Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.Келдыша Российской Академии Наук

В.В. Русанов, В.П. Силаков, А.В. Чеботарев

Кинетические характеристики процесса нагрева молекулярного азота, протекающего во время неравновесного электрического разряда и в после разрядный период.

Москва 2004 г.

Русанов В.В., Силаков В.П., Чеботарев А.В. Кинетические характеристики процесса нагрева молекулярного азота, протекающего во время неравновесного электрического разряда и в после разрядный период.

Аннотация.

В рамках разработанного подхода к вычислению кинетических характеристик нагрева молекулярного азота в неравновесных электрических разрядах, проведен анализ эффективности различных механизмов нагрева газа в разрядный, и в после разрядный период времени. Показано, что в диапазоне параметров $E_{eff} / n_{N_2^{(0)}} > 8 \cdot 10^{-16} B \cdot cm^2$ и S > 1 существенное влияние на динамику релаксации колебательной энергии газа оказывают процессы быстрого тушения электронновозбужденных термов молекул азота.

Rusanov V.V, Silakov V.P. and Chebotarev A.V. Kinetic characteristics of heat process in molecular nitrogen during a non-equilibrium electrical discharge and in relaxation phase.

Abstract.

Within the framework of the developed approach to an evaluation of kinetic characteristics of heat of molecular nitrogen in non-equilibrium electrical discharges, the analysis of effectiveness of various mechanisms of heat of gas in discharge and relaxation phase is carried out. Is shown, that in a range of parameters $E_{eff} / n_{N_2^{(0)}} > 8 \cdot 10^{-16} B \cdot cm^2$ and S > 1, the processes of fast quenching of electronic-excited terms of nitrogen molecules have essential influence to dynamics of a vibrational relaxation.

Кинетические характеристики процесса нагрева молекулярного азота, протекающего во время неравновесного электрического разряда и в после разрядный период.

Русанов В.В, Силаков В.П., Чеботарев А.В.

Введение

Интенсивное развитие физики неравновесных разрядных явлений показало, что корректное описание поведения сильно возбужденных газов должно учитывать их релаксационное движение, связанное с высвобождением в тепло энергии из внутренних степеней свободы частиц газа. Теоретическое рассмотрение данного класса задач требует выполнения огромного объема вычислительных работ, в частности, связанных с детальным расчетом кинетических характеристик процесса нагрева газа.

В данной работе описана простая и достаточно надежная модель для расчета динамики нагрева молекулярного азота в неравновесном электрическом разряде и в после разрядный период.

Разработанный алгоритм решения задачи отличается высокой степенью оптимизации по скорости вычислений и предназначен для решения пространственно неоднородных задач на многопроцессорных ЭВМ.

Общая структура кинетической схемы.

Кинетическая схема, используемая для описания неравновесного электрического разряда в молекулярном азоте, при условии значительного вложения энергии во внутренние степени свободы молекул, включает в себя набор реакций между следующими компонентами плазмы:

1) Колебательные уровни основного электронного терма молекулы N_2 :

 $N_2(X^1\Sigma_{g}^+, v) \quad (v = 0, ..., 47)$

2) Электронно-возбужденные молекулы азота:

$$N_{2}(A^{3}\Sigma_{u}^{+}, v = 0 - 3), N_{2}(A^{3}\Sigma_{u}^{+}, v = 4 - 7);$$

$$N_{2}(B^{3}\Pi_{g}) + N_{2}(W^{3}\Delta_{u}) + N_{2}(B^{\prime 3}\Sigma_{u}^{-});$$

$$N_{2}(a^{\prime 1}\Sigma_{u}^{-}) + N_{2}(a^{1}\Pi_{g}) + N_{2}(w^{1}\Delta_{u});$$

$$N_2(C^3\Pi_u)$$
.

Согласно имеющимся экспериментальным данным ^[1], остальные термы молекулы N_2 являются сильно предиссоциированными. Как видно из записи, некоторые близко расположенные термы, между которыми происходит интенсивное столкновительное перемешивание, объединены в группы.

3) Электроны: е.

Колебательная кинетика

Колебательная кинетика молекул азота в основном электронном состоянии $N_2(X^1\Sigma_g^+, v) \equiv N_2(X, v)$ (где v - колебательное квантовое число) описывается в рамках модели поуровневой кинетики *ангармонических* осцилляторов, учитывающей колебательно-колебательные (VV) и колебательно-поступательные (VT) процессы, в приближении одноквантовых переходов ^[2]:

$$N_{2}(X,v) + N_{2}(X,\tilde{v}+1) \xrightarrow{K_{(VV)}^{v \to v+1}} N_{2}(X,v+1) + N_{2}(X,\tilde{v})$$
(1)

$$N_2(X,v) + N_2(X) \xrightarrow{K_{(VT)}^{V \to v \pm 1}} N_2(X,v\pm 1) + N_2(X)$$

$$\tag{2}$$

здесь $N_2(X)$ - молекула азота $N_2(X,v)$ в произвольном колебательном состоянии v. В рассматриваемой модели учитываются 48 колебательных энергетических уровней ($v = 0, ..., v^* = 47$) молекулы азота.

При описании возбуждения и девозбуждения колебательных уровней молекулы *N*₂ электронным ударом учитываются перекрестные переходы между первыми 11 колебательными состояниями ^[3]:

$$N_2(X,v) + e \xrightarrow{K^{(ev)}} N_2(X,\tilde{v}) + e \quad , v,\tilde{v} \le 10$$
(3)

Кинетика электронных состояний молекулы азота

В настоящей работе при описании кинетики электронных состояний молекул N_2 основное внимание уделялось детальному рассмотрению процессов возбуждения электронных термов и тушению их тяжелыми частицами, что имеет большое значение для корректного расчета нагрева газа в разрядный период ^[3,4].

$$N_{2}(X, v = 0 - 3) + e \xrightarrow{K_{A_{1}}^{e}(v)} N_{2}(A, v' = 0 - 3) + e$$
(4)

$$N_{2}(X, v = 0 - 3) + e \xrightarrow{K_{A_{2}}^{e}(v)} N_{2}(A, v' = 4 - 7) + e$$
(5)

$$N_{2}(X, v = 0 - 3) + e \xrightarrow{K_{B}^{e}(v)} N_{2}(B) + e \qquad \qquad | \xrightarrow{st} N_{2}(A)$$

$$(6)$$

$$N_{2}(X, v=0-3) + e \xrightarrow{K_{W^{3}}^{e}(v)} N_{2}(W^{3}) + e \qquad | \xrightarrow{st} N_{2}(A)$$

$$(7)$$

$$N_{2}(X, v = 0 - 3) + e \xrightarrow{K_{B'}^{e}(v)} N_{2}(B') + e \qquad \qquad | \xrightarrow{St} N_{2}(A)$$

$$(8)$$

$$N_2(X, v=0-3) + e \xrightarrow{K_{a'}^e(v)} N_2(a') + e$$

$$\tag{9}$$

$$N_{2}(X, v = 0 - 3) + e \xrightarrow{K_{a}^{e}(v)} N_{2}(a) + e \qquad (10)$$
$$| \xrightarrow{st} N_{2}(a')$$

$$N_{2}(X, v = 0 - 3) + e \xrightarrow{K_{w^{1}}^{e}(v)} N_{2}(w^{1}) + e \qquad (11)$$
$$| \xrightarrow{st} N_{2}(a')$$

$$N_2(X, v=0-3) + e \xrightarrow{K_C^{\mathcal{O}}(v)} N_2(C) + e \tag{12}$$

Баланс молекул в метастабильном электронно-возбужденном состоянии $N_2(A^3\Sigma_u^+)$ описывается реакциями (4-5), (6-8) и:

$$N_{2}(C) \xrightarrow{K_{13}} N_{2}(B) + \hbar \omega$$

$$| \xrightarrow{st} N_{2}(A)$$
(13)

$$N_2(A) + N_2(A) \xrightarrow{K_{14}} N_2(C) + N_2(X, v = 2)$$
 (14)

$$N_2(a') + N_2(X) \xrightarrow{K_{15}} N_2(A) + N_2(X)$$
 (15)

$$N_2(A) + N_2(a') \xrightarrow{K_{16}} N_4^+ + e \tag{16}$$

$$N_2(A) + e \xrightarrow{K_{17}} N + N + e \tag{17}$$

Баланс молекул в $N_2(a'^1 \Sigma_u)$ метастабильном состоянии регулируется реакциями (9-11), (15-16) и:

$$N_2(C) + N_2(X) \xrightarrow{K_{18}} N_2(a') + N_2(X)$$
(18)

$$N_{2}(a') + N_{2}(a') \xrightarrow{K_{19}} N_{4}^{+} + e \tag{19}$$

$$N_2(a') + e \xrightarrow{\mathbf{K}_{20}} N + N + e \tag{20}$$

Динамика функции распределения молекул азота по колебательным уровням

Функция распределения молекул азота по колебательным уровням основного электронного состояния формируется за счет неупругих столкновений молекулы $N_2(X,v)$ с электронами и другими молекулами N_2 . Скорость изменения концентрации молекул в *v*-ом колебательном состоянии определяется протеканием процессов нерезонансного *VV* обмена (1), *VT*-релаксации (2), неупругих столкновений с электронами (*ev* – процессы (3)), а также процессами возбуждения электронных термов молекулы из $X^1\Sigma_g^+, v$ состояния (Φ_v).

