РОССИЙСКАЯ АКАДЕМИЯ НАУК Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ им. М.В.Келдыша

1

М.Ю. Беляев, Е.С. Медведев, Д.Н. Рулев, В.В. Сазонов

ВЛИЯНИЕ УЧЕТА ВАРИАЦИЙ ПЛОТНОСТИ АТМОСФЕРЫ, ВЫЗВАННЫХ СОЛНЕЧНОЙ АКТИВНОСТЬЮ, НА ТОЧНОСТЬ ОПРЕДЕЛЕНИЯ ДВИЖЕНИЯ МКС

Москва – 2004

2

В рамках модели плотности атмосферы ГОСТ 25645.115-84 исследовано влияние учета изменения индекса солнечной активности на точность аппроксимации реальных значений фазового вектора Международной космической станции решениями ее уравнений движения. В уравнениях движения учитывались нецентральность гравитационного поля Земли и сопротивление атмосферы. Рассматривались интервалы времени длиной до 10 сут в марте – апреле 1999 г., когда станция совершала неуправляемый полет в режиме гравитационной ориентации. На этих интервалах баллистический коэффициент станции оставался практически неизменным, и на нее не действовали управляющие силы и моменты. Показано, что учет фактического изменения индекса солнечной активности позволяет в несколько раз увеличить точность аппроксимации значений фазового вектора на интервалах времени более 5 сут. При аппроксимации этих значений на интервалах времени менее 3 сут выигрыш в точности практически отсутствует.

M.Yu. Belyaev, E.S. Medvedev, D.N. Rulev, V.V. Sazonov. The influence of taking into account atmosphere density variations, caused by solar activity, on accuracy of definition of ISS motion. We investigated the influence of taking into account variations of the solar activity index on accuracy of approximation of measured values of the International Space Station phase vector by solutions of its motion equations. Those equations were written taking into account higher harmonics of the Earth gravitational potential and the atmospher drag. The investigation was carried out using the atmosphere density model of GOST 25645.115-84. Time intervals up to 10 days in March – April 1999 were considered when the station made uncontroled flight in the gravitational orientation mode. Its ballistic factor was practically constant that time, and the station did not undergo the action of any control force and torque. Taking into account of actual variations of the solar activity index allowed to increase essentially theaccuracy of approximation of values of the phase vector on time intervals more than 5 days. At approximation of these values on time intervals less than 3 days, the prize in accuracy was absent practically. 1. Постановка задачи. Исследуется влияние учета изменения индекса солнечной активности на точность аппроксимации реальных значений фазового вектора Международной космической станции (МКС) решениями ее уравнений движения, используемыми в штатных баллистических расчетах. Эти уравнения записываются в гринвичской системе координат с учетом нецентральности гравитационного поля Земли и сопротивления атмосферы. В настоящее время нецентральность поля учитывается, как правило, с точностью до членов порядка (16,16) включительно в разложении гравитационного потенциала Земли в ряд по шаровым функциям. Атмосфера считается вращающейся вместе с Землей, ее плотность рассчитывается в рамках модели верхней атмосферы, определенной ГОСТ 25645.115-84 (редакция 1990 г.). Основная погрешность используемых уравнений вносится неточностью задания параметров атмосферы и баллистического коэффициента станции.

Модель атмосферы ГОСТ 25645.115-84 содержит три параметра: среднесуточное значение F индекса солнечной активности $F_{10.7}$, среднее взвешенное значение F₈₁ индекса F_{10.7} за предшествующие 81 сутки и среднесуточный индекс геомагнитной активности K_p . Значения этих параметров с определенным запаздыванием относятся к суткам, для которых вычисляется искомая плотность. Геомагнитная активность меняется, как правило, существенно быстрее солнечной, поэтому в расчетах повышенной точности вместо индекса K_p используется трехчасовой индекс k_p , значения которого служат исходной информацией при вычислении K_p . В обычной практике такое детальное изменение во времени указанных параметров не учитывается. Принимается $F = F_{81} = F_0$, где F_0 – среднее значение индекса $F_{10.7}$ на продолжительном отрезке времени. В качестве К_р используется значение, отвечающее слабым магнитным возмущениям атмосферы при данном F_0 , например, $K_p = 2.6667$ при $F_0 < 175$. Значения F_0 и K_p сохраняются неделями, а погрешности, возникающие из-за неучета их изменения, компенсируются надлежащей подгонкой баллистического коэффициента станции.

