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Abstract. The paper describes the numerical scheme of new type for the
solving of nonlinear hyperbolic systems of PDEs. The main advantage of this
scheme is the ability to efficiently compute the non-stationary problems with
different scales. The tools for its construction include conventional Godunov
approach, TVD principles and specific switching mechanism, which allows
performing the calculations with respect to explicit or implicit pattern depending
on the flow structure. The numerical computation of the swirled flow with the aid
of first order scheme is demonstrated as an example. The effective calculation of
the subtle structures of such flow demonstrates the relevance of presented schemes
construction method.
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Introduction

In this paper we present a numerical scheme of new type which is designed
for fast calculation of non-stationary boundary value problems for hyperbolic
systems of PDE’s. We call this scheme ‘explicit-implicit’ type scheme. The main
feature of it is the ability to efficiently calculate problems with different scales.
Namely, while in some regions (or along some directions, etc.) the flow is rather
regular large time step can be used and one can use explicit scheme (which is
preferable because of higher resolution, better stability properties, etc.), in other
regions the flow can exhibit non-regular behavior with complicated fine structure
and require fine greed and, accordingly, a small time step for explicit scheme to be
used. In this case one uses in our scheme the implicit version and retains a rather
large time step. Such methodology makes it possible to efficiently calculate
problems with different scales as a whole. Generally speaking, we propose the
family of schemes whose construction is based on the following principles:

- use locally explicit scheme where it is possible;

- use locally implicit scheme where the Courant number exceeds unity;
- use upwind principle;

- the switching between various local scheme types must be continuous;
- use minimal possible stencil (depending on the specific problem).

Below we describe in detail a realization of the proposed methodology for
the calculation of non-stationary processes in swirled flows in the nozzles with
non-trivial geometry. We use Euler equations in cylindrical coordinates as a basic
model. The swirling coupled with the longitudinal flow and geometry effects
generates complicated non-stationary regimes with almost periodic behavior,
possible bifurcations and flow restructuring. Besides, such problem has obviously
at least two scales inherited from geometry: the longitudinal direction and the
radial direction. In the radial direction we need a much finer greed to capture the
flow features. Thus, the problem of swirled flow in tubes/nozzles is suitable for
testing the ‘explicit-implicit’ technique.

Our preliminary experience shows that the subsonic regime for swirled
flows, generally speaking, is simpler than the supersonic one. Hence, we perform
calculations in case of supersonic flow with respect to the longitudinal coordinate.
The calculations reveal the oscillating shock wave upstream the diffuser and
evolving vortexes in the diffuser. These vortexes can grow, push the shock wave
and destroy it. Then shock wave appears again near the nozzle throat, comes closer
to the diffuser and the process repeats.

Our paper is organized as follows. In Section 2 we rigorously formulate the
problem and in Section 3 we describe in detail the realization of numerical scheme
for the model equations according to proposed above methodology. Section 4 is
devoted to such a realization for Euler equations while in Section 5 we concentrate
on the peculiarities of the case of axisymmetric flows. Finally, in Section 6 we
present the results of calculations and relevant discussion including the possibility
to calculate Navier-Stokes equations with this technique.
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Section 1. Formulation of the Problem

We consider non-stationary axially symmetric flow of swirled non-viscous
gas in a nozzle, see Fig. 1.
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Fig. 1 General scheme of calculation domain

The corresponding system of differential equations in cylindrical coordinates
(taking into account the fact that the derivatives with respect to the angle vanish)

can be presented in following two main forms:

1. Divergent form.
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where @, is the vector column (0, 0, P+mw?, —pw, 0).
Here p denotes the density; P— the pressure; u, v and w are the axial,

radial and tangential velocity components respectively; c is the speed of sound;
e=E +§(u2 +Vv2+w?), H=W +§(u2 +v2+w?); E and W=E+P are the internal
energy and enthalpy per unit volume.

We assume that the gas is perfect, i.e. E =7/11P, c? :71;, y =const.