Обозначив концентрацию z-ой компоненты плазмы прописной буквой n_z , система уравнений, описывающая колебательную кинетику молекул азота, записывается в виде:

$$\frac{dn_{N_2(X,v)}}{dt} = \left(\frac{\partial n_{N_2(X,v)}}{\partial t}\right)^{(VV)} + \left(\frac{\partial n_{N_2(X,v)}}{\partial t}\right)^{(VT)} + \left(\frac{\partial n_{N_2(X,v)}}{\partial t}\right)^{(ev)} - \Phi_v \quad , v = 0, \dots, v^* \quad , \quad (21)$$

$$\Gamma \mathcal{A} \mathbf{e} \left(\frac{\partial n_{N_2(X,v)}}{\partial t}\right)^{(VT)} = -\left(\Pi_v^{(VT)} - \Pi_{v-1}^{(VT)}\right), \quad \left(\frac{\partial n_{N_2(X,v)}}{\partial t}\right)^{(VV)} = -\left(\Pi_v^{(VV)} - \Pi_{v-1}^{(VV)}\right),$$

здесь $\Pi_{v}^{(VT)}$ и $\Pi_{v}^{(VV)}$ - потоки молекул вдоль оси колебательных квантовых чисел, вызванные VT- и VV- процессами (реакции 2 и 1 соответственно):

$$\begin{split} \Pi_{v}^{(VV)} &= n_{N_{2}(X,v)} \sum_{i=1}^{v^{*}} K_{(VV),i \to i-1}^{v \to v+1} n_{N_{2}(X,i)} - n_{N_{2}(X,v+1)} \sum_{i=0}^{v^{*}-1} K_{(VV),v \to v-1}^{i \to i+1} n_{N_{2}(X,i)} ,\\ v &= 0, \dots, v^{*} - 1 \ , \ n_{N_{2}} = \sum_{i=0}^{v^{*}} n_{N_{2}(X,v)} \ , \ \ \Pi_{v^{*}}^{(VT)} = \Pi_{v^{*}}^{(VT)} = 0 \, .\\ \left(\frac{\partial n_{N_{2}(X,v)}}{\partial t} \right)^{(ev)} &= \begin{cases} F(v)_{+}^{(ev)} - F(v)_{-}^{(ev)} \ , \ v = 0, \dots, 10 \\ 0 \ , \ v > 10 \end{cases} . \end{split}$$

Здесь выражения $F(v)_{+}^{(ev)}$ и $F(v)_{-}^{(ev)}$ описывают заселение и расселение колебательных состояний молекулы N_2 ударом электрона:

$$F(v)_{+}^{(ev)} = n_e \sum_{\substack{i=0\\i\neq v}}^{10} K_{i\to v}^{(ev)} n_{N_2(X,i)} \quad \text{M} \quad F(v)_{-}^{(ev)} = n_e n_{N_2(X,v)} \sum_{\substack{i=0\\i\neq v}}^{10} K_{v\to i}^{(ev)} \,.$$

Источниковый член Φ_v в (21) может быть представлен в виде:

$$\Phi_{v} = \begin{cases} n_{e} n_{N_{2}(X,v)} \sum_{z} K_{z}^{e}(v) - \widetilde{\Phi}_{v} & , v = 0, \dots, 3 \\ 0 & , v > 3 \end{cases}$$

где символ z ссоответствует электронным состояниям: $A, B, W^3, B', a', a, w^1, C$, и

$$\widetilde{\Phi}_{v} = \begin{cases} K_{14} n_{N_{2}(A)}^{2} & , v = 2 \\ 0 & , v \neq 2 \end{cases}.$$

<u>Динамика заселения метастабильных электронных-возбужденных термов</u> молекулы азота

Взаимодействие молекул азота с энергичными электронами приводит к образованию многочисленных электронно-колебательных состояний молекулы азота. Большинство образующихся уровней имеют очень малое время жизни благодаря быстропротекающим процессам девозбуждения их молекулами, находящимися в основном электронном состоянии. Процессы тушения осуществляют быстрый переход электронно-возбужденных молекул в относительно стабильные состояния $N_2(A^3\Sigma_u^+), N_2(a''\Sigma_u^-)$ ^[5]. Согласно (4) – (20) имеем:

$$\frac{dn_{N_{2}(A)}}{dt} = n_{e} \left\{ \sum_{\nu=0}^{3} n_{N_{2}(X,\nu)} \left(K(\nu)_{A_{1}}^{e} + K(\nu)_{A_{2}}^{e} + K(\nu)_{B}^{e} + K(\nu)_{W^{3}}^{e} + K(\nu)_{B^{\prime}}^{e} \right) \right\} + K_{13} n_{N_{2}(C)} - 2K_{14} n_{N_{2}(A)}^{2} + K_{15} n_{N_{2}(a^{\prime})} n_{N_{2}} - K_{16} n_{N_{2}(A)} n_{N_{2}(a^{\prime})} - K_{17} n_{N_{2}(A)} n_{e}$$

$$(22)$$

$$\frac{dn_{N_2(a')}}{dt} = n_e \left\{ \sum_{\nu=0}^3 n_{N_2(X,\nu)} \left(K(\nu)_{a'}^e + K(\nu)_a^e + K(\nu)_{w^1}^e \right) \right\} + K_{18} n_{N_2(C)} n_{N_2} - K_{15} n_{N_2(a')} n_{N_2} - K_{16} n_{N_2(A)} n_{N_2(a')} - 2K_{19} n_{N_2(a')}^2 - K_{20} n_{N_2(a')} n_e$$
(23)

где
$$n_{N_2(C)} = \frac{1}{K_{13} + K_{18}n_{N_2}} \left(n_e \sum_{\nu=0}^3 K(\nu)_C^e n_{N_2(X,\nu)} + K_{14}n_{N_2(A)}^2 \right)$$
 - квазистационарное значение

концентрации $N_2(C^3\Pi_u)$ терма.

Нагрев газа

Суммарная скорость тепловыделения в результате протекания реакций в плазме может быть представлена в виде ^[3,4]:

$$Q = Q_{e-N_2}^{(elast)} + Q_{e-N_2}^{(RT)} + Q_{(e-N_2)+N_2}^{(ET)} + Q_{N_2-N_2}^{(VV)} + Q_{N_2-N_2}^{(VT)},$$

где слагаемое $Q_{e-N_2}^{(elast)}$ обусловлено упругим рассеиванием электронов на молекулах; $Q_{e-N_2}^{(RT)}$ - возбуждением вращательных уровней молекулы N_2 и их быстрой последующей релаксацией; $Q_{(e-N_2)+N_2}^{(ET)}$ - процессами релаксации (тушения) электронновозбужденных частиц N_2 ; $Q_{N_2-N_2}^{(VV)}$ и $Q_{N_2-N_2}^{(VT)}$ - процессами нерезонансного VV-обмена и VT- релаксации колебательно-возбужденных молекул N_2 .

$$Q_{e-N_2}^{(elast)} = n_e \left(\frac{2}{m_e}\right)^{1/2} \int_0^\infty \frac{2m_e}{m_{N_2}} n_{N_2(X)} \sigma_{N_2(X)}^{(tr)}(\varepsilon) \left(f(\varepsilon) + kT_g \frac{\partial f}{\partial \varepsilon}\right) \varepsilon^2 d\varepsilon ,$$

где m_e и m_{N_2} - массы электрона и молекулы азота; $\sigma_{N_2(X)}^{(tr)}$ - транспортное сечение рассеяния электрона на молекуле $N_2(X)$; $f(\varepsilon)$ - функция распределения электронов по энергии (ФРЭЭ); k - константа Больцмана.

$$Q_{e-N_2}^{(RT)} = 6B_{N_2(X)}n_e n_{N_2(X)} \left(\frac{2}{m_e}\right)^{1/2} \int_0^\infty \sigma_{N_2(X)}^{(rot)}(\varepsilon) \left(f(\varepsilon) + kT_g \frac{\partial f}{\partial \varepsilon}\right) \varepsilon d\varepsilon ,$$

где $B_{N_2(X)}$ - вращательная постоянная молекулы азота; $\sigma_{N_2(X)}^{(rot)}$ - сечение возбуждения вращательных уровней основного электронного состояния молекулы азота.

$$Q_{N_2-N_2}^{(VV)} = -\sum_{\nu=1}^{\nu^*} E_{\nu} \left(\frac{\partial n_{N_2(X,\nu)}}{\partial t} \right)^{(VV)} = \sum_{\nu=1}^{\nu^*} E_{\nu} \left(\Pi_{\nu}^{(VV)} - \Pi_{\nu-1}^{(VV)} \right),$$

$$Q_{N_2-N_2}^{(VT)} = -\sum_{\nu=1}^{\nu^*} E_{\nu} \left(\frac{\partial n_{N_2(X,\nu)}}{\partial t} \right)^{(VT)} = \sum_{\nu=1}^{\nu^*} E_{\nu} \left(\Pi_{\nu}^{(VT)} - \Pi_{\nu-1}^{(VT)} \right),$$

где $E_v = v \cdot (E_1 - (v-1) \cdot \Delta E)$ - энергия *v*-го колебательного состояния ангармонического осциллятора; E_1 - энергия первого колебательного уровня; ΔE - постоянная ангармонизма.

