] due to a periodic boundary condition.

The initial condition is taken from [3] where it has been chosen as a sine

wave function

u(x; 0) = u0(x) =
1

4
+
1

2
sin(�(2x� 1)):

The exact solution is smooth for any time T < 0:4, while the shock appears

at later times.
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For numerical solution of the conservation law (13), a DG discretization

in space is combined with a backward Euler time integration scheme which

results in a system of nonlinear equations at each time step. That system

is linearized in order to obtain the solution at the upper time level. Notice

that the choice of the initial condition requires the ux approximation near

the extremum point u = 0. Nevertheless, the nonlinear solver provides a

convergent solution at any time T > 0. An approximate solution at T = 0:4

is shown in �g.2 for DG discretizations with polynomial degree k � 0 on

a uniform grid of 128 cells. Let us notice that the DG k = 1 and k = 2

approximate solutions oscillate near the shock. However, those oscillations

are local and can be eliminated by means of a limiting procedure [5].

The robustness of the nonlinear solver for time-dependent problem (13)

is readily explained based on the analysis of the Jacobian matrix. Consider

the conservation law

@u

@t
+ Fx(x; u) = 0; x 2 
: (14)

The semi-discrete formulation of the equation (14) on the cell ei isZ
ei

@u

@t
�k(x)dx+R

DG

k
(u) = 0; k = 0; 1; : : : ; K;

where RDG

k
(u) is the DG residual given by (5).

Let un and un+1 be the solution vector over the grid at time t
n and

t
n+1 = t

n + �t, respectively. After discretizing in time the implicit scheme

for the hyperbolic equation (14) reads

M(un+1 � un) = ��tRDG(un+1) (15)

where positive diagonal matrix M is given by

Mkl =

Z
ei

�k(x)�l(x)dx; k; l = 0; 1; : : : ; K;

on each grid cell.

The linearization of the residual vector yields the following system of

equations

J(un+1 � un) = �R(un):

The Jacobian matrix is

J =
M

�t
+ JDG;
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Figure 2: Exact and numerical solution to the Burgers equation. Smooth

approximation to the solution at the shock generates local oscillations for the

DG solution with polynomial degree k > 0. The solution overshoots can be

eliminated by means of local limiters.
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where JDG is the Jacobian of steady state problem (1), JDG = [@RDG
=@u].

It can be seen from the expression above that the presence of mass matrix

M in the discretization ensures diagonal entries in the Jacobian, even if

matrix JDG is singular. Hence, the time derivative can be considered as a

stabilization term for high order DG discretizations.

4. The ux correction for steady state solutions.

Lack of stabilization terms in a steady state problem makes it diÆcult to

use Newton's method for numerical solution. On the one hand, the problem

of ux approximation at the extremum point cannot be completely solved by

considering another numerical ux in a high order DG discretization. Any

approximate Riemann solver which provides an exact ux splitting will result

in a singular matrix near the extremum. On the other hand, it not suÆcient

to control the ux only near the extremum point to obtain a convergent

solution. Below we demonstrate that a general case, unlike a simple model

problem considered above, requires ux control on any grid cell.

Consider a scalar ux function F (u). Any smooth function F (u), which

is not monotone in the domain of de�nition, yields a multivalued solution to

the steady state equation (1). (From a geometric point of view, this means

that the solution F (x; u) = C to the equation (1) intersects the curve F (u)

more than one time in the (u; F (u)) - plane.) For the boundary problem (1),

(2), the uniqueness of the solution is de�ned by a boundary condition2. How-

ever, a transient solution may experience jumps from one solution branch to

another, until the basin of attraction is approached. Those local bifurcations

may change the sign of the derivative dF=du and produce nonphysical ux

extrema on the cell. Thus, the local bifurcations must be eliminated to avoid

a "phantom" solution on the cell which leads to a singular Jacobian in the

problem.

Let us denote the extremum points of the function F (u) as u1; u2; :::; uP�1.

The domain of de�nition of the variable u can be partitioned as Du =
P�1S
p=0

[up; up+1], where u0 and uP are the boundary points of the domain.

