
KELDYSH INSTITUTE OF APPLIED MATHEMATICS

RUSSIAN ACADEMY OF SCIENCES

A.A.Belov, P.Behr, E.Yu.Fedounin, A.A.Ilyin, S.K.Kalashnikov,

A.P.Kalinin, S.Montenegro, A.G.Orlov, A.N.Ostanniy, A.M.Ovchinnikov,

M.Yu.Ovchinnikov, S.Pletner, I.V.Ritus, A.I.Rodionov, I.D.Rodionov,

I.P.Rodionova, D.V.Vorontsov, B.V.Zubkov

Software for the Distributed

On-board Computer System Prototype

Moscow

2004

 2

The Software for the Distributed On-board Computer System Prototype, A.A.Belov,

P.Behr, E.Yu.Fedounin, A.A.Ilyin, S.K.Kalashnikov, A.P.Kalinin, S.Montenegro, A.G.Orlov,

A.N.Ostanniy, A.M.Ovchinnikov, M.Yu.Ovchinnikov, S.Pletner, I.V.Ritus, A.I.Rodionov,

I.D.Rodionov, I.P.Rodionova, D.V.Vorontsov, B.V.Zubkov, Preprint of KIAM RAS,

Moscow, 24 Pages, 4 Figures, 2 Tables, 2 Flow-Blocks, 2 References.

According to the project №2323 «The Development of the Prototype of Distributed

Fault Tolerant On-Board Computing System for Satellite Control System and the Complex of

Scientific Equipment» of the International Scientific and Technical Center the work on

development of a software and hardware parts of mentioned prototype is carrying out in the

Keldysh Institute of Applied Mathematics of RAS and in the Space Research Institute of RAS

jointly with the Fraunhofer Institute Rechnerarchitektur und Softwaretechnik (FIRST, Berlin,

Germany).

The preprint describes a project’s software branch being in a progress. The brief

survey of real-time executives is adduced and preliminary choice of the most appropriate

system is done. Requirements to the software of the prototype of computing system are

determined. Principles of the development of applied software for on board data processing

by the prototype of on board computing system are discussed.

Программное обеспечение прототипа распределенной бортовой

вычислительной системы, А.А.Белов, П.Бэр, Д.В.Воронцов, Б.В.Зубков,

А.А.Ильин, С.К.Калашников, А.П.Калинин, С.Монтенегро, А.М.Овчинников,

М.Ю.Овчинников, А.Н.Останий, А.Г.Орлов, С.Плетнер, И.Д.Родионов,

А.И.Родионов, И.П.Родионова, И.В.Ритус. Препринт ИПМ им.М.В.Келдыша РАН,

Москва, 24 страниц, 4 рисунков, 2 таблицы, 2 блок-схемы, библиография: 2

наименования.

В соответствии с проектом №2323 «Разработка прототипа распределенной

бортовой вычислительной системы для управления космическим аппаратом и

комплексом научной аппаратуры, устойчивой к отдельным сбоям» Международного

научно-технического центра, выполняемым в Институте прикладной математики

им.М.В.Келдыша РАН и в Институте космических исследований РАН совместно с

Fraunhofer Institute Rechnerarchitektur und Softwaretechnik (FIRST, Berlin, Germany),

разрабатывается программная и аппаратная части указанного прототипа.

Настоящая работа посвящена описанию программной части проекта,

разработанной к настоящему времени. Приведен краткий обзор операционных систем

реального времени и сделан предварительный выбор наиболее подходящей системы.

Определены требования к программному обеспечению прототипа вычислительной

системы. Обсуждаются принципы разработки прикладных программ для бортовой

обработки данных на прототипе бортовой вычислительной системы.