Согласно результатам исследований, проведенных в работах ^[3,4,6], дезактивация широкого спектра возбужденных электронно-колебательных уровней N_2 происходит в одиночных актах сброса небольших квантов энергии (соответствующих малым значениям параметра Месси) в поступательные степени свободы. В результате такого тушения, скорость поступления энергии в тепло можно приближенно записать как:

$$\begin{split} Q_{(e-N_{2})+N_{2}}^{(ET)} &\approx n_{e} \cdot \left\{ \sum_{\nu=0}^{3} n_{N_{2}(X,\nu)} \cdot \sum_{i=1}^{4} \left(\Delta_{(Y_{i},\nu)} - E_{(A,\nu*)} + E_{(X,\nu)} \right) \cdot K(\nu)_{Y_{i}}^{e} \right\} + \\ &+ n_{e} \cdot \sum_{\nu=0}^{3} n_{N_{2}(X,\nu)} \left[\sum_{i=5}^{7} \left(\Delta_{(Y_{i},\nu)} - E_{(a',\tilde{\nu}=0)} + E_{(X,\nu)} \right) \cdot K(\nu)_{Y_{i}}^{e} + \left(\Delta_{(C,\nu)} - E_{(a',\tilde{\nu}=0)} + E_{(X,\nu)} \right) \cdot K(\nu)_{C}^{e} \cdot \frac{K_{18} \cdot n_{N_{2}}}{K_{13} + K_{18} \cdot n_{N_{2}}} \right] + \\ &+ \left(E_{(a',\tilde{\nu}=0)} - E_{(A,\nu*)} \right) \cdot K_{15} \cdot n_{N_{2}} \cdot n_{N_{2}(a')} + \left(\left\langle E_{(B,\nu'')} \right\rangle - E_{(A,\nu*)} \right) \cdot K_{13} \cdot n_{N_{2}(C)} \,. \end{split}$$

Здесь первое слагаемое описывает нагрев газа за счет процессов тушения электронно-колебательно возбужденных состояний молекул, лежащих между уровнем $N_2(A, v_*)$ ($v_* = 3$) и термом $N_2(a')$. Второе слагаемое соответственно учитывает вклад термов лежащих выше уровня $N_2(a', v''=0)$. Третье слагаемое описывает процесс тушения $N_2(a')$ метастабиля невозбужденными молекулами. $\Delta_{(Y_i,v)} = \sum_{v''} q_{v,v''} \cdot (E_{(Y_i,v'')} - E_{(X,v)}); q_{v,v''}$ - факторы Франка-Кондана для переходов $N_2(X,v) \rightarrow N_2(Y_i,v''); E_{(Y_i,v'')} \equiv E_{N_2(Y_i,v'')}$ - энергия электронно-колебательного состояния $N_2(A^3\Sigma_u^+,v=4-7), N_2(B^3\Pi_g), N_2(W^3\Delta_u), N_2(B^{\prime3}\Sigma_u^-), N_2(a^{\prime1}\Sigma_u^-), N_2(a^{\prime1}\Pi_g), N_2(w^{\prime1}\Delta_u); (E_{(B,v'')}) - средняя энергия возбуждений, образующихся в результате радиационных переходов (13), <math>\langle E_{(B,v'')} \rangle \approx E_{(B,v''=0)}$.

В результате уравнение, описывающее изменение температуры газа T_g ,

представим в виде:

$$c \cdot n_{N_2} \frac{dT_g}{dt} = Q \quad , \tag{24}$$

где *с* - теплоемкость газа, приходящаяся на одну молекулу (в случае постоянного давления $c = c_P = 3,5k$; в случае постоянного объема $c = c_V = 2,5k$).

Сечения и константы скоростей элементарных процессов

Кинетика электронной компоненты плазмы описывается квазистационарным уравнением Больцмана для функции распределения электронов по энергии, записанным в приближении двучленного разложения ^[7,8]. Вычисление констант скоростей процессов неупругих столкновений электронов с молекулами осуществляется путем свертки экспериментально (либо теоретически) полученных сечений этих процессов с ФРЭЭ.

В настоящей работе за основу принята база данных по сечениям и константам скоростей элементарных процессов, протекающих с участием электрона в азотной плазме, приведенная в ^[3].

Константы скоростей реакций колебательной кинетики (1) и (2) представлены в виде:

$$\begin{split} &K_{(VV)\widetilde{\nu}+1\rightarrow\widetilde{\nu}}^{\nu\rightarrow\nu+1} = (\nu+1)(\widetilde{\nu}+1) \cdot K_{1\rightarrow0}^{0\rightarrow1} \cdot e^{\delta_{VV} \cdot |\nu-\widetilde{\nu}|} \cdot \left(\frac{3}{2} - \frac{1}{2} e^{\delta_{VV} \cdot |\nu-\widetilde{\nu}|}\right)^{[9,10]}, \qquad \delta_{VV} = \frac{6.85}{\sqrt{T_g}}, \\ &K_{(VV)\widetilde{\nu}\rightarrow\widetilde{\nu}+1}^{\nu+1\rightarrow\nu} = K_{(VV)\widetilde{\nu}+1\rightarrow\widetilde{\nu}}^{\nu\rightarrow\nu+1} \cdot \exp\left\{\frac{2\Delta E}{T_g}(\nu-\widetilde{\nu})\right\}, \quad K_{1\rightarrow0}^{0\rightarrow1} \approx 2.87 \cdot 10^{-17} \cdot T_g^{3/2}, \ cm^3 \, / \, c^{[11]}, \\ &K_{(VT)}^{\nu\rightarrow\nu-1} = \nu \cdot K_{0\rightarrow1} \cdot e^{\delta_{VT} \cdot (\nu-1)} \quad ^{[9,10]}, \qquad K_{(VT)}^{\nu\rightarrow\nu+1} = K_{(VT)}^{\nu+1\rightarrow\nu} \cdot \exp\left\{-\frac{E_1 - 2\Delta E \cdot \nu}{T_g}\right\}, \\ &\delta_{(VT)} = \left\{\frac{2.8734 \cdot T_g^{-1/3}}{6.85 \cdot T_g^{-1/2}}, \nu > \nu_c, \quad \nu_c = 81.4825 - 1.2866 \cdot T_g^{-1/2}, \\ &\delta_{(VT)} = \left\{\frac{2.16 \cdot 10^{-12} \cdot \sqrt{T_g} \cdot e^{-147.43 \cdot T_g^{-1/3}}}{1.22 \cdot 10^{-8} \cdot \sqrt{T_g} \cdot e^{-256.29 \cdot T_g^{-1/3}}}, 300K \leq T_g \leq 2000K, \ cm^3 \, / \, c^{[12-14]}. \end{split}\right. \end{split}$$

 $E_1=3353K$, $\Delta E=20.6K$, $\hbar \omega_0=3394K$.

Скорость протекания процессов (13)-(16) и (18),(19) характеризуется соответствующими константами скоростей реакций:

$$K_{13} = 2.45 \cdot 10^7 c^{-1} {}^{[15]}, K_{14} = 1.6 \cdot 10^{-10} \left(\frac{300}{T_g}\right)^{2.64} cm^3 / c {}^{[16]}, K_{15} = 2 \cdot 10^{-13} cm^3 / c {}^{[17]},$$

$$K_{16} = 5 \cdot 10^{-11} cm^3 / c {}^{[18]}, K_{18} = 2 \cdot 10^{-11} cm^3 / c {}^{[1]}, K_{19} = 2 \cdot 10^{-10} cm^3 / c {}^{[18]}.$$

Численная модель

Кинетические характеристики процесса нагрева молекулярного азота, протекающего во время неравновесного электрического разряда и в после разрядный период, описываются жесткой задачей Коши для системы обыкновенных дифференциальных уравнений (21)-(24). Большая жесткая система обыкновенных дифференциальных уравнений решается с помощью специализированной программы DIFSUB с подключением высоко оптимизированного пакета программ Intel[®] Math Kernel Library.