Consider the values u(xi � 0) and u(xi+1 + 0), i.e. the approximate solu-

tion taken from the adjacent cells at the left and right interface of the cell

ei. Each of these values lies between two extremum (or boundary) points,

u(xi � 0) 2 [up; up+1], u(xi+1 + 0) 2 [uq; uq+1], where 0 � p; q < P .

We now consider u(xi+0) and u(xi+1�0), which are the boundary values

of the solution approximation in the cell ei. Our goal is to detect nonphysical

2For a weak solution, additional constraints, such as the entropy condition
(e.g. see [8]), are also required to provide the uniqueness of the solution.
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ux extrema within each grid cell. Instead of limiting the solution variation,

we bound the ux variation in the cell in order to eliminate the solution

oscillations. Namely, we require that

u(xi + 0) 2 [up; up+1]; u(xi+1 � 0) 2 [uq; uq+1]:

In other words, an approximate Riemann solver used in the problem must

give the same choice of the numerical ux for the solution considered at [ul =

u(xi+0); ur = u(xi+1�0)] as for the interval [ul = u(xi�0); ur = u(xi+1+0)].

From an algorithmic point of view, it is convenient to introduce the fol-

lowing formal description of our approach. Let us denote the left and right

solution state at the interface xi as u1i and u2i, respectively. Given numeri-

cal ux ~F (uh) , we de�ne state vector si = (s1i; s2i)
T at each grid interface

xi; i = 1; :::; N + 1, as follows

sli =

�
1; if uli is required to de�ne ~F (uh); l = 1; 2;

0; otherwise:

Once the state vector has been de�ned at each grid interface, the cell ei can

be described by state matrix Si,

Si =

�
s1 i s1 i+1

s2 i s2 i+1

�
;

where the columns of the matrix Si are state vectors taken at the left and

right cell interface, respectively.

The values u(xi�0) and u(xi+1+0) de�ne the main diagonal of the matrix

Si, while the u(xi+0) and u(xi+1�0) de�ne the o�-diagonal entries. Hence,

the ux within the cell can be controlled by means of the matrix Si. In

particular, it can be easily seen that zero o�-diagonal entries of the matrix

indicate the "phantom" solution which yields incorrect ux approximation

in the cell ei.

Below we illustrate our approach with a nonlinear boundary problem

known as the problem of mass ow in a convergent - divergent nozzle, [1].

Let A(x) be the area of the nozzle, A(x) = 1=2 + 2(x� 1=2)2; 0 � x � 1;

and u(x) be the velocity deviation. The conservation law is

dF (x; u(x))

dx
�

d(A(x)m(u))

dx
= 0; x 2 [0; 1]; (16)
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Figure 3: The nozzle problem. (a) The solution parametric �eld u(x;C). (b)
A discontinuous solution to the boundary problem (16), (9).
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where the mass ux through the nozzle is given by

m(u) =
1

2
(1� u

2): (17)

The value us = 0 (sonic point) is a ux extremum point.

A solution to the problem (16) is multivalued. The solutions are given by

u1;2(x) = �
p
1� 2C=A(x);

where C is a constant. The solution parametric �eld u(x;C) is shown in

�g.3a. The value xs = 1=2 is a solution extremum point for any C 6= 0 from

the domain of de�nition of C.

The value C is a controlling parameter for the problem. Let us choose

C = 1=4, so that u(xs) = us, and the point Ps = (xs; us) becomes the

solution bifurcation point. Then the solution may be discontinuous at the

point xsh,

U(x) =

�
�
p
(1� 1=2A(x)); 0 � x � xs; or xsh + 0 � x � 1;p

(1� 1=2A(x)); xs � x � xsh � 0:
(18)

The equation (16) is solved due to the boundary condition (9) which

determines the shock location xsh. Integrating the solution over the domain

[0; 1] yields the following algebraic equation with respect to the variable xsh

I1 + I2(xsh) + I3(xsh) = B;

where I1 = �

xsZ
0

p
1� 1=2A(x)dx; I2(xsh) =

xshZ
xs

p
1� 1=2A(x)dx; and

I3(xsh) = �

1Z
xsh

p
1� 1=2A(x)dx: Solving this equation for a given value of

B, the shock location can be de�ned. If we choose B = �0:25, then the

shock will be located at xsh = 0:798074. The discontinuous solution U(x) is

shown in �g.3b.