 3

Contents

 Introduction 4
1. Operation system choice 5
1.1. Analysis of on-board computer complex software

requirements and OS choice
5

1.2. Challengers for on-board OS 6
1.3. Preliminary conclusion 9
2. Determination of requirements to software for the on-

board computer system prototype
9

2.1. Local module software requirements 9
2.2. Software requirements for entire computer complex 10

3. Development of applied programs for on-board data
processing at the airborne computer system prototype

10

3.1. Statement of problem 11
3.2. Task of hyper-spectral measurements 11
3.3. Hyper-spectral data processing techniques 12
3.3.1. Correlation method for experimental data processing 12
3.3.2. Sub-pixel method for experimental data processing 13
3.4. Processing algorithms 14
4. Algorithms of initial configuring, routing, and

reconfiguring
19

4.1. System composition 19
4.2. Initiation stage 20
4.3. Operation mode 21
4.4. A module failure 22
4.5. Types of output data 22
4.6. Output data compression 23
 References 24

 4

Introduction

The Keldysh Institute of Applied Mathematics of RAS and the Space

Research Institute of RAS both jointly with the Fraunhofer Institute
Rechnerarchitektur und Softwaretechnik (FIRST, Berlin, Germany)
develop software and instrumental parts for the prototype of an onboard
computer system resistant to some separate failures in a framework of the
project № 2323 entitled «The Development of the Prototype of Distributed
Fault Tolerant On-Board Computing System for Satellite Control System
and the Complex of Scientific Equipment» under support of the
International Scientific and Technical Center. This work includes a
development of a fail-safe distributed onboard computer system
prototype to control a spacecraft and the scientific equipment facility
making the hyper-spectral remote sensing of the Earth.

Requirements to the board and scientific equipment control facility
necessary to carry out the mission’s scientific tasks can be only fulfilled
by a powerful and flexible computer & communication infrastructure.
Broad operational variety demands that the computing functions and
capabilities must be adaptable to changing in-time requirements. The
scientific equipment control system closely interacts with the on board
control facility in terms of requirements per concrete operation. While the
on board control complex should provide for a high rate of the
spacecraft’s autonomous operation as well as its robustness as the top
priority task.

The on-Board Computer System (BCS) is a distributed multi-
computer system resistant to separate failures and accomplishing entire
steering, telemetry and monitoring functions as well as all application
functions typical for scientific equipment and computer control system
facility.

Amalgamation of different computing functions on a spacecraft
board into a single system with a high redundancy rate allows both tight
interworking between various processes and optimizes flexible utilization
of the reserved computer resources to execute different tasks depending
on the operation requirements and the necessary failure resistance level.
The on-board computer architecture corresponds to a homogeneous
symmetrical multi-computer system i.e. it comprises several (from 3 to 16)
similar nodal computers linked by a redundant bus system. Actually each
computer is able to execute any process and has an access to every I/O-
channel. The software architecture build-up uses the same approach as
the instrumental part architecture. It must be modular, distributed and
reiteratively redundant. The compact kernel operation system (OS) should

 5

provide each node for basic functioning in the multi-task mode with
priorities, the priority based and real time based planning, communications
and memory resources control.

The preprint discusses and substantiates the real time OS choice
and describes the developed application software for the hyper-spectral
imaging.

1. OS choice

1.1. Analysis of on-board computer complex software requirements
and OS choice

It is understood that the proper computer system architecture

choice is only possible when taking it as a one whole entity combining
instrumental and software parts. The key issue in designing of the
instrumental part is the choice of an OS, its kernel and specialized
software (SSW), since the build-up of the whole computer system needs
to take into account which tasks are solved by a hardware and which by a
software, while the work is restricted in time and funding.

Therefore, at the first stage our attention was drawn to the choice
of an OS for on-board computer system prototype. Let us discuss
guiding requirements for the OS choice.

The requirements below are given in the importance descending
order. Satisfaction to the beginning requirement points is the guiding
principle for selection of the concrete OS.

The target system is understood as a whole computer complex
devised to host the OS and SSW. The computer complex main tasks are
seen as tasks carried out by SSW.