The geometry of the problem: z=0is the inlet section, z=L is the outlet
section; r=R,(z) and r=R,(z) are the equations of the nozzle wall and the central

body. We note that the central body can extend either along all the nozzle
(R,(z)=0) or only along its front part (R,(z)=0asz>z") or can be absent

(Rb(Z)EO).
For the sake of definiteness of imposing the inlet boundary conditions, we
suppose here that in some neighborhood of the inlet section both boundaries are

—_ . dR R : :
cylindrical surfaces, i.e. dd w2 g i the interval 0<z<z,.
z z

Boundary conditions:

1. At the inlet section.
v=0, w=k(r)u (6)

The first condition is due to the cylindrical geometry of the initial part of the
nozzle while the second condition imitates the swirling generated by the swirling
device of vane type. Namely, we suppose that the flow after passing each vane
turns by the anglee, :tga, =k(r). The dependence of «, on rmodels the

variability of the vanes angle.
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As it is known, four boundary conditions are required at the subsonic inlet
section (this case is considered in what follows). Thus, besides two kinematical
conditions (6) it is necessary to specify two additional conditions. These conditions
might Dbe, for example, the determination of any pair of the following
functions: P(r), p(r), T(r), where T is the temperature. However, the dependence of
these functions on r is unknown and the assumption that they are constant with
respect to r is hardly true. Therefore, a more natural way is to determine the state
of the gas at rest in the gas holder — the tank of big volume from which the gas
goes to the vanes of the swirling device. Such state can be determined through two
stagnation parameters, either(P,,T,), (P,,p,) OF (p,,T,). Since the process of gas

flowing from the gas holder to the vanes can be considered as stationary and
adiabatic, we assume that at the inlet section the entropy S =Pp~ and the Bernoulli

integral B 1y equal their values at the stagnation point, i.e. equal known values
Yo

S, and B,. Hence to two linear boundary conditions (6) one has to add two non-
linear conditions

Pp7 =S, =PRpy’ (7)
2 2 2 2

o wpeki0)_g e ®)

y—1 2 y—1

(one takes into account (6) in boundary condition (8)).

2. At the outlet section.

Here two cases are possible. The first case: the outlet section is supersonic.
Then the boundary does not require any boundary conditions. The second case:
subsonic outlet section. Then for problem to be well posed one needs to impose
one (the positivity of u,, is assumed) boundary condition. Usually the constant

pressure is set as such boundary condition:

P=P

out, (9)

3. At the nozzle wall and at the surface of central body.

Conventional non-penetration conditions are posed at the nozzle wall and at
the surface of central body:
V V
-w _R' , b _ R . 10
J w(2) J 5(2) (10)

w b

Here and below the prime denotes the differentiation.

Let us note that at the axis z (beyond the central body) no additional
boundary conditions are required (more precisely, only the boundedness of the
solution is required). Because of the axial symmetry one has for r=0
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These relations can be used in numerical algorithm to avoid the loss of
approximation, which is connected with the coordinate singularity.
The geometry of the problem allows easy transformation to the simple
calculation domain. This procedure is done in conventional way — introduction of
normalizing coordinate &:

r=cR,(2) +(1-9)R,(2) (12)

Now the calculation domain is rectangleQ: {0<&£<1,0<z<L},
In coordinates (z,£) system (1) takes the form

o oF 0G
atater (13)
Here
~ ~ ~ ~ O0C, =
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CB :1/(Rw - Rb)’ CA = CB[é:R\;v + (l_g)Rt;]-
For the non-divergent form (3) one has
oX oX oX _

“+A+B— =D, (15)
ot oz O

where

A=A,B=C,B-C,A (16)

Thus we consider the solution of initial-boundary value problem for the
system (13) (or (15)) in the domain @ with boundary conditions (6) — (10).

Section 2. Basic Principles of the Difference Scheme

The specific feature of problem under consideration is the combination of
swirling and the elongated geometry of the nozzle. With no swirling the flow is
practically one-dimensional and there is no need to use a fine grid with respect to
r (to¢&). Hence, a difference scheme explicit with respect to &- direction provides
sufficient accuracy under acceptable boundedness of the time step. As far as
longitudinal coordinate z is concerned, the complex and non-stationary structure
of the flow dictates the choice of explicit scheme. Thus a fully explicit scheme
makes it possible to achieve the required accuracy for reasonable time for the
numerical solution of the problem of the gas flow without the swirling.