Описанный способ выбора параметров, характеризующих сопротивление атмосферы, приемлем по точности при определении движения станции по данным траекторных измерений на коротких интервалах времени. В случае продолжительных интервалов скомпенсировать неточное задание индексов F и k_p подгонкой баллистического коэффициента не удается. Цель данной работы состоит в оценке предельной длины временного интервала, на котором указанная компенсация еще возможна, и, более широко, в исследовании влияния учета изменения индекса F на точность аппроксимации реальных значений фазового вектора станции на продолжительных интервалах времени.

Поставленная задача решается при условии, что геомагнитная активность описывается трехчасовым индексом k_p . ГОСТ рекомендует придерживаться

определенных правил при работе с этим индексом. В программе интегрирования уравнений движения спутника зависимость $k_p = k_p(t)$, где t – время, советуют представлять кусочно-линейной функцией, значения которой в точках стыка линейных участков получены сглаживанием измеренных значений k_p . Для описываемого исследования эта рекомендация несущественна. Ниже указанная зависимость представляется либо кусочно-постоянной функцией в соответствии с исходными значениями k_p , либо аппроксимируется тригонометрическим рядом Фурье.

В настоящее время движение Международной космической станции является сильно возмущенным из-за срабатывания двигателей системы управления ориентацией. Участки невозмущенного движения, на которых управление ориентацией осуществляется одними гиродинами и на которых имеет смысл применять описанные выше уравнения движения станции, обычно не превышают нескольких часов. Определение же возмущенного движения по данным измерений требует использования сложных математических моделей, учитывающих многие факторы, в том числе, изменение во времени баллистического коэффициента станции. На фоне этих факторов влияние вариаций плотности атмосферы, вызванных изменением солнечной активности, трудно выделить в чистом виде.

Указанные трудности не возникают, если ограничиться анализом движения станции на тех отрезках времени в 1999 г., когда ее полет был неуправляем и проходил в режиме гравитационной ориентации вращающегося спутника [1]. В этом режиме станция вращалась с угловой скоростью 0.2 – 0.3 град./с вокруг главной центральной оси минимального момента инерции, совершавшей малые колебания относительно местной вертикали. Длительность отрезков неуправляемого полета доходила до 20 сут. Баллистический коэффициент на этих отрезках оставался практически неизменным.

Измерения орбиты станции, проводившиеся в то время российскими средствами, были редкими – один раз в несколько суток, поэтому ниже в качестве таких измерений используются значения фазового вектора станции, вычисленные по американским двухстрочным элементам (two line elements). Эти элементы определялись несколько раз в сутки. Задача состояла в построении решений уравнений движения станции, аппроксимирующих указанные измерения на достаточно продолжительных интервалах времени, и сравнении точности аппроксимаций, отвечающих разным способам задания индексов солнечной и геомагнитной активности в модели плотности атмосферы.

2. Метод аппроксимации данных измерений. Как уже говорилось, уравнения движения станции записывались в гринвичской системе координат с учетом нецентральности гравитационного поля Земли и сопротивления атмосферы. Неизвестные функции этих уравнений объединим в векторы $\mathbf{r} = (z_1, z_2, z_3)$, $\mathbf{v} = (z_4, z_5, z_6)$, где z_1, z_2, z_3 – гринвичские координаты станции, $z_4 = dz_1/dt$, $z_5 = dz_2/dt$, $z_6 = dz_3/dt$ – компоненты ее скорости. Нецентральность поля учитывалась с точностью до членов порядка (36,36) включительно в разложении гравитационного потенциала Земли в ряд по шаровым функциям. Плотность атмосферы рассчитывалась согласно модели ГОСТ 25645.115-84. Использовались три системы уравнений движения, отличающиеся лишь способами задания индексов F, F_{81} и k_p в формулах ГОСТа. Эти системы обозначим (I), (II) и (III). В системе (I) индексы F, F_{81} и k_p оставались неизменными на всем интервале аппроксимации измерений. В системе (II) учитывалась зависимость этих индексов от времени, причем функции F = F(t), $F_{81} = F_{81}(t)$ и $k_p = k_p(t)$ выбирались кусочно-постоянными. Интервалы постоянства функций F(t) и $F_{81}(t)$ имели длину 1 сут, интервалы постоянства функции $k_p(t) - 3$ ч. Граничные точки интервалов постоянства определялись условиями ГОСТ, значения функций принимались равными значениям этих индексов, взятых в Интернет.