 1. Functionality requirements:

a) OS level support for the following issues:
 --synchronized objects: spinlocks, mutexes;
 --signals;
 --interruptions;
 --clocks, timers;
 --exceptional cases;
 --message queues;
 --tasks (processes) with priorities;
 --inner task flows (threads) with priorities;
 --memory scheduler;
 --external devices;

 6

 --shared memory;
 --multiprocessor computer systems.

b) Principal implementation capability to support instrumental interfaces
of the target system within the chosen OS frameworks.
c) The OS overall usage of the CPU resources, external and internal
memory is rather enough to allow solution of the computer complex
main tasks within the taken OS (~10-100 Kb).
d) The maximum response delay time to an external instrumental
interrupt is within limits for the lossless data exchange control over any
bus provided the CPU resources consumption leaving rather enough
time for the computer complex main tasks within the taken OS (~1-2
μs).
e) The maximum task relay time is within limits sufficient for the SSW
operation (~1 ms).
f) The flow relay time inside one task frameworks is within limits
sufficient for the SSW operation (~100 ns).

 2. Control and reliability requirements:
а) Availability of the entire OS source code written in a high level
language with clear-cut structure.
b) The taken OS must have cross-compiling and cross-debugging
tools for at least one common used OS such as UNIX or Windows.

 3. Flexibility and scalability requirements:
a) Presence of a configuration mechanism (or its development means)
as well as OS installation and loading mechanism for the target system.
b) Presence of a mechanism (or its development means) to apply the
newly developed modules and components (i.e. drivers for new
equipment) in the OS frameworks.

 4.Miscellaneous requirements:
a) The taken OS is desirable to have auxiliary tools facilitating the
developers’ work such as debugger, profiler, utilities for log analysis
and acquisition of various information, etc.

1.2. Challengers for on-board OS

Hereinafter
+: means advantage
-: means drawback
The following OS were analyzed:

1. eCOS (http://sources.redhat.com/ecos/)

 7

+: Open source code system is widely supported by the largest Linux
(RedHat) based solution supplier with implementation (in C++,
assembler) for PowerPC (IBM, Xilinx, Motorola) and many other
platforms (the list is being permanently expanded). The system is
compatible with the standard cross-tools of GNU.
-: strict lock-on to GCC compiler (to a set of compilers to be exact)
supplied with GNU license; the use of other compilers is hardly
whatever possible.

2. BOSS
+: Open source code system with quite simple and explicit
implementation (in C++, assembler) for PowerPC. The OS is
compatible with the standard cross-tools of GNU and was previously
used in a satellite computer complex with manifold redundancy. The
system showed stable performance for harsh conditions.
-: very narrow circle of developers; lack of standard equipment
support, the OS has no support for such regnant concepts as kernel
modules or network sockets.

3. VxWorks (WindRiver)
+: The leader of the embedded systems market, the OS was tested in
multiple applications, it is proved to be a high-speed one with a
configurable kernel and the broadest support of different equipment
provided with flexible license (discount for massive purchases). Cross-
tools use freely distributed GNU program packages and company’s
own developed utilities for popular OS’s based on Windows NT and
Linux clones are available for developers. There is also a graphic
subsystem optimized for the embedded applications available for
additional charge.
-: The OS cost is pretty high as compared with the counterparts. The
source code is licensed by the supplier and is provided for
considerable extra charge with no alterations allowed (languages
С/C++, assembler). The shared memory system is either available
only for additional charges.

4. Windows NT hard real-time extensions
+: Windows NT kernel based systems are able to execute the majority
of programs developed for Windows platform i.e. the target computer
may simultaneously be the developer’s computer.
-: Yet actually this type system falls into two parts:

the first one works under the old, not real-time kernel control with
its own drivers,

 8

the second one works under the new real-time kernel control
rewritten by manufacturer as a specific solution (a note for specialists:
here the NT kernel is considered as either the "ntoskrnl.exe” itself or
tightly linked to it "hal.dll” and some few similar libraries).

Achilles's heel of this approach is the fact that inside the non-real-
time interrupt controller the interrupts are banned (poor quality drivers
sometimes even themselves do this “for reliability sake”) what
extinguishes any performance speed guaranties for other components.
High cost and at the same time complete source code secrecy of the
solution should also be pointed out. Therefore, even the, so called,
“real-time extensions” for the satellite on-board computer applications
do not fully match the reliability criterion in either cases of at least one
standard driver usage or a necessity to somewhat alter the system
response to external events (this is specific for all closed source code
systems).

5. Windows CE

+: The initially oriented for the mobile computer market is small in size,
has fairly good rate and relatively low cost.
-: Closed kernel, rather big interrupt response delays, considerably
abridged functionality as compared with Windows NT.