In the presence of swirling the picture is totally different. In this case the
radial gradients are much times greater then longitudinal gradients. So, to preserve
the approximation it is necessary to use a very fine mesh with respect to £and this
fact makes explicit schemes practically inoperative.



On the other hand, the practice of numerical calculation shows that implicit
schemes have lower resolution than explicit schemes and hence it is desirable to
reduce the scope of their usage.

The acceptable compromise can be achieved following the principle: use the
implicit scheme in those and only those situations when the modulus of
corresponding Courant number|gexceeds unity. The schemes satisfying this

condition can be called ‘locally implicit’. It is clear that such schemes are
nonlinear and their structure depends on local properties of the solutions. As far as
the longitudinal coordinate z is concerned the structure of the flow defines the
choice of the explicit scheme.

To summarize, the desired scheme has to have the following properties:

1. To be explicit with respect to the z- direction;

2. To be locally implicit with respect to &- direction, i.e. depending on the
value of Courant number to become either explicit or implicit;

3. The switching of such scheme should be continuous.

The experience of usage of various locally implicit schemes has confirmed
their efficiency [1], [2].

Let us start to discuss the main idea of locally implicit schemes. In present
study we deal with the schemes of the first order. We first consider the one-
dimensional case.

Consider the equation

a—u+6ﬂ:0,a:const,03xsl. (17)
ot oX

Following the methodology of concept of finite volumes we split the interval (0,1)
into subintervals I of lengthh=1/M ,m=1...M. The subintervals’ boundaries

arex,.,,, =mh. We will refer the values of mesh functions at upper and lower levels
to the centers of these intervals, i.e. to the points x, =(m-1/2)n. Let us introduce
the fluxes (more exactly the fluxes’ densities)F,,,, =au’*? , f_=au. Then

ut =u" — xkAF_, (18)

where k=z/h,AF, =F,..;,—F, 1,

This closing stage is common for all methods based on the notion of finite
volumes. Thus, the method of calculation of F,_,,,is the critical stage.

Multiplying (17) bya, we obtain

I o, (19)
ot OX

Precisely this form dictates the construction of both schemes.



Scheme 1 (explicit)

f" a<0.

m+1?

f', a>0;
I:m+1/2 ={ " (20)

This scheme of fluxes calculation complemented by the divergent closure
(18) generates the simplest upwind difference scheme (see Fig. 2)

e qut ,+(@-qu’, a>0; 1)
(L+quy, —qup.,, a<o,
where g=ax.
The condition for its stability and monotonicity is|q <1.
Scheme 2 (implicit)
{(1_ q)Fm—llz + qu+1/2 = fnr? , a>0; (22)
— R,y + (1+ C1)Fm+1/2 = fn:]+1 , a<0.
Excluding F,_,,,,from (18) and (22) we obtain
L-qlun*+aupli=uy, a>0; (23)
—qupt+ @+ ant =ul,, a<o,

(implicit analogue of the scheme (21), see Fig. 3).
It is easy to see that the scheme 2 is stable (and also monotonic) only when|q >1.

Let us emphacise that the schemes 1 and 2 coincide forq = +1.

It is convenient to represent both schemes for calculation of F as formally
three-point difference equation

AF a2 T BFm+l/2 +CFm+3/2 = Dm+1/2 1 (24)

m

where A,B,Cand D,,,,, depend on g in the following way
A B C Dm+1/2

q>1 1-q| ¢ 0 fo
0<qg<1 | O 1 0 f (25)
~1<q<0 0 | 1 | 0 | f",

q<-1 0 |-q|l+qg]| f"

m+1

Let us note that there is an ambiguity forD, ,,,wheng=0. In this case one can
defineD,,,, = ;(fn? + ).

m+1
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Now let a=a(x) and, accordingly, q=q(x). Then the coefficients in (24) are
calculated in accordance with (25) taking into account the variability ofq: qis
substituted bygq,.,,. The same scheme is valid also fora=a(x,t). In this
caseq=Qn.y, -

In a number of cases it is technically easier to use the same construction, but
with respect tou,, ,,, =ur*¥> rather than toF,_,,,. Then in (20), (22), (24) and (25)
F and f are simply substituted byu anduwith the same indexes. The solution of
three-point difference equation givesu,,,,, after that F ,,=auU,,,,Is calculated.