При расчете констант скоростей протекания элементарных процессов с участием электронов решается уравнение Больцмана для ФРЭЭ, представляющее собой нелинейное интегро-дифференциальное уравнение второго порядка со смещенными аргументами. Как показывают расчеты, в условиях рассматриваемой задачи ФРЭЭ не является однопараметрическим распределением Максвелла и чрезвычайно сильно зависит от отношения напряженности электрического поля к концентрации молекул азота E_{eff}/n_{N_2} , а также от состояния внутренних степеней свободы молекул (в частности от степени возбуждения колебаний молекул).

В данной работе во избежание чрезмерных затрат машинного времени (чрезмерных даже для одномерных задач, описывающих динамику неравновесной среды) проводится предварительный расчет ФРЭЭ¹ и табулирование констант скоростей процессов как функций от величин E_{eff}/n_{N_2} и *S* (где

$$S = \frac{1}{\hbar\omega_0 \cdot n_{N_2}} \sum_{\nu=1}^{\nu^*} E_{\nu} n_{N_2(X,\nu)} -$$
среднее число колебательных квантов, приходящихся на

¹ Методика расчета ФРЭЭ подробно описывается в работе^[19].

одну молекулу). Полученные константы скоростей процессов (в широком диапазоне параметров $10^{-16} \le E_{eff} / n_{N_2} \le 3 \cdot 10^{-15}$, $0 \le S \le 5$) аппроксимировались аналитическими зависимостями вида:

$$\ln(K_Y^{(e)}(\frac{E_{eff}}{n_{N_2}},S)) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha_{i,j} \left(\left(10^{16} \, \frac{E_{eff}}{n_{N_2}} \right)^{\beta_Y} \right)^i \left(S^{\,\delta_Y} + a \right)^j,$$

что позволило снизить затраты машинного времени на несколько порядков величины.

При построении численного алгоритма решения задачи: константы скоростей прямых и обратных VV- и VT- процессов рассчитывались по рекуррентным соотношениям, а матрица Якоби правых частей уравнений (в программе DIFSUB) вычислялась аналитически. В этом случаи, типичное время расчета (на компьютере P-IV 2,8 Gh) одного варианта задачи (накачка внутренних степеней свободы газа в разрядный период и полная релаксация колебаний молекул азота в после разрядный период времени) составляет 1 — 5 секунд.

Проведенная детальная оптимизация расчетного алгоритма дает реальные возможности применения разработанного программного продукта для решения пространственно неоднородных задач на многопроцессорных ЭВМ.

Результаты расчетов

Рассмотрим разрядные и после разрядные явления, протекающие в пространственно однородном молекулярном азоте, начальное равновесное состояние которого характеризуется температурой газа $T_g^{(0)} = 300K$ и концентрацией молекул $n_{N_2^{(0)}}$. В начальный момент времени на газ накладывается электрическое поле с длительностью импульса τ_{umn} и эффективной напряженностью E_{eff} . Уделяя основное внимание кинетическим характеристикам нагрева газа, будем полагать что концентрация электронов в плазме постоянна и равна $n_e = 4 \cdot 10^{12} cm^{-3}$ - типичному значению этой величины для микроволновых разрядов. На рисунках 1 — 6 показана связь эволюции функции распределения молекул азота по колебательным состояниям с динамикой нагрева газа. Расчет проводился для изохорического процесса при $n_{N_2^{(0)}} = 2.5 \cdot 10^{19} cm^{-3}$, $E_{eff} / n_{N_2^{(0)}} = 10^{-15} B \cdot cm^2$ и $\tau_{umn} = 15.6$ мкс. За время τ_{umn} : в колебания молекул электронами закачивается энергия, соответствующая среднему числу колебательных квантов (приходящихся

на одну молекулу)
$$S^* \equiv S^{pump}(t = \tau_{u,m}) = 2 \left(S^{pump}(t) = \int_0^t \sum_{\nu=1}^{\nu^*} \frac{E_{\nu}}{\hbar \omega_0 \cdot n_{N_2}} \left(\frac{\partial n_{N_2(X,\nu)}}{\partial t} \right)^{(e\nu)} d\tau \right);$$
 газ

нагревается на $\Delta T_{ert}(t = \tau_{umn}) = 8.6 \text{ K} - 3 \text{ счет упругих столкновений электронов с молекулами и релаксации вращательного возбуждения молекул; на <math>\Delta T_{ET}(t = \tau_{umn}) = 308 \text{ K} - 3 \text{ счет быстрого тушения электронно-возбужденных состояний молекул; нерезонансные колебательно-колебательные обмены нагревают газ на 150.6 K; колебательно-поступательная релаксация (стимулированная$ *ET*– нагревом) успевает нагреть газ на 355 K. Здесь:

$$\Delta T_{ert}(t) = \int_{0}^{t} \left(Q_{e-N_2}^{(elast)}(\tau) + Q_{e-N_2}^{(RT)}(\tau) \right) d\tau , \ \Delta T_{ET}(t) = \int_{0}^{t} Q_{(e-N_2)-N_2}^{(ET)}(\tau) d\tau , \ S_{eq}(T_g) - \text{pabhobechoe} \right)$$

значение числа колебательных квантов, соответствующее температуре газа T_g . При $t > \tau_{umn}$ основным механизмом нагрева газа является релаксация энергии колебаний молекул за счет VT - процессов.

В таблицах 1-15 приведена детальная информация о кинетических характеристиках процесса нагрева молекулярного азота в неравновесном электрическом разряде при различных значениях величины $E_{eff} / n_{N_2^{(0)}}$ и давлении газа в изохори-

ческом и изобарическом приближении. Параметр $\eta = 100 \cdot \left(1 - \frac{S_{eq}(t)}{S(t)}\right)$ характеризует

колебательную неравновесность газа.

Как показывают расчеты, динамика нагрева газа в диапазоне параметров $S^* > 1$ и $E_{eff} / n_{N_2^{(0)}} > 8 \cdot 10^{-16} B \cdot cm^2$ существенно зависит от вклада в нагрев газа процессов быстрого тушения электронно-возбужденных состояний молекул азота во время разряда.

Литература

1. Словецкий Д.И. Механизмы химических реакций в неравновесной плазме. – М.: Наука, 1980.

2. Гордиец Б.Ф., Осипов Л.И., Шелепин Л.А. Кинетические процессы в газах и молекулярные лазеры. – М.: Наука, 1980.

3. A.A. Matveyev and V.P. Silakov. Theoretical study of the role of ultraviolet radiation of the non-equilibrium plasma in the dynamics of the microwave discharge in molecular nitrogen. – Plasma Sources Sci. Technol. 8(1999), pp 162-178.

4. Безменов И.В., В.В. Русанов., Силоков В.П. Динамика волнового СВЧ-разряда высокого давления в молекулярном азоте. – Труды ИОФРАН, т. 47, 1994, с. 74-107.

5. Силаков В.П. Влияние процессов ассоциативной ионизации электронновозбужденных метастабилей на электрическую прочность слабоионизованного молекулярного азота высокого давления. Физика плазмы, т. 14, в. 10 (1988), с. 1209-1213.

6. Matveev A.A., Silakov V.P. Plasma Sources Sci. Technol. 4(1995), pp. 606-617.

7. Александров Н.Л., Сон Э.Е. Энергетическое распределение и кинетические коэффициенты электронов в газах в электрическом поле // Химия плазмы. Вып. 7 / Под ред. Б.М.Смирнова. - М.: Атомиздат, 1980. С.35-75.

8. Смит К., Томсон Р. Численное моделирование газовых лазеров. М.: Мир, 1981. **9**. Bray K. N. C. // J. Phys. B, 1968, v. 1, p. 705-712.

10. Гордиец Б. Ф., Осипов Л. И., Шелепин Л. А. Кинетические процессы в газах и молекулярные лазеры. – М.: Наука, 1980.

11. Валянский С. И., Верещагин К. А., Вернке В., Волков А. Ю., Пашинин П. П., Смирнов В. В., Фабелинский В. И., Чаповский П. Л. // Квантовая электроника, 1984, т. 11, с. 1833-1836.