6. Linux real-time extensions
+: such type systems are the general purpose OS remake substantially
slimmed-down (the kernel had been altered and has open source
code), supplemented but rather remained principally intact. Thus, the
majority of already made OS Linux equipment drivers can be used
keeping up the advantage of the main real-time OS quality which is the
high rate response to external events.
-: the OS Linux has not been conceived as a real-time OS; some
drivers imply such system components as a file system or a virtual
memory system and could contribute unacceptable delays for a real-
time system. This fact causes apprehensions though not so strong as
that for the analogous Windows NT solutions.

7. QNX Neutrino
+: constructed on the micro-kernel base with components traditionally
comprising the OS solid kernel; the components are implemented as
separate mobile and replaceable modules with clear-cut interfaces that
naturally boosts the system robustness although lowers its
performance a bit. The system’s indisputable advantage is its wide
support (by means of porting) for multiple GNU software packages,

 9

including graphic ones, within the system frameworks what makes it
possible to conduct full-scale development right at the target computer
with no cross-tools attached (mind that this option is not excluded).
There is also the company’s own developed graphic “Photon”
subsystem that is compact and fast, oriented to the embedded
applications.
-: closed source code of kernel and weak, at present, support for
various industrial and military computer equipment; while the cost is
lower but still comparable to the one of the industry leaders such as
WindRiver.

1.3. Preliminary conclusion

The full control (including alterability) requirement to the on-board
computer OS behavior drives us to reject the already made closed
source code systems, thus selection from the rest options undoubtedly
yields the eCOS as the most mature and at the same time evolutionary
system (at the document preparation moment principally revised second
edition of the OS has come out). The rate qualities have not been tested
yet (due to lack of the target computer) but the kernel’s open source
code gives a vast flexibility in this respect.

On the one hand any time consuming OS code fragments can be
thoroughly rewritten with the target computer’s central processor (CPU)
assembler. On the other hand – execution of the required operations
may entirely be relayed to an external (with respect to CPU) equipment
thus creating a soft- and hardware complex for maximum compliance
with the task settled. Actually eCOS represents the basic building kit for
construction of a specific soft- and hardware complex.

2. Determination of requirements to software for the on-board

computer system prototype

The target system module implies that one or several chips are
mounted on the same board and exchanging signals between
themselves and the other system modules is carried out via single or
multiple bus interfaces.

2.1. Local module software requirements

The requirements are as follows:

 10

1. Support of routing and exchange interfaces for signals (minimum
sufficient data volume, maximum rate) and messages (any data
volume) over a bus or buses with the available neighborhood.

2. Implementation of basic interface for routing signals and messages
over the available buses (no control center, finding and polling of
adjacent units, polled data exchange).

3. Implementation of extended routing interface (assigned control center,
requisite routing data at each node, and auxiliary routing data in each
packet).

4. Maintenance of a module and its buses including accumulation of
extra diagnostic data about the module’s state and its buses’ load.

5. Regular transfer of the gained information on the state of a module
and its buses at a request received via a bus or other sources.

6. Execution of the computing and control tasks posed for the module.

2.2. Software requirements for entire computer complex

1. Initial configuration of all target system devices according to selected
algorithm by means of signaling and messaging between modules.

2. Reconfiguration and alignment of bus load by means of signaling and
messaging between modules upon reaching of the preset load
threshold or reception of a control signal.

3. Synchronization, if needed, of the executed operations and
intermodule data according to selected algorithm by signaling and
messaging.

4. Relaying of data flow to backup module in case of one module’s
malfunction or correct handling of a faulty state (impossibility to
continue operation).

5. Support for a single main router module to coordinate data flows
inside the complex. The support includes initial selection of a router
module, operation of the router, and reallocation of the routing
functions to another module.

3. Development of applied programs for on-board data processing

at the airborne computer system prototype

On-board processing of scientific data is an implementation of
mathematical methods of hyper-spectral data processing. Its essence is
in revelation of the matter content in each point of the Earth surface
observed.