Such a simplification is admittable only for continuous solutions.
It is obvious that for any smooth a(x) the boundary value problem for the

system in finite differences (24) is well-posed provided the determination of
boundary conditions for (17) corresponds to the signs of a(x) at the boundaries.

The same idea is applicable also for one-dimensional hyperbolic system:
now, a is diagonalizable matrix with real eigenvalues 4, .

Suppose ¢ is the i-th left eigenvector of the matrix aand Ais the
corresponding eigenvalue. Denote by Sthe matrix with rowsg,. Thena=S"AS
where A is the diagonal matrix with elements 4, .

We transform (19) to the diagonal form. Then we have

CLNCL) (26)
ot OX
It now only remains to apply the already known construction to each component of
system (26), i.e. to the equations

OX

Actually it means that the matrixes A, B,Cand vector Din (24) are filled with
rows. The corresponding table for i-th row has the form (see (25)):

a'i bi Ci di,m+l/2
q =1 1-0ip | Gy 0 o fa
0<qg <1 0 ?i 0 ¢ fn (28)
-1<¢q,<0 0 ? 0 @i fou
q <-1 0 — i (1+ Qi )(pi 2 P
Hereq, = A« .
Now let us consider two-dimensional analog of equation (17):
U dau DU gy y<t (29)
o4 ox oy

We start with the case of the constant coefficients a and band try to construct a
difference scheme explicit with respect to xand locally implicit with respect to y
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by means of the generalization of the above scheme. Now the difference mesh is

two-dimensional —(x,,, y,,t"), x, =(m—-1/2)h, , y, = (k-1/2)h, ,
h,=1/M,h, =1/K;m=1..,M;k=1..,K. The mesh function isu; ., the fluxes are

m+1/2 _ n+1/2 _ n _ n
Gm,k+l/2 - bum,k+1/2 ’ fm,k - aum,k ’ gm,k - bum,k .

Fm+1/2,k =ay ok »
Suppose thata,b>0. Then the simplest two-dimensional analog of presented

locally implicit scheme should look as follows:

Fm+l/2,k = fn?,k ; (30)
(1_ q, bm,k—llz +0,G 0002 = gr?],k'
The closure stage is standard
urrT]1+k1 = ur?],k _KxAx I:m,k _KyAme,k . (31)

Herex, =z/h ,x,=7z/h, ,q,=ax, ,q,=bx,, AF , =F . —Fou
Ame,k = Gm,k-¢—1/2 - Gm,k—l/Z '
It is easy to check that the stability condition for fully explicit variant of the
scheme (30), (31) has the form
(32)

q, +q, <1.
It is clear that ifq, =1, then this scheme is unstable for any g, =0and a

smooth switching between the schemes is impossible. Thus the simplest and
seemingly most natural construction shows itself invalid. One should transform it

in such a way that the stability conditions (for positive a,b) take the form:

Scheme 1 (fully explicit) -0<q,.q, <1;
Scheme 2 (x— explicit, y—implicit) -0<q, <1,q, >1.
Then their unification gives us the desired locally implicit scheme that has the

approximation property.
The realization of these schemes takes place in two steps.
First step is the calculation of intermediate values of F_.,,,, .G, .., anduy’

which we denote by tilde F,,,,, .G, ..., ando,

Scheme 1:
Foearzn = Tk (33)
Grirrz = I (34)
Scheme 2 differs from Scheme 1 by the substitution instead of (34)
(RN AR c MR L (35)
The divergent closure completes the step
(36)