12. Kovacs M. A. and Mack M. E. // Appl. Phys. Lett., 1972, v. 20, p. 487.

13. Kovacs M. A. // IEEE J. Quantum Electron., 1973, v. QE-9, p. 189-203.

14. Васильев Л. А., Ершов И. В., Семенов С. С. // ДАН СССР, 1969, т. 186, с. 1041-1045.

15. Кузнецова Л. А., Кузьменко Н. Е., Кузяков Ю. Я., Пластинин Ю. А., Вероятности оптических переходов двухатомных молекул. – М.: Наука, 1980. 320 с.

16. Голубовский Ю.Б., Тележко В.М., Стоянов Д.Г. О возбуждении излучающих состояний $C^3\Pi_u$ и $C'^3\Pi_u$ молекулы азота при парных столкновениях метастабилей

N₂(A³Σ_u⁺) // Оптика и спектроскопия, 1990, т. 69, с. 322-327.

17. Dreyer J.W., Perner D. Chem. Phys.Lett. 1972, vol. 16, N 1, pp. 169-173.

18. Brunet H. and Rocca-Serra J. Model for a glow discharge in flowing nitrogen // J. Appl. Phys., 1985, v. 57, p. 1574-1581.

19. Дятко Н.А., Кочетов И.В., Напартович А.П. Функция распределения электронов по энергии в распадающейся плазме азота. Физика плазмы, т. 18, вып. 7, (1992), сс. 888-900.

Isochoric pro	cess	T	$r_{g}^{0} = 300R$	K		E _{eff} /	$n_{N_2^{(0)}} = 6$	$5 \cdot 10^{-16} B$	$\cdot cm^2$			n _N	$_{(0)}_{2} = 2.5 \cdot$	10 ¹⁹ см	-3	
		<i>S</i> [*] =	= 0.5			S^* =	=1.0			<i>S</i> * =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{u_{M}n}}$,МКС		7.	64			16	. 29			24	.10			30	.76	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		7.	69			25	.51			50	. 35			72	. 03	
$\Delta T_{ert}(\tau_{umn})$,K		1.	77			3.	99			6.	39			8.	70	
$\Delta T_{VV}(\tau_{umn})$,K		-4	. 27			11	.01			76.	. 39			216	.15	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	25			43	.80			485	.51	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K	t, мс	<i>Т</i> _g ,К	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мкс	T_g ,K	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мкс	T_g ,K	T_{VT} ,K	T_{VV} ,К
95	17.4	725	373	40	0.46	932	481	119	51.5	1092	542	189	32.59	1227	604	240
90	19.3	793	441	40	0.67	1073	619	120	88.0	1299	734	203	39.38	1496	837	274
80	21.1	856	503	41	0.86	1225	770	121	131.4	1540	969	209	52.29	1824	1144	293
70	22.1	887	535	41	0.96	1312	857	122	157.2	1687	1115	210	61.51	2031	1347	298
60	23.0	907	554	41	1.04	1371	916	122	176.5	1789	1216	211	67.83	2178	1491	300
50	23.7	920	567	41	1.10	1413	958	122	193.3	1865	1292	211	72.56	2289	1601	301
40	24.4	929	577	41	1.17	1446	990	122	209.4	1924	1350	212	76.62	2375	1686	301
30	25.2	937	584	41	1.24	1471	1016	122	226.4	1971	1397	212	80.58	2445	1755	302
20	26.1	943	590	41	1.32	1492	1036	122	246.6	2009	1435	212	84.98	2502	1812	302
10	27.5	947	595	41	1.44	1509	1053	122	275.3	2041	1467	212	91.14	2550	1860	302

Isochoric pro	cess	T	$r_{g}^{0} = 3001$	K		E_{eff} /	$n_{N_2^{(0)}} = 8$	$8 \cdot 10^{-16} B$	$\cdot cm^2$			n _N	$\frac{(0)}{2} = 2.5$	·10 ¹⁹ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> [*] =	=1.0			S* =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{u_{M}n}}$,МКС		4.	97			10.	.25			15.	.48			20	.16	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		32	.35			75.	.56			126	.88			17	1.7	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	47			3.	69			5.	91			8.	15	
$\Delta T_{VV}(\tau_{umn})$,K		-4.	.93			3.4	43			54.	.83			178	8.47	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.0	003			0.1	17			27.	.33			381	.68	
$\eta\%$	t, мс	Т _g ,К	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K	t, мкс	Т _g ,К	T_{VT} ,K	T_{VV} ,K	t, мкс	Т _g ,К	T_{VT} ,K	T_{VV} ,K
95	14.30	736	361	35	0.36	946	454	105	36.6	1109	501	166	22.0	1245	548	212
90	16.01	807	432	35	0.54	1092	597	108	66.2	1323	698	183	27.4	1523	787	249
80	17.55	874	498	35	0.70	1251	755	109	103.6	1574	942	189	38.3	1864	1104	270
70	18.47	908	532	35	0.79	1343	847	109	126.1	1729	1095	191	46.2	2081	1314	276
60	19.18	928	553	35	0.86	1405	909	109	143.1	1836	1202	192	51.5	2234	1465	278
50	19.82	943	567	35	0.92	1450	953	109	157.9	1916	1281	192	55.4	2350	1579	279
40	20.44	953	578	35	0.98	1484	988	110	172.0	1978	1343	193	58.7	2441	1669	280
30	21.11	961	586	35	1.04	1511	1015	110	186.8	2027	1392	193	62.0	2514	1742	280
20	21.91	968	592	35	1.11	1533	1037	110	203.5	2068	1432	193	65.6	2574	1801	280
10	23.11	973	597	35	1.21	1551	1055	110	226.7	2102	1466	193	70.7	2624	1851	281

Isochoric pro	cess	T	$g_{g}^{0} = 300I$	K		E _{eff} / n	$n_{N_2^{(0)}} = 1$	0.10^{-16}	$B \cdot c M^2$			n _N	$_{(0)}^{(0)} = 2.5 \cdot$	10 ¹⁹ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> [*] =	=1.0			<i>S</i> [*] =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{u_{M}n}}$,МКС		3.	87			7.	79			11	.76			15	. 56	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		75.	. 47			153	.26			235	.73			308	.65	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	98			3.	99			6.	26			8.	63	
$\Delta T_{VV}(\tau_{umn})$,K		-5	.75			-1	.79			41	. 91			150	.65	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	26			30	. 63			354	. 93	
$\eta\%$	t, мс	<i>Т</i> _{<i>g</i>} ,К	T_{VT} ,K	<i>Т_W</i> ,К	t, мkc	<i>Т</i> _{<i>g</i>} ,К	T_{VT} ,K	T_{VV} ,K	t, мкс	T_g ,K	T_{VT} ,K	<i>Т_W</i> ,К	t, мкс	T_g ,K	T_{VT} ,K	T_{VV} ,K
95	10.52	753	338	26	246.2	966	409	87	26.1	1131	439	137	16.62	1270	472	175
90	11.93	829	415	26	397.4	1120	559	90	48.4	1356	642	157	20.67	1561	717	215
80	13.19	902	487	26	531.4	1290	727	92	78.9	1621	899	165	29.35	1920	1047	240
70	13.93	939	525	26	606.5	1389	826	92	97.8	1785	1061	167	35.66	2149	1268	247
60	14.50	963	548	26	662.5	1456	893	92	112.2	1900	1174	168	39.69	2312	1428	249
50	15.01	979	564	26	710.9	1505	942	92	124.6	1985	1259	168	42.71	2434	1549	251
40	15.51	991	576	26	757.3	1542	979	92	136.3	2051	1325	169	45.33	2531	1645	251
30	16.04	1000	585	26	806.3	1571	1008	93	147.6	2105	1378	169	47.87	2609	1722	252
20	16.68	1007	592	26	864.6	1595	1032	93	160.3	2148	1421	169	50.71	2673	1786	252
10	17.63	1013	598	26	950.5	1615	1052	93	178.0	2185	1458	169	54.67	2727	1839	253