 11

3.1. Statement of problem

There is a set of spectra where each of them is a sum of unknown
but finite quantity of basic spectra and random interference spectra due
to imperfect instruments. The task is to:

 solve the problem of basic spectra automatic extraction out of the
available spectral set;

 define the basic spectra contribution volume for any spectrum of
the given spectra set. Whereas the value can be both zero and
positive;

 calculate the decomposition error.

The problem is aggravated by the fact that in a general case of
great number of basic vectors the resolution can be ambiguous. The
correct resolution in this case needs assessment of the alternative
resolutions error values, resolution data in neighboring points, noise
characteristics, and additional data.

3.2. Task of the hyper-spectral measurements

The task of the hyper-spectral measurements in the 0.4-2 µm
optical range is the Earth surface investigation (aiming to identify objects
and materials comprising the surface) using remote sensing technique
(from the board of a plane or a spacecraft). According to current
terminology the measurements are called hyper-spectral if their range
involves from several hundreds up to one thousand spectral channels,
and hyper-spectrometer is an instrument measuring either spectral or
spatial coordinates at the same time. Identification of objects and
materials in the hyper-spectral measurements is based on the objects’
and materials’ property to reflect and absorb the light. The fundamental
basis of such remote sensing is an assumption that there is a univocal
link between the received reflected signal and the reflecting surface
contents. The illumination can be provided by solar radiation at the
daytime and by lunar or even stellar radiation in the night. The maximum
illumination radiation is in the visible range while the 0.4-2 µm range has
optically transparent windows for clean atmosphere.
 The hyper-spectral survey main concept is a “hypercube”. This is
the international term for a data set compiled of the intensity values of
the solar signal reflected from a two-dimensional area surface
conditionally partitioned to image elements – pixels. Besides two
standard coordinates each pixel is added with a spectral coordinate

 12

providing for 3D data dimension. Moreover, the discrete polarization
coordinate is also supplemented. So the measured data represent a
function given at the multi-dimension space with continuous and discrete
arguments. This has stipulated the term of “hypercube”.

The hyper-spectral data processing main task is decomposition of
the emitted spectrum to the basis. The main idea of the hyper-spectral
decomposition is representation of the spectrum as a sum of reference
components spectra. To facilitate the decomposition the resolved
spectrum is given as a vector.

3.3. Hyper-spectral data processing techniques

Two hyper-spectral data processing techniques, that is,
correlation and sub-pixel methods have been developed.

3.3.1. Correlation method for experimental data processing

The correlation method compares the given hyper-spectral function

for each hyper-spectral image pixel with the hyper-spectral functions of
reference components in order to choose a substance to most closely
match the spectrum.

Expertise showed that the most successful correlation function is
an integral of the spectral functions product. Let f1 function be the studied
spectral function and f2 function consecutively correspond to spectral
functions of reference components. The fi functions are brought to such a
kind that their mean quadrant value is zero and integral of the function’s
quadrant equals to 1:













L

LL

LL

dffffC

dfdf

dfdf

0

2121

0

2

2

0

2

1

0

2

0

1

)()(),(

1)(1)(

0)(0)(







 (1)

С value lies within the range of –1 to 1 and features similarity of f1 and
f2.functions. Such fi, functions are selected out of all reference
components which have the maximum С value. Since among all spectral
functions of the reference components there could be no function
sufficiently close to the studied spectral one the search is limited by a

 13

minimum threshold value of Сmin. Should the maximum found value of
Сmax be less than this threshold, the substance would be considered as
unidentified (Смах is usually about 0.5-0.8 and is chosen with regard to
the video-signal quality and a number of reference components). In case
of the data is obtained from several hyperspectrometer modules the
resulting C value would be a weighted sum of correlations from these
modules’ spectral functions:

1
1

1













m

i

i

m

i ii

p

CpC

 (2)

Here pi, is a weight of a given module spectral function determined by
informative capacity of the given spectral range, m is a number of hyper-
spectrometer modules.

From the mathematical viewpoint this method should be noted to
be a particular case of the more general sub-pixel transformation. It is
similar to a product of two vectors in multi-dimensional space and can be
used for definition of each data base element contribution, provided the
basis formed by this base is orthogonal. The correlation method
undoubted advantage is its algorithmic simplicity and high stability to
interference caused by illumination and various nonlinearities of
equipment. The method’s drawback is its lower information capacity of
the obtained picture recognition for the hyper-spectral survey results as
compared sub-pixel method described below.