- A FL kA Gy

__ 4N
Um,k_um,k Xx=x' mk
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Second step is the ultimate calculation of F_,,,, .G, ... anduy’ values.
First, weighted value u; , of the solution is calculated:

Upy =W + (1_ V)ur?],k . (37)
Then for Scheme 1

Fm+1/2,k = fmv,k :aur‘r/nk ; (38)
G2 =9mi =bul (39)

For the Scheme 2 (39) is substituted with
(1_ q, bm,kﬂ/Z +0,Gnki1r2 = I (40)

Finally, divergent closure (31) gives ultimate result.
Thus, second step differs from the first one by the substitution of u;, with

‘weighted’ value u) when we calculate F ., ,G,..(but not in closure

equation!).
Let us use conventional technique to obtain necessary stability conditions.
Supposeu?, =e'“™*) =g . Then

IE‘m+1/2,k = a/Tx E ’ Gm,k+l/2 - bﬂ’ E ’ Um k — ZE 1 (41)

where according to (33), (34) and (36)

T =1

~ 1 for Schemel (42)
r [qy +(1—qy)e“ﬂ]fl for Scheme 2.

It follows from (35) that

1=1-2(Q+1)=-(1+2Q), (43)
Where
Q=2 (z +z,), (44)

Z, :qx(l—e"")—l,
q, (1—e“ﬁ)—1 for Scheme 1;

Z. - i 45
Y 9y El : )e)'ﬁ for Scheme 2. (45)

Second stage gives

—al,E,Gy.1, =bA,E, Ul = AE. (46)

I:m+1/2,k
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It is easy to see that

Ao =L-2v(Q+1)], 4, =2, 1-2v(Q +1)]. (47)
And finally
2=1-2Q+1)L-2v(Q +1)]. (48)

This scheme should be stable for any positive values of q, and for g,
belonging to the segment[01]. In particular, this should be true in case
wheng, =q, =1, i.e. both schemes coincide. Thenz, =1-e™,Z =1-e™. The
stability condition is |2 <1 for alle,s. Taking a=p=x/2 one has Q=i and
hence 1 =-1-2(1-4v)i. So, |4 >1 if v=1/4 and the scheme is unstable.

Forvy=1/4, according to (48), 1=Q’. Sinceq, <1, then|Z |<1. It is easy to
J=|Q[" <1, and we

demonstrate that z,/<1 under the conditiong, >1. Hence,

prove the stability of the scheme in this case.

Other combinations of signs of a and b lead to the same result.

The generalization to the case of hyperbolic system is fulfilled by the
analogy with one-dimensional problem because each stage is actually one-
dimensional.

The proof of the stability of the scheme for symmetric matrixes a,b is again
performed by the generalization of above method. Since uis now a vector,
thenu?, =u,e'™*) =y E, where v, is constant vector. Then

IE'm-¢—1/2,k = lE*E ! C’;m,k-¢—l/2 = G*E ! Um,k = U*E (49)
Fm+1/2,k =kRE, Gm,k+1/2 =G,E. (50)
Let transform a,b to diagonal form

a=S’AS, , b=S’AS, , (51)

where A, ,A are diagonal matrixes with the elements 4,,4,and S, S are

N EAAA|
orthonormal matrixes.
The substitution of (49) into the formulas from the first stage gives

0, = —(E+2Q)u, , (52)
(compare with (43)), where
Q= ;(s;lzxsx +s,2,8,) . (53)

Here z,,z, are diagonal matrixes with elements that are determined via (44), (45),

and therefore lie within the unit circle.
Performing averaging with v =1/4and substituting (50) into the formulas of
the second stage, one finds that
ume =Q%u, . (54)

Since |s,|=s,| =1, it follows from (53) that [Q|<1, which proves the stability.



14

It is clear that the scheme is stable and for the systems reducible to
symmetric ones, in particular, for linearised Euler equations.

We’ve presented above only the basic ideas of the construction of locally
implicit schemes. Each specific realization certainly contains a number of peculiar
elements, which take into account the essentials of the problem under
consideration.