В системе (III) каждая из функций F(t), $F_{81}(t)$ и $k_p(t)$ аппроксимировалась суммой линейной функции и отрезка ряда Фурье. Например, при определении движения станции на отрезке $t_a \le t \le t_b$ функция F(t) аппроксимировалась выражением

$$\widetilde{F}(t) = a_1 + a_2(t-\tau) + \sum_{n=3}^{N} a_n \sin \frac{\pi n(t-\tau)}{T},$$

где τ и $\tau + T$ – удовлетворяющие неравенствам $\tau \leq t_a$, $t_b \leq \tau + T$ ближайшие к точкам t_a и t_b средние точки интервалов постоянства функции F(t) в системе (II), N – число таких интервалов постоянства, имеющих общие точки с отрезком $[\tau, \tau + T]$. Коэффициенты выражения $\tilde{F}(t)$ находились в два этапа. Сначала они определялись из условия равенства этого выражения значениям функции F(t) в средних точках интервалов постоянства, пересекающихся с отрезком $[\tau, \tau + T]$. Таких точек – N, и задача первого этапа решается единственным образом. Затем коэффициенты $a_3, a_4, ..., a_N$ умножались на сглаживающие σ -множители Ланцоша [2]. Аналогичным образом строились аппроксимирующие выражения $\tilde{F}_{81}(t)$ и $\tilde{k}_p(t)$ для функций $F_{81}(t)$ и $k_p(t)$.

Посредством численного интегрирования уравнений движения станции можно найти ее фазовый вектор (**r**, **v**) в функции времени. Решение уравнений движения с начальными условиями $\mathbf{r}(t_0) = \mathbf{r}_0$, $\mathbf{v}(t_0) = \mathbf{v}_0$ обозначим $\mathbf{r} = \varphi(t, \beta)$, $\mathbf{v} = \psi(t, \beta)$, $\beta = (\mathbf{r}_0, \mathbf{v}_0, c)$. Здесь учтена зависимость решения от баллистиче-ского коэффициента станции *c*. В уравнениях движения станции этот коэффициент является параметром.

Исходной информацией для определения движения станции служили двухстрочные элементы. По значениям этих элементов, относящимся к моментам времени t_k (k = 1, 2, ..., N; $t_1 < t_2 < ... < t_N$), в гринвичской системе координат на те же моменты рассчитывались радиусы-векторы станции \mathbf{r}_k и ее ско-

рости \mathbf{v}_k относительно этой системы. Задача отыскания решения уравнений движения, аппроксимирующего (сглаживающего) точки $(t_k, \mathbf{r}_k, \mathbf{v}_k)$, решалась как задача обработки данных измерений. Предполагалось, что ошибки в измерениях координат и компонент скорости независимы и имеют нормальные распределения с нулевыми средними значениями. Стандартные отклонения ошибок координат (скоростей) одинаковы, но неизвестны. Стандартные отклонения ошибок координат обозначим σ , скоростей – σ/w , где w = 1000 с. Отыскание вектора β , задающего аппроксимирующее эти измерения решение уравнений движения, выполнялось методом наименьших квадратов. А именно, сводилось к минимизации функционала

$$\Phi(\boldsymbol{\beta}) = \sum_{k=1}^{N} \left\{ \left[\mathbf{r}_{k} - \varphi(t_{k}, \boldsymbol{\beta}) \right]^{2} + w^{2} \left[\mathbf{v}_{k} - \psi(t_{k}, \boldsymbol{\beta}) \right]^{2} \right\}.$$

Минимизация $\Phi(\beta)$ выполнялась методом Гаусса-Ньютона. При сделанных допущениях оценка $\beta_* = \arg \min \Phi$ – случайный вектор, который имеет приблизительно нормальное распределение со средним значением, равным истинному значению β . Ковариационная матрица этой оценки и оценка дисперсии σ^2 ошибок в измерениях координат вычислялись по формулам

$$K_{\beta} = \|K_{ij}\|_{i,j=1}^{7} = \sigma_*^2 B^{-1}, \qquad \sigma_*^2 = \frac{\Phi(\beta_*)}{6N-7},$$

где *B* – вычисленная в точке β_* матрица системы нормальных уравнений, возникающей при минимизации Φ методом Гаусса-Ньютона, $2B \approx \partial^2 \Phi(\beta_*)/\partial \beta^2$. Точность аппроксимации данных измерений найденным решением уравнений движения и точность определения этого решения будем характеризовать стандартным отклонением ошибок измерений σ_* , стандартными отклонениями $\sigma_i = \sqrt{K_{ii}}$ (*i* = 1, 2, ..., 7) компонент вектора β_* и некоторыми статистическими характеристиками рядов остатков

 $\delta \mathbf{r}_k = \mathbf{r}_k - \varphi(t_k, \beta_*), \quad \delta \mathbf{V}_k = \mathbf{v}_k - \psi(t_k, \beta_*) + \mathbf{\omega} \times \delta \mathbf{r}_k \quad (k = 1, 2, ..., N).$ Здесь $\mathbf{\omega}$ – угловая скорость вращения Земли. Остатки $\delta \mathbf{V}_k$ характеризуют невязки аппроксимации абсолютной геоцентрической скорости станции.