Consider the approximate solution uh(x) at the interface xi. Given the

left and right state at the interface, the Engquist-Osher numerical ux is

similar to that in (11),

~m(ul; ur) =

8>><
>>:

m(ur); ul < 0; ur < 0; (subsonic case),

m(ul); ul > 0; ur > 0; (supersonic case),

m(0); ul < 0; ur > 0; (sonic case),

m(ul) +m(ur)�m(0); ul > 0; ur < 0; (shock case).

(19)
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First, we use the standard DG approach to solve the boundary problem

(16), (9). The problem is solved on a sequence of uniform grids. The initial

guess on the �rst grid of 8 nodes is chosen as u0(x) = const = �1:0. The

initial guess for the next �ner grid is obtained by linear interpolation of

the solution taken from a previous grid. The results with the standard DG

discretization are that Newton's method fails to obtain a convergent solution

for any polynomial degree k > 0. Only a piecewise constant discretization

reconstructs the discontinuous solution U(x).

A DG discretization with polynomial degree k > 0 yields a singular Ja-

cobian in a shock cell. However, simple reducing to piecewise constant ap-

proximation near the shock is not successful in the problem and results in a

divergent solution. A more thorough control of the numerical ux is required.

For this purpose, we compute the matrix Si on each grid cell ei; i = 1; :::; N

at each Newton step. The de�nition (19) gives us the following formal clas-

si�cation of the matrix Si:

Si =

�
0 s1 i+1

s2 i 1

�
{ subsonic case, Si =

�
1 s1 i+1

s2 i 0

�
{ supersonic case,

Si =

�
0 s1 i+1

s2 i 0

�
{ sonic case, Si =

�
1 s1 i+1

s2 i 1

�
{ shock case,

where s1 i+1 and s2 i may take the value 0 or 1.

Based on the analysis of the state matrix Si, the correction algorithm,

which eliminates nonphysical ux extrema for the problem (16), (9), is as

follows.

1. Compute the solution uh(x) on the cell ei; i = 1; :::; N at the n-th Newton

iteration. Compute the left and right states at each cell interface.

2. Compute the state matrix Si on the cell ei; i = 1; :::; N and de�ne the

type of Si.

3. Mark the cell ei for linear interpolation, if

3.1 s2i 6= 1 or s1 i+1 6= 0 for subsonic Si,

3.2 s2i 6= 0 or s1 i+1 6= 1 for supersonic Si,

3.3 s2i = 0 and s1 i+1 = 0 for sonic Si,

3.4 Si is a shock state matrix.
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4. If the cell is marked for linear interpolation, then de�ne the approximate

solution on the cell ei as

u
lin

h
(x) = u1i + (u2 i+1 � u1i)�1(x):

5. For shock cell ei, de�ne the approximate solution on the cell ei as

u
c

h
(x) =

1

hi

xi+1Z
xi

u
lin

h
(x)dx:

6. Use the interpolated (piecewise linear or constant) solution on the marked

cells to obtain uh(x) at the next Newton iteration.

The above algorithm traces ux extrema over the grid for a transient

solution at each Newton's iteration. For the subsonic and supersonic cases

it is suÆcient to control o�-diagonal entries of Si to ensure that there is no

local bifurcation in the cell. We require that a transient solution generates

the state matrix on the cell ei as follows

Si =

�
0 0

1 1

�
{ subsonic case, Si =

�
1 1

0 0

�
{ supersonic case.

Let, for instance, the "subsonic" matrix be

Si =

�
0 1

0 1

�
:

This matrix is related to the solution shown in �g.4a. The matrix Si indi-

cates that a local solution overshoot presents on the cell ei. That overshoot

produces two nonphysical ux extrema (a sonic point and a shock) which

must be eliminated. For this purpose, we linearly interpolate a transient

solution on the cell ei between the points u(xi � 0) and u(xi+1 + 0) (see

�g.4a).