3.3.2. Sub-pixel method for experimental data processing

All superficial materials, as usual, are mixtures of several
substances for all measuring scales and, therefore, the spectral function
of a surface image element is a composition of several component
spectral functions (reference components). Modeling of each element
spectral function by a linear combination of a finite number of the
reference spectral samples allows estimation of the image pixel content
by the least square method [1].
 The N-dimensional vector determined by N hyperspectrometer
channels could be a useful mathematic presentation for the spectral
mixture analysis. An arbitrary M reference spectral samples (while M
always less than N) determines an M-dimensional subspace in the N-
dimensional vector space. We put the N-dimensional vector of the image
element spectral function as a linear combination of reference vector

 14

components. Each component of the reference spectral samples is
defined by a numeric share value within 0 and 1. Besides, the total sum
of these numeric shares per each reference component of the given
image element must be equal to 1 with no account for noise and the
unidentified substances contribution. This geometrical interpretation of
spectrum yields a basis for the orthogonal subspace projections method
(OSP) to analyze the mixed spectrum.

The reference components quantity depends on the spectral
channels number, the chosen spectral bandwidth, the spectral bandwidth
signal to noise ratio, and can vary from some few (in bad conditions) up
to hundreds.

The essence of sub-pixel elements recognition could actually be
described as follows. As it was mentioned above each image element is

featured by its own spectral function fi(). Mind that the sub-pixel
transformation method brings fi spectral functions to the same type as for
the correlation method whereas their average value is zero and the
integral of square function is equal to 1 (1). In our case we deal with
discrete data and can denote such function as an intensity values series:

 A={ fi1 fi2……..fin}, (3)

where fin is intensity of the fi() spectral function at the n wavelength.
The sub-pixel transformation method presents this discrete function as a

N-dimensional vector with i (i=1  N) as the coordinate axis.
An example helping to understand the sub-pixel method essence is

the case when in a hyperspectral image element spectral function (f) is

characterized by three discrete values (с, к, ж) (Fig.1a).

Fig.1. Spectral function f, valued by three spectral channels (a), and

 15

its projection on the reference components subspace

Herein the transformation uses the so-called linear mixing model.
The model’s essence is that each hyper-spectral image element
represents a linear combination of reference components with
corresponding coefficients. So the studied f function is transformed to

 

 TM

M

i

ii

bbbb

ssS

ebSesbf

... ,

s... ,

21

M21

1








where:

f is the vector presentation for image element spectral function;

is is the vector presentation for reference components;

ib is the vector component contribution;

M is the reference components number;
e is the error vector caused by instrumental noises and unidentified
substances;
T is a transposition operation.

Expressions (1) bring the spectra to vector type, and further on the
obtained f vector is projected to a subspace built-up by the reference
components. The fп projection and e perpendicular vectors to the
reference components subspace is a result of this procedure. It is
obvious that

bSfп  (4).

Actually the perpendicular е vector is a decomposition error due to
insufficient number of the reference components. If the f vector belongs
to the reference components vector subspace then the е error would be
zero, i.e. linear combination of the reference components vectors
completely describes the spectral function vector of the studied image
element. The decomposition error can be expressed by

bSxxxe п  (5)

Since the error vector is perpendicular to all reference components
vectors the following equation is valid

  0 п

TT xxSeS (6)

where ST – is the transposed matrix. Using (4) we get

 0)( bSxST
 (7).

(**)

 16

Transforming (7) finally yields

xPxSSSb s

TT  1)(

where SP is a reference components subspace projection matrix.

Similarly the error vector e can be obtained using the PE error
projection matrix

,xPxxe Eп 

where
S

PE
E

P  , E is an identity matrix. The vector b coordinates (bi)

give the volume contributing by a particular i – substance to the image
pixel elementary content. The “error” vector value reveals the actual
validity of the taken reference components base to identify the image
pixel.

 17

3.4. Processing algorithms

Correlation method is presented in the following figure:

Normalizing of reference

vector

Integration of vectors’

product

Saving of result

Is this reference

last?