При минимизации $\Phi(\beta)$ удобно варьировать не баллистический коэффициент *c*, а безразмерное отношение $\kappa_c = c/c_0$, где c_0 – фиксированное номинальное значение этого коэффициента. Ниже под σ_7 всюду понимается стандартное отклонение параметра κ_c .

Остатки $\delta \mathbf{r}_k$ и $\delta \mathbf{V}_k$ рассчитываются в гринвичской системе координат, поэтому их трудно соотнести с орбитой станции. Чтобы естественным образом связать эти остатки с орбитой, будем рассматривать их компоненты в специальных локальных ортонормированных базисах. Пусть $\mathbf{r}(t)$, $\mathbf{V}(t)$ – геоцентрический радиус-вектор станции и ее абсолютная геоцентрическая скорость в ап-

проксимирующем решении, $\mathbf{V}(t) = \mathbf{v}(t) + \mathbf{\omega} \times \mathbf{r}(t)$. Введем ортонормированные векторы

$$\mathbf{e}_{1}(t) = \frac{\mathbf{V}(t)}{|\mathbf{V}(t)|}, \quad \mathbf{e}_{2}(t) = \frac{\mathbf{r}(t) \times \mathbf{V}(t)}{|\mathbf{r}(t) \times \mathbf{V}(t)|}, \quad \mathbf{e}_{3}(t) = \mathbf{e}_{1}(t) \times \mathbf{e}_{2}(t) \approx \frac{\mathbf{r}(t)}{|\mathbf{r}(t)|}.$$

и каждую пару остатков $\delta \mathbf{r}_k$, $\delta \mathbf{V}_k$ будем рассматривать в ее собственном базисе с ортами $\mathbf{e}_1(t_k)$, $\mathbf{e}_2(t_k)$ $\mathbf{e}_3(t_k)$. Компоненты векторов $\delta \mathbf{r}_k$ и $\delta \mathbf{V}_k$ в этом базисе обозначим соответственно ξ_{1k} , ξ_{2k} , ξ_{3k} и ξ_{4k} , ξ_{5k} , ξ_{6k} . Ряд ξ_{ik} (k = 1, 2, ..., N) будем характеризовать его средним квадратическим значением s_i . Медиану соответствующего ряда модулей | ξ_{ik} | обозначим m_i .

3. Результаты построения аппроксимации. На отрезке времени с 26.III по 14.IV.1999 г. полет станции проходил в режиме гравитационной ориентации вращающегося спутника. По информации КБ «Салют» на этом отрезке никакие управляющие силы и моменты на станцию не действовали. Графики изменения индексов F, F_{81} , k_p и a_p на указанном отрезке времени приведены на рис. 1. Графики задают кусочно-постоянные функции. Интервалы постоянства для индексов F и F_{81} имеют длину 1 сут, для индексов k_p и $a_p - 3$ ч. Для удобства восприятия на графиках указаны вертикальные отрезки, соединяющие предельные значения функций в точках разрыва. Графики соответствующих аппроксимирующих выражений F(t), $F_{81}(t)$ и $\tilde{k}_p(t)$ приведены на рис. 2. На этом рисунке нижние кривые – графики аппроксимирующих выражений, верхние кривые – графики тех же выражений и ломаные с вершинами в точках, по которым эти выражения были построены. Абсциссы точек – середины отрезков постоянства функций.

При определении движения станции на интервалах времени в период с 26.Ш по 14.IV.1999 г. в системах (II), (III) использовались зависимости индексов F, F_{81} и k_p от времени, представленные на рис. 1, 2. Точнее, построение аппроксимирующих выражений $\tilde{F}(t)$, $\tilde{F}_{81}(t)$ и $\tilde{k}_p(t)$ для системы (III) при сглаживании с ее помощью данных измерений в точках t_k (k = 1, 2, ..., N; $t_1 < t_2 < ... < t_N$) выполнялось по описанному выше алгоритму с $t_a = t_1$, $t_b = t_N$. Однако отличие получаемых при этом аппроксимирующих выражений от выражений на рис. 2 незначительно. В системе (I) для указанного промежутка времени принималось $F = F_{81} = 125$, $k_p = 3 - (a_p = 12)$. Это – данные, принятые в ЦУП. Во всех трех системах принималось $c_0 = 0.002651 \text{ м}^2/\text{кг}$. Это значение баллистического коэффициента также использовалось ЦУП.