Section 3. The Difference Scheme For Euler Equations
Proposed algorithm is using both forms of main system: non-divergent (15)

as well as divergent (13). The basic element of the algorithm is the calculation of
fluxes F and G at lateral sides of calculation cell, i.e. F, ../, Gy 12

|
| U injz, j-1/2 A
t

| <+

|
I |
| | .

S
| | Ry
Foo e :
| 7 Fijue
SR S — -
I /_/'/ |
| = I g
S
I I:i—1/2 j-1 I /
IR R
// i U 1"
_ R ELARTE
7 -
7
pd z

Fig. 2 Calculation cell

Let us start with z-direction, for which the fluxesF can be calculated with
respect to the explicit scheme. The construction of this scheme uses left

eigenvectors w* of Jacobi matrix 25 and its eigenvalues 2*. Suppose ¢* is the left

eigenvector of matrixA: ¢*A=1%p". Since WA(‘;T:&AWA and

U™
then w* =p? —— | .
v ¢(axj

It is easy to see that

oF _ou jfaun”
U oax (ox )’

A= =2=u,2=u+c, A =u-c (55)
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ot =(c?,0,0,0-1) , ¢/=(0,0,1,0,0)
ot =(0,0,0,1,0) (56)
ol =(0,00,0,01) , ¢=(0,c0,0-1)
-1
The matrixes ou and (auj have the form
X X
1 0 0 O 0
u p 0 0 0
ou v 0 p O 0 ; (57)
oX w 0 0 »p 0
L
2 y—1
1 0 0 0 0
_u 1 0 0
P P
aU -1 _1 O 1 0 O
w 1
0 0 0 il 0
o P
V2
(7—1)7 ~(y-u -(r-v -(r-Yw y-1

where V2 =u? +v? + w2,

It follows from these expressions that the following vectors can be taken as

wl=(-w,0,0,10) ; (59)
2
z//f:(— ue +V—, ¢ —u,—v,—w,l] ;
y-1 2 y-1
2
WSA:(_ ue _\/7! ¢ +U’V’W’_1Jl
y—-1 2 y-1

Let us determine unknown fluxes, taking into account the analogy to the
scalar case, from the following one-dimensional system

F L OFF g (60)
ot oU oz

Let us freeze matrix coefficients and after transforming (60) to diagonal form one
get for the invariants 1 =y*F the following system
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ar  aal_

0. 61
ot 0z ( )

Then on the basis of the above one infers the algorithm for calculation of F__, ,,:
1. Calculation of X,..,, and (2*)..,,. at lateral side with the aid of simple
averaging with respect to the points (m,k) and (m+1,k);
2. Calculation of (y),.,,,. provided X,,..,,, forany i=1...5.
3. Determination of F,,,,,, from the system of linear equations, i=1...5

( 'A) F _{(W‘AF)mk ' (/1iA)m+1/2,k >0 .
e (l//iAF)m+l,k ! (ﬂ’iA)m+l/2,k <0

Since in the flows under consideration strong discontinuities (shocks) arise
only in z-direction, this situation has also to be taken into account. For the change
of the sign of 2" do not lead to unphysical solutions, the algorithm includes the

analysis of A signs in points neighboring (with respect tom) to given facet. In this
case, if ()., <oor (2*),.,, >0, then corresponding equation in system (62) has to
be changed using

(62)

>
m+lk —

Fm,k + I:mﬁ-l,k . (63)

(WiA )m+1/2,k Friox = ('//iA )m+1/2,k 5

For the inlet section four equations of system (62), which correspond to
positive 1", are substituted with boundary conditions. For subsonic outlet last

equation from (62) is substituted with boundary conditionP=P,,. In case of

out *

supersonic outlet the right hand side in (62) is fully determined (because of
positiveness of all 4" at such boundary).

The eigenvectorsy*, which are necessary for the calculation of boundary
fluxes, are calculated not by averaging with respect to neighboring points (it is
impossible), but by simple extrapolation or even transfer of . values from
neighboring inner point.