Reception of next

reference vector from

base

no

Selection of

the best result

Extraction of next vector

from received frame

Is frame

ample?

no

Result

 18

Sub-pixel method is shown in next figure:

 Building-up of reference

vectors matrix

Determination of inverse

matrix

Calculation of
orthogonal base

matrix

Extraction of next vector

from obtained frame

Multiplication of vector by

matrix

Saving of results

Is frame ample?

Result

 19

4. Algorithms of initial configuring, routing, and reconfiguring

4.1. System composition

The complex comprises a set of modules plugged in sockets on the

system’s common motherboard. On connection each module is assigned
with its own unique identifier. A part of the identifier is the socket number
the module is plugged in. We’ll give more details on the identifiers later.
Let us consider structures of the modules positioning and their interwork
in the system.

Fig.2 gives a diagram of physical connections between modules in
the complex. Note that the diagram depicts only module №004
connections with the modules concerned.

Fig. 2 Modules physical connections diagram

All the modules are instrumentally identical but differ only by
functions they realize. The functions are determined by software. Let us
denote the different function modules by the following abbreviations:
Rec is a data receiver. These modules have external interface with the

scientific equipment.

Proc is a module processing the scientific data. These modules’
incoming data is processed according to the module’s preloaded
algorithm. The processed information is passed to transfer modules.

Tran is a transmitter of data. The module is responsible for the data
transfer to outer devices.

Using the notations the logical connections module diagram can be
drawn this way:

Fig.3. The logical connections diagram for modules in case of single

module of a type

 Module number

№004

Module number

№003

Module number

№002

Module number

№001

Module number

№005

Module number

№006

Module number

№007

Rec Proc Tran

 20

If system has a several similar function modules then the diagram
could look as follows:

Fig.4. The logical connections diagram for modules in case when

number of modules executing each possible function is more
than one

Therefore, each system module is identified by the following parameters:

 number of socket it is plugged in;

 function fulfilled.
Assembly of these parameters is the module’s identifier.

Operation of the system needs each module to know the other
module’s identifier to pass the processed data to and the number of
communication channel capable of making of this transfer. The module
connection diagram shows (Fig.1) that every module is linked with other
six modules via communication channels. These channels are situated at
the motherboard and in the common case, when not all the sockets are
busy, some communication channels could be lacking. So the first
system start-up stage must be initialization.

4.2. Initialization stage

This stage compiles a table according to which all the modules’

interwork takes place. Let us call it a Routing Table.

Routing Table:

Row
number

Module
Type

Socket
number

Channel
number

1 Rec 4 3

2 Proc 2 2

… … … …

Rec1

Rec2

Proc1

Proc 2

Proc 3

Proc 4

Tran1

Tran2

 21

The routing table has the following fields:

Row number – as the table may include a big number of different routes,
each route represents a unique row in it.

Module type is the assigned function of a module
Socket number is the number of socket which the given module is

plugged in.
Channel number is the number one of six channels ready to carry data to
a specified module. If the selected channel links this module with the
destination one indirectly, then a module that received data addressed to
another one transfers the information further according to its routing
table.

The table is generated this way. On system start-up each module
sends a broadcast request. This broadcast request includes the origin
address, the type mask of modules expected to answer, and parameter
limiting the request’s “life time”. Each module that received such a
request must resend it via all its data links. Each module satisfying the
request mask must respond to the originator with a message. This
message contains the socket number that the given module is plugged in
and the type of the module. On reception of such a message the
broadcast request sender puts the message’s data into its own routing
table. The generated table may contain several records differed only by
the “Channel number” field value, this means presence of alternative
routes to one and the same module.

In order not to overload the system by such broadcast requests a
parameter is needed to limit its “life time”. This parameter is also
included into the requests. The parameter is a positive number
decreased by one after each request reception. If the resulted parameter
value is not zero the request is transferred forth. Thereby the number of
the given request copies emerged in the system is limited. This number
is equal to 6n, where n is the parameter value, and number of modules
that received this request at least once equals to 6*n. Having generated
its routing table a module is switched to the operation mode.