Isochoric pro	cess	T	$r_{g}^{0} = 300I$	K		$E_{e\!f\!f}$ /	$n_{N_2^{(0)}} = 6$	$5 \cdot 10^{-16} B$	$\cdot cm^2$			n _N	$_{(0)}_{2} = 2.5 \cdot$	10 ¹⁸ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> [*] =	=1.0			<i>S</i> * =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{\scriptstyle \! \!$		8.	01			17	.56			28	.38			38	.18	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		3.	93			16	.56			42	.09			74	. 55	
$\Delta T_{ert}(\tau_{uMn}), \mathbf{K}$		1.	86			4.	32			7.	71			11	. 48	
$\Delta T_{VV}(\tau_{umn})$,K		-2	.16			-0	.78			13	.77			48	. 27	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	00			0.	03			0.	60	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	<i>Т_W</i> ,К	t, мс	T_g ,K	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	<i>Т</i> _{<i>g</i>} ,К	T_{VT} ,K	<i>Т_W</i> ,К	t, мкс	T_g ,K	T_{VT} ,K	T_{VV} ,К
95	175.6	725	373	41	4.46	933	483	121	0.34	1092	540	191	100.0	1230	583	249
90	195.1	792	441	41	6.60	1073	621	123	0.71	1298	732	206	166.0	1500	818	284
80	212.9	855	503	42	8.44	1225	772	124	1.14	1539	967	211	292.5	1829	1128	303
70	223.6	886	534	42	9.47	1313	860	124	1.40	1686	1113	213	383.0	2038	1332	308
60	231.9	906	554	42	10.24	1371	918	124	1.60	1788	1214	213	444.8	2185	1477	310
50	239.3	919	567	42	10.91	1414	960	125	1.77	1864	1290	214	490.9	2296	1587	311
40	246.5	928	576	42	11.55	1446	993	125	1.93	1922	1348	214	530.6	2383	1674	312
30	254.3	936	584	42	12.23	1471	1018	125	2.10	1969	1395	214	569.2	2453	1743	312
20	263.7	941	589	42	13.03	1492	1039	125	2.30	2008	1433	214	612.3	2511	1800	312
10	277.7	946	594	42	14.22	1509	1056	125	2.59	2040	1465	214	672.5	2559	1849	312

Isochoric pro	cess	T	$r_{g}^{0} = 3001$	K		E _{eff} /	$n_{N_2^{(0)}} = 8$	$8 \cdot 10^{-16} B$	$\cdot cm^2$			n _N	$_{(0)}_{2} = 2.5 \cdot$	10 ¹⁸ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> [*] =	=1.0			<i>S</i> [*] =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{u_{M}n}}$,МКС		5.	18			11.	.04			17.	. 47			23	. 89	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		18	.01			49	. 68			93.	. 78			145	. 62	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	81			3.	97			6.	74			10	.01	
$\Delta T_{VV}(\tau_{umn})$,K		-1	. 90			-2	. 08			6.	80			33	. 35	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	00			0.	03			0.	50	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	Т _g ,К	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	Т _g ,К	T_{VT} ,K	<i>Т_W</i> ,К	t, мкс	T_g ,K	T_{VT} ,K	T_{VV} ,K
95	152.3	733	364	37	3.74	942	462	111	0.28	1103	511	174	75.4	1243	546	224
90	170.2	803	433	37	5.67	1086	604	113	0.59	1315	707	190	131.8	1520	785	261
80	186.3	868	499	37	7.35	1243	760	114	0.98	1563	948	196	244.0	1858	1102	282
70	195.9	901	532	37	8.29	1334	850	115	1.22	1715	1099	198	325.2	2073	1311	287
60	203.4	921	552	37	9.00	1395	911	115	1.40	1821	1203	199	379.0	2225	1461	289
50	210.1	935	566	37	9.60	1440	955	115	1.55	1899	1282	199	419.2	2340	1575	290
40	216.6	945	576	37	10.19	1473	989	115	1.70	1960	1342	199	453.9	2430	1664	291
30	223.6	953	584	37	10.80	1500	1015	115	1.85	2009	1391	199	487.6	2502	1736	291
20	232.0	959	590	37	11.54	1521	1037	115	2.03	2049	1431	200	525.3	2562	1795	292
10	244.6	964	595	37	12.62	1539	1055	115	2.28	2082	1464	200	577.8	2612	1845	292

Isochoric pro	cess	T	$r_{g}^{0} = 3001$	K		E _{eff} / r	$n_{N_2^{(0)}} = 1$	0.10^{-16}	$B \cdot c M^2$			n _N	$_{(0)}^{(0)} = 2.5 \cdot$	10 ¹⁸ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> [*] =	=1.0			<i>S</i> * =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{u_{M}n}}$,МКС		4.	06			8.	43			13	.06			17	. 84	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		46	.01			104	.28			171	.15			244	.73	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		2.	07			4.	31			6.	97			10	.10	
$\Delta T_{VV}(\tau_{umn})$,K		-1	. 88			-3	.13			3.	01			26	.05	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	01			0.	06			0.	86	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	Т _g ,К	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	Т _g ,К	T_{VT} ,K	<i>Т_W</i> ,К	t, мкс	T_g ,K	T_{VT} ,K	T_{VV} ,K
95	119.4	746	347	30	2.81	958	428	97	0.21	1121	465	152	56.8	1262	489	195
90	134.7	820	421	30	4.46	1108	576	100	0.46	1340	665	170	101.5	1549	734	234
80	148.4	890	491	30	5.91	1273	739	101	0.80	1599	916	178	195.4	1901	1061	258
70	156.5	926	527	30	6.72	1370	835	102	1.00	1758	1074	179	263.8	2126	1279	264
60	162.7	948	549	30	7.33	1435	900	102	1.16	1869	1184	180	307.7	2285	1436	267
50	168.3	964	564	30	7.85	1482	947	102	1.29	1952	1266	181	340.7	2406	1555	268
40	173.8	975	576	30	8.35	1518	983	102	1.42	2016	1330	181	369.2	2500	1649	269
30	179.6	984	584	30	8.88	1546	1011	102	1.55	2067	1381	181	396.9	2576	1724	270
20	186.6	990	591	30	9.51	1569	1034	102	1.70	2110	1423	181	427.8	2639	1787	270
10	197.1	996	596	30	10.44	1588	1053	102	1.90	2145	1458	182	471.0	2691	1839	270

Isobaric pro	cess	Т	$r_{g}^{0} = 3001$	K		E _{eff} /	$n_{N_2^{(0)}} = 0$	$5 \cdot 10^{-16} B$	$\cdot cm^2$			n _N	$\frac{(0)}{2} = 2.5$	б·10 ¹⁹ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> [*] =	=1.0			<i>S</i> * =	=1.5			<i>S</i> * =	= 2.0	
$ au_{_{umn}}$,МКС		7.	59			15	.64			21	. 96			26	.24	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		5.	58			20	.19			48	.71			98	. 69	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	26			2.	81			4.	49			6.	25	
$\Delta T_{VV}(\tau_{umn})$,K		-3	.04			6.	42			37	.86			87	.15	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$	-	0.	00			0.	10			6.	48			58	.30	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	Т _g ,К	<i>Т_{VT}</i> ,К	T_{VV} ,K	t, мс	<i>Т</i> _{<i>g</i>} ,К	T_{VT} ,K	<i>Т_W</i> ,К	t, мс	<i>Т</i> _g ,К	T_{VT} ,K	T_{VV} ,К
95	69.5	667	323	35	3.10	874	444	104	0.26	1035	506	168	0.06	1178	544	213
90	80.8	709	365	36	4.65	977	546	105	0.63	1196	661	174	0.13	1399	740	237
80	92.7	741	397	36	6.24	1075	644	105	1.08	1366	828	176	0.29	1644	974	246
70	100.6	756	411	36	7.26	1126	694	105	1.39	1459	920	177	0.42	1785	1113	248
60	107.0	764	420	36	8.08	1157	725	105	1.64	1520	981	177	0.52	1879	1206	249
50	112.9	769	425	36	8.83	1179	747	105	1.86	1562	1023	177	0.62	1946	1273	249
40	118.7	773	429	36	9.57	1195	763	105	2.09	1594	1055	177	0.72	1997	1323	250
30	125.1	776	431	36	10.38	1207	775	105	2.34	1619	1080	177	0.82	2037	1363	250
20	133.0	778	433	36	11.36	1216	784	105	2.64	1639	1100	177	0.94	2069	1394	250
10	144.7	779	435	36	12.84	1224	792	105	3.09	1655	1116	177	1.12	2095	1420	250