For the sonic case, we require to eliminate the state matrix

Si =

�
0 0

0 0

�
;

which indicates a "phantom" sonic solution. Again, the solution on the cell

ei will be linearly interpolated between the points u(xi� 0) and u(xi+1+0),

if a sonic cell yields the above matrix (see �g.4b).
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u=0

xi xi+1

ui(x)

ui

lin(x)

a

u=0

xi
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ui(x)

ui

lin(x)

b

Figure 4: Examples of nonphysical ux extrema in the problem (16), (9). (a)

The subsonic solution overshoot produces a sonic point and a shock at the cell

interfaces. (b) The sonic solution overshoot produces a shock at the interior

point of the cell and another sonic point at the cell interface.
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The other "sonic" matrices are legal. The matrix Si, which has s1 i+1 = 1

and s2 i = 1, corresponds to the sonic point inside the cell ei, while the two

other matrices indicate the sonic point at the interface.

As it has been earlier discussed, the linear solution interpolation between

the points u(xi � 0) and u(xi+1 + 0) is not suÆcient for the shock. The

interpolated solution eliminates nonphysical ux extrema on the cell, but

remains "phantom" in the presence of the shock. Thus, in our algorithm we

reduce the solution to piecewise constant approximation at the shock. The

correction procedure a�ords to obtain convergent solutions for DG k > 0

discretization schemes. Once the ux correction has been performed, the

Newton method rapidly converges to the approximate solution. The number

of Newton's iterations required to converge on a given grid is displayed in

Table 1 for the polynomial degree k � 0.

Table 1

The number N of Newton's iterations required to converge on a given grid.

Nc is the number of grid cells.

N(k;Nc) : Nc = 8 Nc = 16 Nc = 32 Nc = 48 Nc = 64

k=0 9 5 4 3 4

k=1 9 5 5 4 4

k=2 10 5 5 4 4

k=3 10 5 4 4 4

The approximate DG solution with polynomial degree k = 3 obtained by

the ux correction is shown in �g.5a on a coarse uniform grid of 16 cells

and �ne grid of 128 cells. According to the correction algorithm, the shock

is smeared over two adjacent grid cells, as an uncorrected solution has the

shock at the grid interface at the �nal Newton step.

The convergence history on a sequence of uniform grids is plotted in

�g.5b for polynomial degree k � 0. The L1 - norm of the solution error,

jjerrjjL1 =

1Z
0

jU(x)� uh(x)jdx, is computed in regions where the solution is

smooth (i.e. grid cells, which produce a shock state matrix, are not taken

into account). The error norm is shown in the logarithmic scale. It can

be seen from the convergence plots that the suggested algorithm keeps the

order of approximation. The polynomial degree of the approximate solution

is only reduced for a transient solution at the current Newton step.
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Figure 5: Numerical solution to the problem (16), (9). (a) An example of

the DG solution (polynomial degree k = 3) on a coarse and �ne grid. Nc is

the number of grid cells. (b) Convergence history for the DG solution with

polynomial degree k � 0.
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Once the solution is correct, the original polynomial degree will be re-

stored on the cell at next iterations. This approach allows to obtain the

optimal order of the convergence for high order DG discretizations.

Concluding remarks.

We have considered high order DG schemes for steady state solutions.

It has been shown that ux approximation near extremum points may gen-

erate spurious solution oscillations. Physical ux extrema require careful

treatment to avoid a singular Jacobian in a steady state problem. Besides,

false ux extrema may appear in a transient solution when Newton's method

is used to solve the problem. A high order DG discretization needs ux mon-

itoring over each grid cell in order to detect ux extremum points.

The requirement of careful ux approximation makes Newton's method

hardly appropriate for those steady state problems which do not have stabi-

lization terms (e.g. di�usion and/or source terms) providing nonzero diag-

onal entries in the Jacobian. Although the ux control algorithm presented

in the paper allows to avoid a singular matrix in the one-dimensional case,

it does not seem to be always eÆcient for multidimensional problems where

the construction of the state matrix on each grid cell becomes a complicated

task.

The results of our paper con�rm that a reasonable alternative to Newton's

method is to use a time marching approach in order to obtain a steady state

solution. It has been discussed in the paper that the time derivative can be

considered as a stabilization term for high order DG schemes. However, an

ill-conditioned Jacobian may appear at the end of the time stepping process

when we approach "quasi-Newton" iterations. Thus, care should be taken

of the ux approximation even in the case that a time stepping algorithm is

used, and the issue of the numerical ux for high order DG discretizations

requires further study when steady state problems are considered.
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