По двухстрочным элементам, относящимся к промежутку времени 26.III – 14.IV.1999 г., была рассчитана последовательность значений фазового вектора станции из 67 членов. Эта последовательность была разбита на 5 непересекающихся отрезков, охватывающих от 2.3 до 3.7 сут. Полученные отрезки дан-

ных были объединены в более продолжительные отрезки. На некоторых отрезках с помощью решений систем (I), (II) и (III) выполнялось сглаживание значений фазового вектора. Характеристики использованных для сглаживания отрезков данных приведены в табл. 1. Здесь N – число измерений фазового вектора на данном отрезке; t_1 и t_N – начальная и конечная точки отрезка по шкале времени UTC. Интервалы 1 – 5 таблицы отвечают упоминавшимся выше 5 исходным непересекающимся отрезкам данных. Для удобства во всех случаях начальные условия сглаживающих решений задавались в момент $t_0 = t_1$.

Интервал	<i>t</i> ₁ , дата,	<i>t_N</i> , дата,	$t_N - t_1,$	N
	время (ч:мин)	время (ч:мин)	$10^{3} c$	
1	26.III 12:15	30.III 02:24	310.1	12
2	30.III 20:51	3.IV 12:31	315.6	18
3	4.IV 03:54	7.IV 18:01	310.0	12
4	8.IV 03:15	11.IV 15:49	304.5	17
5	12.IV 04:08	14.IV 11:29	199.3	8
1∨2	26.III 12:15	3.IV 12:31	692.2	30
2∨3	30.III 20:51	7.IV 18:01	681.0	30
3∨4	4.IV 03:54	11.IV 15:49	647.7	29
4∨5	8.IV 03:15	14.IV 11:29	548.0	25
1\2\3	26.III 12:15	7.IV 18:01	1057.6	42
2\sigma3\sigma4	30.III 20:51	11.IV 15:49	1018.7	47
3~4~5	4.IV 03:54	14.IV 11:29	891.3	37

Таблица 1. Интервалы аппроксимации движения МКС.

Опишем сначала результаты сглаживания, полученные с использованием системы (I). Эти результаты приведены в табл. 2 – 4 и на рис. 3, 4. Табл. 2 содержит значения параметра κ_c , стандартные отклонения ошибок задания исходных данных и стандартные отклонения определяемых параметров сглаживающих решений – начальных условий и κ_c . В табл. 3, 4 приведены характеристики рядов остатков ξ_{ik} (k = 1, 2, ..., N) для i = 1, 2, ..., 6. На рис. 3, 4 изображены диаграммы этих рядов, полученных при аппроксимации интервалов 2 и 1 \vee 2 \vee 3 из табл. 1. Диаграммы представляют собой ломаные с вершинами в точках (t_k , ξ_{ik}). Для большей наглядности вершины указаны маркерами.

Сопоставление табл. 2 с графиком функции F(t) на рис. 1 показывает, что изменение параметра κ_c отслеживает изменение индекса F. Этот факт легко объясним. Поскольку в системе (I) индексы F и F_{81} приняты постоянными, фактическое увеличение индекса F приводит к увеличению κ_c . Однако изменением κ_c не удается полностью скомпенсировать резкое изменение Fвнутри интервала сглаживания. Например, интервалы $2 \vee 3$ и $2 \vee 3 \vee 4$, содержащие примерно посередине участок резкого возрастания индекса F (см. рис. 1), сглажены заметно менее точно, чем имеющие примерно одинаковую с ними длину соседние интервалы табл. 1. Заметим, что соседние интервалы $3\vee4$, $1\vee2\vee3$, $3\vee4\vee5$ содержат тот же самый участок, но с краю.

				1		1	1	1	1
Интервал	K _c	σ_*	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
			Ν	Λ					
1	1.027	381	133	90	159	122	182	96	0.0097
2	1.063	440	163	68	189	96	243	90	0.0097
3	1.393	417	131	140	199	203	184	105	0.0102
4	1.524	448	125	99	158	138	169	94	0.0113
5	1.252	436	181	100	195	141	227	133	0.0361
1∨2	1.138	723	182	123	226	165	265	119	0.0029
2∨3	1.178	1209	329	154	375	205	478	195	0.0050
3∨4	1.467	576	133	140	206	212	191	96	0.0026
4∨5	1.577	606	142	110	178	153	191	106	0.0040
1∨2∨3	1.152	1228	268	185	331	242	391	175	0.0018
2\sigma3\sigma4	1.327	3014	660	334	744	415	949	403	0.0051
3\14\5	1.515	1089	226	237	348	358	324	163	0.0027

Таблица 2. Параметр κ_c , стандартные отклонения ошибок данных измерений и параметров сглаживающих решений системы (I).

Таблица 3. Средние квадратические значения рядов остатков сглаживающих решений системы (I).