Isobaric pro	cess	T	$r_{g}^{0} = 3001$	K		$E_{e\!f\!f}$ /	$n_{N_2^{(0)}} = 8$	$8 \cdot 10^{-16} B$	$\cdot cM^2$			n _N	$_{2}^{(0)} = 2.5 \cdot$	10 ¹⁹ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> [*] =	=1.0			<i>S</i> * =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{u_{M}n}}$,МКС		4.	75			9.	17			12	. 94			16	.13	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		26	. 03			70	. 89			147	.02			280	.08	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	25			2.	68			4.	45			6.	78	
$\Delta T_{VV}(\tau_{umn})$,K		-3	. 44			0.	26			20	. 22			61	.18	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	05			2.	25			41	.24	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	<i>Т_W</i> ,К	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K	t, мс	Т _g ,К	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мkc	T_g ,K	T_{VT} ,K	T_{VV} ,K
95	57.6	680	316	31	2.30	893	418	92	0.16	1064	453	142	33.8	1225	445	166
90	67.5	724	360	31	3.62	1003	527	93	0.43	1238	617	152	78.9	1468	654	197
80	77.9	760	396	31	4.97	1109	632	93	0.80	1422	798	154	189.8	1740	910	211
70	84.7	776	412	31	5.84	1164	687	94	1.05	1524	900	155	282.5	1899	1065	213
60	90.3	785	421	31	6.54	1198	722	94	1.25	1591	966	155	363.0	2005	1170	214
50	95.4	791	426	31	7.18	1222	745	94	1.44	1638	1013	156	434.2	2082	1246	215
40	100.5	795	431	31	7.81	1239	763	94	1.63	1674	1049	156	500.2	2140	1303	215
30	106.0	798	434	31	8.50	1253	776	94	1.83	1702	1076	156	568.1	2185	1348	216
20	112.8	800	436	31	9.33	1263	787	94	2.08	1724	1098	156	647.4	2222	1385	216
10	123.0	802	438	31	10.59	1272	795	94	2.46	1742	1116	156	762.3	2252	1414	216

Isobaric pro	cess	T	$r_{g}^{0} = 300R$	K		E_{eff} / i	$n_{N_2^{(0)}} = 1$	0.10^{-16}	$B \cdot c M^2$			n _N	$_{(0)}_{2} = 2.5 \cdot$	10 ¹⁹ см	-3	
		<i>S</i> * =	= 0.5			<i>S</i> * =	=1.0			S* =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{\scriptstyle UMN}}$,МКС		3.	60			6.	64			9.	54			12	. 74	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		71	.26			192	.23			417	.74			807	.73	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	53			3.	39			6.	16			10	.46	
$\Delta T_{VV}(\tau_{umn})$,K		-3	. 91			-4	.31			7.	02			37	. 62	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	08			3.	96			70	.03	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K	t, мс	<i>Т</i> _{<i>g</i>} ,К	T_{VT} ,K	T_{VV} ,K	t, мс	Т _g ,К	T_{VT} ,K	T_{VV} ,K	t, мкс	T_g ,K	T_{VT} ,K	T_{VV} ,K
95	39.24	705	297	23	1.16	937	351	68	0.05	1141	298	83	14.7	1346	145	57
90	46.82	756	348	23	2.07	1061	474	70	0.17	1347	482	102	27.4	1650	383	101
80	54.71	798	390	23	3.02	1186	598	70	0.38	1571	699	108	70.4	2002	694	132
70	59.86	817	409	23	3.64	1251	663	71	0.53	1700	826	110	109.9	2211	894	138
60	64.06	829	420	23	4.14	1293	705	71	0.66	1784	910	110	139.6	2353	1032	141
50	67.90	836	428	23	4.59	1322	734	71	0.78	1845	970	110	164.7	2456	1133	142
40	71.73	841	433	23	5.04	1344	755	71	0.90	1890	1015	111	188.3	2535	1210	143
30	75.91	845	437	23	5.53	1360	772	71	1.03	1926	1051	111	212.8	2597	1271	143
20	81.00	848	440	23	6.12	1373	785	71	1.19	1955	1079	111	241.4	2647	1320	143
10	88.66	850	442	23	7.01	1384	795	71	1.43	1978	1103	111	283.1	2688	1361	144

Isobaric pro	ocess	7	$T_g^0 = 300$	K		$E_{e\!f\!f}$ /	$n_{N_2^{(0)}} = 6$	$5 \cdot 10^{-16} B$	$\cdot cm^2$			n _N	$\frac{(0)}{2} = 2.5$	·10 ¹⁸ см	-3	
		<i>S</i> [*] =	= 0.5			<i>S</i> * =	=1.0			<i>S</i> [*] =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{\scriptstyle UMN}}$,МКС		8.	01			17	.05			26.	29			34	.03	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		2.	89			12	.38			33.	48			67	.15	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	33			3.	04			5.2	29			7.	88	
$\Delta T_{VV}(\tau_{umn})$,K		-1.	.53			-0).7			7.)8			22	.66	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$)				0			0.)1			0.	09	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K	t, мс	<i>Т</i> _{<i>g</i>} ,К	T_{VT} ,K	T_{VV} ,K	t, мс	T_g ,K	T_{VT} ,K	$T_{\scriptscriptstyle VV}$,К	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K
95	683.6	668	324	37	31.5	873	445	106	2.6	1031	511	171	0.41	1170	557	222
90	795.5	710	366	37	47.2	975	547	106	6.4	1191	664	178	1.26	1387	751	246
80	913.2	743	399	37	63.2	1073	644	107	11.1	1359	830	179	2.95	1627	982	254
70	990.6	758	413	37	73.5	1123	695	107	14.2	1451	922	180	4.24	1765	1118	256
60	1053.9	766	421	37	81.8	1155	726	107	16.7	1511	981	180	5.34	1857	1209	256
50	1111.9	771	427	37	89.4	1176	747	107	19.1	1553	1023	180	6.35	1922	1274	257
40	1169.8	775	431	37	96.9	1192	763	107	21.4	1584	1055	180	7.38	1972	1323	257
30	1233.0	778	433	37	105.0	1204	775	107	23.9	1609	1079	181	8.50	2011	1362	257
20	1310.1	780	435	37	115.0	1213	784	107	27.0	1628	1098	181	9.83	2042	1393	257
10	1426.0	781	437	37	129.9	1221	792	107	31.6	1644	1114	181	11.76	2067	1419	257

Isobaric pro	cess	7	$r_{g}^{0} = 3001$	K		$E_{e\!f\!f}$ /	$n_{N_2^{(0)}} = 3$	$8 \cdot 10^{-16} B$	$\cdot c M^2$			n _N	$_{2}^{(0)} = 2.5$	·10 ¹⁸ см	u ⁻³	
		<i>S</i> * =	= 0.5			<i>S</i> * =	=1.0			<i>S</i> [*] =	=1.5			<i>S</i> * =	= 2.0	
$ au_{_{u \hspace{1em}M \hspace{1em}n}}$,МКС		5.	07			10	.23			15	.23			19	.76	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		13	. 92			41	.43			87	. 34			158	8.08	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	31			2.	84			4.	83			7.	31	
$\Delta T_{VV}(\tau_{umn})$,K		-1	.29			-1	. 55			2.	15			11	.70	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00			0.	00			0.	01			0.	07	
$\eta\%$	t, мс	T_{g} ,K	T_{VT} ,K	<i>Т_{VV}</i> ,К	t, мс	T_g ,K	<i>Т_{VT}</i> ,К	T_{VV} ,K	t, мс	T_g ,K	T_{VT} ,K	<i>Т_W</i> ,К	t, мс	Т _g ,К	<i>Т_{VT}</i> ,К	T_{VV} ,K
95	603	677	318	33	26.2	885	429	98	1.94	1049	481	156	0.30	1195	508	195
90	705	720	362	33	40.3	991	534	99	5.11	1217	640	164	0.93	1425	709	222
80	813	755	397	33	54.8	1094	636	99	9.21	1393	814	166	2.33	1679	952	232
70	883	771	412	33	64.2	1147	689	99	11.96	1491	911	167	3.44	1826	1097	234
60	941	780	421	33	71.7	1180	722	99	14.22	1554	975	167	4.38	1924	1194	235
50	994	785	427	33	78.5	1203	745	99	16.28	1599	1020	167	5.27	1995	1264	236
40	1046	789	431	33	85.3	1219	762	99	18.35	1633	1053	167	6.14	2048	1317	236
30	1104	792	434	33	92.7	1232	774	99	20.59	1659	1079	167	7.04	2090	1358	236
20	1174	795	436	33	101.7	1242	784	99	23.33	1680	1100	167	8.08	2123	1392	236
10	1280	796	438	33	115.2	1250	793	99	27.45	1697	1117	167	9.59	2151	1419	236