4.3. Operation mode

In the operation mode a module can exchange data with other
modules according to the following scripts.

 22

1. Data transfer to the module X

First a data transfer request is originated. The request includes: the
request-message property, destination identifier, volume of data to
transfer. On getting of the data receive ready acknowledgement a data
packet is formed and sent to the X module. If no acknowledgement ever
emerged then retry is made from the next routing table raw that contains
a route to the same type module as the X module.

2. Data reception from the module X

On reception of the data transfer request from X module a check is made
for the input buffer free space. If the buffer has enough space to receive
the data the module sends the data receive ready acknowledgement.
After this the data packet from the X module is received.

4.4. A module failure

If a module that has alternative modules of the same type fails the
data processing tasks would be redistributed among them. In this case
the sender will not get the data receive ready acknowledgement and the
data is transferred to some other module. The second consequence of
the one module’s failure is a loss of one data link for six other modules.
Yet this trouble is surmounted by using of alternative routes in the routing
table. If not all system sockets are occupied it would be better to place
modules closer to each other. This gives much stability as compared with
modules spread over one or two sockets’ distance.

4.5. Types of output data

After the scientific data has been processed the system outputs
three types of information depending on the operation mode.

1) Video-image (so called “raw data”)

This data is taken from the optical system output and is practically
unprocessed. The format of this data is the following: the frame rate is

 23

500 fps, the frame size is 1000х1000 pixels, each pixel is one byte coded
that provides for black & white image with 256 gray shades.

2) Correlation technique results

These data contain information on every spot of the studied surface
as a complex of the data base sample number and the similarity factor of
the sample and the studied spot spectral function. The data packet
format is the following: the first 1 byte has the sample number and the
second 1 byte is the similarity factor. So, the packet size is two bytes.

3) Sub-pixel technique results

These data contain information on every data base sample
contribution value into the studied surface section content. The data
packet consists of Z contribution factors for each sample. So, the packet
size is Z bytes.

4.6. Output data compression

Let us estimate the compression efficiency for all three types of
data. For comparison we take two lossless compression techniques –
LZW and Haffman method.

LZW-compression replaces symbol strings with table codes. The
Table is formed while processing the input text. If the searched symbol
string is found in the table the string is then replaced with the string’s
table index. Codes generated by LZW-algorithm maybe of any length but
they must have more bits then the single symbol.

Haffman compression replaces symbols with codes while the code
length depends on the frequency the symbol appears in the compressed
data array. The technique requires two passes through the array where
the first pass counts the symbol usage frequency and the second one
makes the compression itself.

Programs implementing the mentioned algorithms have been
developed in order to test the compression efficiency for different data
types and each method. Ten 1MByte arrays of each data type were used
as the input data. The Table bellow gives the averaged test results.

Table. Compression tests results:

 Initial
Size

LZW
compressed size

Haffman
compressed size

Video-image 1 MB 1 006 000 Bytes 696 000 Bytes

 24

Correlation data 1 MB 1 240 000 Bytes 1 003 000 Bytes

Sub-pixel data 1 MB 238 000 Bytes 293 000 Bytes

The Table shows that the correlation processing data file is not

compressed by the algorithms discussed above, the sub-pixel
processing data file is better compressed by LZW method, and the
video-image is better compressed by the Haffman method.

References

1. Vorontzov D.V., Orlov A.G., Kalinin A.P., Rodionov A.I., et al. Estimate
of Spectral and Spatial Resolution for AGSMT-1 Hyperspectrometer,
Institute of Mechanics Problems of RAS, Preprint №704

2. A.A.Belov, D.V.Vorontzov, D.Yu.Dubovitzkiy, A.P.Kalinin,
V.N.Lyubimov, L.A.Makridenko, M.Yu.Ovchinnikov, A.G.Orlov,
A.F.Osipov, G.M.Polischuk, A.A.Ponomarev, I.D.Rodionov,
A.I.Rodionov, R.S.Salikhov, N.A.Senik, N.N.Khrenov, “Astrogon-Vulkan”
Small Spacecraft for High Resolution Remote Hyper-Spectral Monitoring.
Institute of Mechanics Problems of RAS, Preprint №726