Интервал	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	s_4	<i>s</i> ₅	<i>s</i> ₆
		М			мм/с	
1	401	298	349	423	166	461
2	660	271	245	276	230	646
3	596	266	224	244	172	639
4	624	314	256	296	331	638
5	587	205	183	217	332	652
1∨2	1136	284	310	359	209	1218
2∨3	1959	269	238	265	211	2166
3∨4	871	298	248	218	278	957
4∨5	957	296	236	274	332	973
1\2\3	1982	279	297	339	202	2213
2\sigma3\sigma4	4902	289	268	299	269	5592
3\14\5	1787	292	236	266	291	1923

Интервал	m_1	m_2	<i>m</i> ₃	m_4	m_5	<i>m</i> ₆
		М			мм/с	
1	198	131	220	294	156	189
2	560	204	86	107	144	570
3	330	177	181	157	127	385
4	396	227	168	176	226	485
5	523	180	155	154	243	510
1∨2	918	190	142	220	142	751
2∨3	1330	193	124	147	130	1319
3∨4	561	217	164	180	185	598
4∨5	840	168	155	155	228	853
1∨2∨3	1222	191	178	208	135	1305
2\sigma3\sigma4	3945	195	151	164	158	4491
3\14\5	1204	199	168	182	201	1306

Таблица 4. Медианы рядов модулей остатков сглаживающих решений системы (I).

Отметим еще, что с возрастанием длины интервала сглаживания величины s_1, m_1 и s_6, m_6 возрастают существенно заметнее величин s_i, m_i при i = 2, 3, 4, 5. Последние, вообще, практически не меняются. Именно за счет увеличения s_1, s_6 происходит увеличение σ_* и ухудшение точности аппроксимации данных измерений. Напомним, что величины s_1, m_1 характеризуют невязки аппроксимации положения станции вдоль орбиты, величины s_6, m_6 характеризуют невязки аппроксимации ее абсолютной скорости в направлении радиуса-вектора.

Возрастание величин s_1 , m_1 и s_6 , m_6 при возрастании длины интервала сглаживания обусловлено потерей точности модели. В случае сравнительно коротких интервалов все диаграммы остатков выглядят примерно одинаково и ведут себя хаотически (рис. 3). В случае длинных интервалов в остатках ξ_{1k} и ξ_{6k} заметны систематические составляющие (рис. 4).

Результаты сглаживания, полученные с использованием системы (II), приведены в табл. 5 – 7 и на рис. 5, 6. Эти таблицы и рисунки аналогичны описанным выше табл. 2 – 4 и рис. 3, 4. Попарное сравнение табл. 2 и 5, 3 и 6, 4 и 7 показывает, что при переходе от системы (I) к системе (II) точность аппроксимации измерений на сравнительно коротких интервалах времени 1 – 5 не улучшилась. В большинстве случаев (3 из 5) она даже незначительно ухудшилась. Точность аппроксимации на более длинных интервалах повысилась. Особенно значительно это повышение в случае интервалов $2\vee3$ и $2\vee3\vee4$. Такое повышение обусловлено, прежде всего, учетом изменения параметров *F* и F_{81} в системе (II). Именно учет изменения этих параметров позволил устранить вли-

11

яние резкого скачка функции F(t) внутри интервалов 2 \vee 3 и 2 \vee 3 \vee 4. Сравнение рис. 5, 6 с рис. 3 и 4 и аналогичных рисунков, не вошедших в препринт, показывает уменьшение систематической составляющей в остатках ξ_{1k} и ξ_{6k} в случае аппроксимации решениями системы (II) данных измерений на продолжительных интервалах времени.

Интервал	K _c	σ_*	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	
			М				MM/c			
1	1.250	381	133	90	159	122	182	96	0.0118	
2	1.219	473	176	73	204	103	262	97	0.0120	
3	1.371	478	150	159	226	231	210	120	0.0115	
4	1.361	462	129	102	163	142	174	97	0.0104	
5	1.251	426	177	98	191	138	222	130	0.0353	
1∨2	1.268	513	128	87	159	117	187	84	0.0023	
2∨3	1.332	685	186	87	211	116	269	111	0.0032	
3∨4	1.335	484	111	117	172	176	159	81	0.0020	
4∨5	1.419	532	124	97	156	135	168	93	0.0032	
1∨2∨3	1.299	898	196	136	242	177	285	128	0.0015	
2\sigma3\sigma4	1.340	620	133	67	150	85	191	83	0.0011	
3~4~5	1.367	877	181	190	278	286	260	132	0.0019	

Таблица 5. Параметр κ_c , стандартные отклонения ошибок данных измерений и параметров сглаживающих решений системы (II).