Isobaric pro	cess	T_g^0	= 300K			E_{eff} / 1	$n_{N_2^{(0)}} = 1$	0.10^{-16}	$B \cdot c M^2$			n _N	$\frac{1}{2}$ = 2.5	·10 ¹⁸ см	y ⁻³	
	•	$S^* =$	0.5			<i>S</i> * =	=1.0			<i>S</i> * =	=1.5			<i>S</i> [*] =	= 2.0	
$ au_{_{\scriptstyle UMN}}$,МКС		3.8	39			7.	51			10	. 95			14	.35	
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		39.	35			107	. 64			221	.85		-	416	5.56	
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.5	56			3.	39			5.	85			9.	30	
$\Delta T_{VV}(\tau_{umn})$,K		-1.	19			-2	.13			-0	. 67			5.	53	
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.0	0			0.	00			0.	02			0.	23	
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,	t, мс	T_{g} ,K	<i>Т_{VT}</i> ,К	T_{VV} ,K	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K	t, мс	T_{g} ,K	T_{VT} ,K	T_{VV} ,K
				Κ						_						
95	469.0	693	306	27	17.34	911	391	83	1.00	1092	401	123	0.14	1265	351	130
90	554.7	741	354	28	28.60	1027	505	84	3.02	1276	573	136	0.44	1526	572	166
80	644.2	780	393	28	40.28	1140	618	85	6.02	1474	767	139	1.26	1821	847	185
70	702.8	798	411	28	47.79	1200	677	85	8.11	1586	877	140	2.00	1995	1016	188
60	750.5	808	421	28	53.85	1237	715	85	9.83	1659	950	141	2.61	2112	1131	190
50	794.3	815	428	28	59.36	1263	740	85	11.42	1711	1002	141	3.12	2196	1215	191
40	838.0	819	432	28	64.85	1282	759	85	13.01	1750	1040	141	3.59	2260	1278	191
30	885.6	823	436	28	70.80	1297	774	85	14.74	1780	1071	141	4.07	2311	1328	191
20	943.6	825	438	28	78.04	1308	785	85	16.86	1804	1095	141	4.64	2351	1368	191
10	1031.0	828	441	28	88.91	1318	795	85	20.05	1824	1115	141	5.46	2385	1401	191

Isobaric process		7	$T_g^0 = 300$	Κ	$E_{eff} / n_{N_2^{(0)}} = 6 \cdot 10^{-16} B \cdot cm^2$						$n_{N_2^{(0)}} = 2.5 \cdot 10^{17} cm^{-3}$						
		<i>S</i> * =	= 0.5		$S^* = 1.0$					<i>S</i> [*] =	=1.5		$S^* = 2.0$				
$ au_{_{uмn}}$,МКС		8.	19		18.27					29	. 64		41.52				
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		1.	85		6.92					20	.13		47.14				
$\Delta T_{ert}(\tau_{uMn}), \mathbf{K}$		1.	36		3.26					5.	95		9.68				
$\Delta T_{VV}(\tau_{umn})$,K		-0	.26		-0.34					0.	79		4.02				
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00		0.00					0.	00		0.00				
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,K	t, мс	Т _g ,К	<i>Т_{VT}</i> ,К	T_{VV} ,K	t, мс	T_{g} ,K	T_{VT} ,K	T_{VV} ,K	t, мс	T_{g} ,K	T_{VT} ,K	T_{VV} ,K	
95	7098	666	324	37	321	872	447	108	26.7	1029	516	175	4.0	1166	566	226	
90	8247	707	365	37	479	973	549	109	65.5	1189	670	181	12.8	1383	759	249	
80	9458	739	397	37	641	1071	645	109	112.9	1355	834	183	30.2	1620	988	257	
70	10254	754	411	37	746	1121	695	109	144.5	1447	925	184	43.4	1757	1123	259	
60	10905	05 762 419 37		37	829	1152	726	109	170.2	1506	984	184	54.5	1848	1213	260	
50	11502	767	424	37	906	1173	748	109	193.8	1548	1026	184	64.9	1913	1278	260	
40	12099	771	428	37	982	1189	763	109	217.3	1579	1057	184	75.4	1962	1326	260	
30	12749	773	431	37	1064	1201	775	109	242.8	1603	1082	184	86.8	2000	1365	260	
20	13542	775	433	37	1164	1210	784	109	274.0	1623	1101	184	100.6	2031	1395	260	
10	14735	777	435	37	1315	1218	792	109	320.8	1639	1117	184	120.5	2056	1421	260	

Isobaric process		$T_g^0 = 300K$				$E_{e\!f\!f}$ /	$n_{N_2^{(0)}} = 8$	$8 \cdot 10^{-16} B$	$\cdot cM^2$ $n_{N_2^{(0)}} = 2.5 \cdot 10^{17} cM^{-3}$								
		S^* =	= 0.5		$S^* = 1.0$					<i>S</i> [*] =	=1.5		$S^* = 2.0$				
$ au_{_{u_{M}n}}$,МКС		5.	22		11.13					17	. 35		23.68				
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$		8.	17		23.80					53	. 54		104.61				
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	34		3.02					5.	28		8.33				
$\Delta T_{VV}(\tau_{umn})$,K		-0	.18		-0.32					0.	15		1.81				
$\Delta T_{VT}(\tau_{umn}), \mathbf{K}$		0.	00		0.00					0.	00		0.00				
$\eta\%$	t, мс	T_g ,K	T_{VT} ,K	<i>Т_W</i> ,К	t, мс	<i>Т</i> _{<i>g</i>} ,К	<i>Т_{VT}</i> ,К	<i>Т_{VV}</i> ,К	t, мс	T_g ,K	T_{VT} ,K	T_{VV} ,К	t, мс	T_g ,K	T_{VT} ,K	<i>Т_{VV}</i> ,К	
95	6298	674	321	35	275	882	437	103	21.8	1042	495	164	3.23	1185	531	208	
90	7353	717	364	35	421	987	541	103	56.0	1206	653	172	10.36	1409	730	234	
80	8461	751	398	35	570	1088	642	104	99.3	1379	823	174	25.47	1658	968	243	
70	9189	766	413	35	666	1140	694	104	128.3	1474	918	174	37.27	1801	1109	245	
60	9784	775	422	35	743	1173	727	104	152.0	1536	980	175	47.32	1896	1204	246	
50	10329 780 428 35			813	1195	749	104	173.7	1580	1023	175	56.70	1965	1272	247		
40	10874	784	432	35	883	1212	765	104	195.3	1613	1056	175	66.15	2017	1323	247	
30	11467	787	435	35	959	1224	778	104	218.9	1638	1081	175	76.03	2057	1363	247	
20	12191	790	437	35	1051	1234	788	104	247.7	1658	1101	175	87.55	2090	1396	247	
10	13281	791	439	35	1190	1242	796	104	290.9	1675	1118	175	104.2	2116	1423	247	

Isobaric process		$T_g^0 = 300K$				E _{eff} / 1	$n_{N_2^{(0)}} = 1$	0.10^{-16}	$B \cdot cm^2$ $n_{N_2^{(0)}} = 2.5 \cdot 10^{17} cm^{-3}$							
		<i>S</i> [*] =	= 0.5		$S^* = 1.0$					<i>S</i> [*] =	=1.5		$S^* = 2.0$			
$ au_{_{\scriptstyle UMN}}$,МКС		4.	03		8.19					12	.44		16.69			
$\Delta T_{ET}(\tau_{umn}), \mathbf{K}$	23.15				69.28					134	.15		254.29			
$\Delta T_{ert}(\tau_{umn}), \mathbf{K}$		1.	56		3.44					5.	98		9.45			
$\Delta T_{VV}(\tau_{umn})$,K		-0.0	015		-0.33					-0.	.15		0.82			
$\Delta T_{VT}(\tau_{uMn}), \mathbf{K}$		()		0					()		0,005			
$\eta\%$	t, мс	T_{g} ,K	T_{VT} ,K	T_{VV} ,K	t , мс	T_g , K	T_{VT} ,K	T_{VV} ,K	t , мс	T_{g} ,K	T_{VT} ,K	T_{VV} ,K	t , мс	T_{g} ,K	T_{VT} ,K	T_{VV} ,K
95	5231	686	312	30	211.74	899	410	91	13.90	1070	443	142	1,953	1229	431	164
90	6156	732	359	30	337.46	1010	520	92	39.44	1246	608	152	6,313	1473	642	196
80	7124	769	396	30	467.10	1118	628	93	74.62	1432	792	155	17,14	1747	901	210
70	7759	786	412	30	550.33	1174	684	93	98.66	1537	896	155	26,26	1907	1057	213
60	8277	796	422	30	617.49	1209	719	93	118.40	1605	963	156	34,17	2014	1163	214
50	8751	802	428	30	678.58	1234	744	93	136.52	1653	1012	156	41,11	2091	1239	214
40	9225	806	433	30	739.32	1252	762	93	154.65	1689	1048	156	47,54	2149	1297	215
30	9741	809	436	30	805.26	1265	775	93	174.40	1718	1076	156	54,16	2194	1342	215
20	10371	812	438	30	885.47	1276	786	93	198.51	1740	1098	156	61,88	2232	1379	215
10	11318	814	440	30	1005.8	1285	795	93	234.79	1759	1116	156	73,09	2262	1409	215

Рис. 1

Рис. 2

Рис. 3

16

Рис. 4

Рис. 5

Рис. 6