Таблица 6. Средние квадратические значения рядов остатков сглаживающих решений системы (II).

Интервал	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	<i>s</i> ₅	<i>s</i> ₆		
		Μ	м мм/с					
1	394	298	352	425	166	462		
2	715	271	244	276	230	719		
3	686	266	227	246	172	773		
4	649	314	256	296	330	671		
5	571	205	182	217	332	630		
1∨2	784	284	306	356	209	792		
2∨3	1103	268	240	266	211	1159		
3∨4	706	298	247	277	278	766		
4∨5	808	296	234	273	332	839		
1\2\3	1430	279	297	388	201	1583		
2\screw3\screw4	984	288	247	278	265	1036		
3~4~5	1426	292	234	265	291	1525		

Интервал	m_1	m_2	<i>m</i> ₃	m_4	m_5	<i>m</i> ₆
		М			мм/с	
1	216	130	218	295	156	252
2	637	204	88	107	144	656
3	413	177	191	159	127	578
4	479	227	168	181	226	588
5	528	180	154	153	243	506
1∨2	438	190	146	215	140	548
2∨3	733	195	125	149	126	630
3∨4	463	217	171	174	187	589
4∨5	707	168	153	151	228	710
1\2\3	1084	191	184	211	132	1301
2\sigma3\sigma4	537	206	151	151	152	599
3~4~5	1161	198	169	181	204	1240

Таблица 7. Медианы рядов модулей остатков сглаживающих решений системы (II).

Результаты сглаживания, полученные с использованием системы (III), приведены в табл. 8 – 10. Эти таблицы аналогичны таблицам, рассматривавшимся выше. Анализ таблиц показывает, что переход от системы (I) к системе (III) также заметно повышает точность аппроксимации данных измерений на продолжительных интервалах, но в целом точность системы (III) ниже точности системы (II).

Таблица 8. Параметр κ_c , стандартные отклонения ошибок данных измерений и параметров сглаживающих решений системы (III).

Интервал	K _c	σ_*	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
			Ν	Ν					
1	1.220	406	142	96	170	130	194	102	0.0123
2	1.213	471	175	73	203	102	262	97	0.0188
3	1.450	468	147	156	222	227	206	118	0.0120
4	1.360	451	126	99	159	139	170	95	0.0102
5	1.234	423	176	97	190	137	221	129	0.0345
1\2	1.265	539	135	91	168	123	197	89	0.0024
2∨3	1.354	877	238	112	272	148	346	142	0.0042
3∨4	1.370	537	123	129	190	195	177	90	0.0022
4∨5	1.410	512	120	93	150	130	161	90	0.0030
1\2\3	1.304	1187	260	179	320	234	378	169	0.0020
2~3~4	1.375	813	175	90	197	112	251	109	0.0014
3\14\5	1.385	626	129	135	197	203	184	94	0.0014

Интервал	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	<i>s</i> ₅	<i>s</i> ₆	
		Μ		мм/с			
1	455	298	351	424	166	523	
2	714	271	244	275	230	714	
3	671	266	227	246	172	753	
4	628	314	256	296	330	647	
5	566	205	182	217	332	625	
1∨2	814	284	307	357	209	846	
2∨3	1422	269	240	266	211	1531	
3∨4	805	298	246	277	278	878	
4∨5	776	296	234	273	332	796	
1\12\13	1913	279	300	341	202	2137	
2\sigma3\sigma4	1311	288	247	278	265	1419	
3\14\5	991	292	233	265	291	1041	

Таблица 9. Средние квадратические значения рядов остатков сглаживающих решений системы (III).

Таблица 10. Медианы рядов модулей остатков сглаживающих решений системы (III).

Интервал	m_1	m_2	<i>m</i> ₃	m_4	m_5	<i>m</i> ₆	
		м мм/с					
1	245	130	217	294	156	275	
2	633	204	88	107	145	653	
3	407	177	192	158	127	565	
4	434	227	168	180	226	547	
5	526	180	154	152	243	502	
1∨2	475	190	145	215	141	522	
2\scrime{3}	923	194	127	149	128	1000	
3∨4	412	216	171	170	188	421	
4∨5	670	168	155	153	228	736	
1\2\3	1249	193	180	216	138	1591	
2\sigma3\sigma4	571	208	149	153	152	627	
3\14\5	675	197	164	173	209	763	

Проведенное исследование показало, что на интервалах времени более 5 сут учет изменения индекса F позволяет заметно увеличить точность аппроксимации данных измерений. Специфическое поведение индекса солнечной активности в период с 26.III по 14.IV.1999 г. дает возможность проиллюстрировать это и ряд других сделанных утверждений следующим более ярким примером, чем приведенные в табл. 1 – 10. Возьмем часть рассматривавшегося выше исходного отрезка данных измерений, у которой N = 38, $t_1 = 02:04:32\ 01.IV$, $t_N = 16:45:34\ 10.IV$ (использована шкала времени UTC), $t_N - t_1 = 830.5$. Новый отрезок данных назовем интервалом 6. Характеристики точности аппроксимации этого интервала решениями систем (I), (II) и (III) указаны в табл. 11 – 13. Как видно из таблиц, учет изменения индекса *F* позволил повысить точность аппроксимации более чем в три раза.

Таблица 11. Параметр κ_c , стандартные отклонения ошибок данных измерений и параметров сглаживающих решений для интервала 6.

Система	ĸ	σ_*	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
			N	Л			мм/с		
(I)	1.331	1879	221	416	460	567	286	275	0.0047
(II)	1.344	529	62	116	127	157	81	77	0.0013
(III)	1.385	611	72	134	147	182	93	89	0.0016

Таблица 12. Средние квадратические значения рядов остатков сглаживающих решений для интервала 6.

Система	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	<i>s</i> ₅	<i>s</i> ₆		
		Μ		MM/c				
(I)	3015	300	282	314	279	3471		
(II)	822	301	270	305	278	815		
(III)	960	301	269	305	278	991		

Таблица 13. Медианы рядов модулей остатков сглаживающих решений для интервала 6.

Система	m_1	m_2	<i>m</i> ₃	m_4	m_5	m_6
	М			мм/с		
(I)	2555	218	182	190	176	2928
(II)	614	219	164	162	169	639
(III)	602	219	164	161	169	531

На рис. 7, 8 изображены диаграммы рядов остатков ξ_{ik} (k = 1, 2, ..., N) для решений систем (I) и (II). Сравнение рисунков показывает значительное уменьшение систематической составляющей в остатках ξ_{1k} и ξ_{6k} в случае аппроксимации данных измерений решением системы (II).

4. Заключение. Проведенное исследование показало, что учет изменения параметра *F* позволяет в несколько раз увеличить точность аппроксимации данных измерений на интервалах времени более 5 сут. При аппроксимации

данных измерений на интервалах времени менее 3 сут выигрыш в точности практически отсутствует.

Литература

- 1. Ветлов В.И., Новичкова С.М., Сазонов В.В., Матвеев Н.В., Бабкин Е.В. Режим гравитационной ориентации Международной космической станции. Космические исследования, 2001, т. 39, № 4, с. 436-448.
- 2. Ланцош К. Практические методы прикладного анализа. М., Физматгиз, 1961.

Рис. 1. Индексы солнечной и геомагнитной активности, момент времени *t* = 0 на графиках соответствует 00:00:00 UTC 26.III.1999.

Рис. 2. Аппроксимация индексов солнечной и геомагнитной активности, момент времени *t* = 0 на графиках соответствует 12:15:18 UTC 26.III.1999.

Рис. 3. Диаграммы остатков ξ_{ik} (*i* = 1, 2, ..., 6) сглаживающего решения системы (I) для интервала 2 из табл.7, момент времени *t* = 0 на графиках соответствует 20:51:07 UTC 30.III.1999.

Рис. 4. Диаграммы остатков ξ_{ik} (*i* = 1, 2, ..., 6) сглаживающего решения системы (I) для интервала 1 \vee 2 \vee 3 из табл.7, момент времени *t* = 0 на графиках соответствует 12:15:18 UTC 26.III.1999.

Рис. 5. Диаграммы остатков ξ_{ik} (*i* = 1, 2, ..., 6) сглаживающего решения системы (II) для интервала 1 \lor 2 из табл.7, момент времени *t* = 0 на графиках соответствует 12:15:18 UTC 26.III.1999.

Рис. 6. Диаграммы остатков ξ_{ik} (*i* = 1, 2, ..., 6) сглаживающего решения системы (II) для интервала 2 \vee 3 \vee 4 из табл.7, момент времени *t* = 0 на графиках соответствует 20:51:07 UTC 30.III.1999.

Рис. 7. Диаграммы остатков ξ_{ik} (*i* = 1, 2, ..., 6) сглаживающего решения системы (I) для интервала 6, момент времени *t* = 0 на графиках соответствует 02:04:32 UTC 1.IV.1999.

Рис. 8. Диаграммы остатков ξ_{ik} (*i* = 1, 2, ..., 6) сглаживающего решения системы (II) для интервала 6, момент времени *t* = 0 на графиках соответствует 02:04:32 UTC 1.IV.1999.