Now let us look at &-direction. Since in present problem the cross-sectional

shocks are absent, the calculation of corresponding fluxes G can be performed
using non-divergent form (15) of the main system. This fact essentially simplifies
the calculation formulas. According to (16) the matrix B has the form

CgU—C,V  —C,p CgV 0 0
0 CgU—C,V 0 0 _ta
2
B= 0 0 Cgl—C,V 0 e (64)
Y2,
0 0 0 CgU —C,V 0
0 —c ¢’ cypc? 0 Cgl—C,V

Hence for the eigenvalues of the matrix B one has
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A=A =20 =—C u+cyv, A =47 +d, AL =47 —d, (65)

whered =./c; +c; .

Corresponding left eigenvectors ¢ are
(c?,0,0,0-1) ;
(/’28 :(O’CB'_CA’O’O) ;
»? =(0,0,0,1,0) ; (66)
o =(0,apc, Bpc,0,1)
s =(0,apc, Bpc,0,-1).
Herea=-c,/d,pB=c,/d.
Since now basic vector is notU , but X (see (4)), the analog of (61) will be

(018

at  alf .

' BT = =1,... 67
A + A4 Y 0, i=1..5, (67)
where
1B =pPX. (68)

Locally implicit (with respect to &-direction) scheme is being constructed by

natural generalization of scalar case (17). This approach leads to difference system
of type (22), where now A,B,Care (5x5) matrixes:

B B B _
Ak+1/2 I k-1/2 + Bk+1/2 I k+1/2 + Ck+1/2 I k+3/2 — Dk+l/2 ’ (69)

where 1°is vector column with the components 1°.

Each equation (i-row) of this system is the difference approximation of
appropriate equation of the system (67) (index ‘m’ is omitted for the sake of
simplification of writings):

(ai )k+1/2(IiB )k—l/Z + (bl )k+1/2(IiB )k+1/2 + (CI )k+1/2(| iB )k+3/2 = (dl )k+1/2 ' (70)
Here

(qu)k+1/2 21 g :1_(qu)k , b :(qu)k ¢ =0,d; :(IiB)k;

0< (qu)k+1/2 <1: =0, b=1,¢=0,d :(|i8)k; (71)
_1S(qi8)k+1/?_ <0: a,=0, b=1,¢=0,d, :(IiB)k+1;

(qu )k+1/2 <-1: =0, b= _(qu )k+1 G =1+ (qu )k+l ,d; = (IiB )k+l'

Courant numbers q° = 2’x, and invariants 17 are calculated at lower layert=t". All

values that are rendered to lateral sides of calculation cell, i.e. have fractional index

with respect tok , are calculated by the averaged values X, = ;(x; +X0).

The system (69) is closed by boundary non-penetration conditions at both
boundaries £ =0 and¢& =1:

—CUu+cgv=0, (72)
which can be expressed through the invariants 12and 1. as
12+12=0. (73)
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(Let us remind that 12, = (~c,u+cgv)ec/d £P.)
Since at both these boundaries 27, , =q;,, =0, then under reasonable choice
of time step rthe value \quv3\<1also at the points neighboring to the boundary

points. Hence, at the boundaries and at adjacent to the boundaries facets first three
invariants 17,17 ,1;7are calculated with respect to the explicit scheme. And so

actually the system (69) contains an isolated subsystem of the same type, but for 3-
vectors 1©) = (18,12,12). The solution of this subsystem is easy to find with the aid

of conventional sweep method.
As far as the rest of invariants 1},12is concerned, these invariants can be

found from corresponding subsystem (69) for 2-vectorsi® =(18,18). In this

subsystem at each boundary the difference equation, which corresponds to the
coming into the domain characteristics (i.e. for £=0 — forth equation, and for
& =1 fifth equation), has to be substituted with the boundary condition in the form
(73). Then at the lower boundary the matrix coefficient A (more exactly, the part of
this coefficient corresponding to 2-vector1?) turns to zero, and at the left
boundary so does the matrix coefficientB. Thus resulting subsystem has the
standard three diagonal structure and conventional sweep method can be used for
its solution.

The solution of both subsystems gives at all facets the complete set of
invariants 1> — 12 . After that it remains to find X at the same facets from the system

cip-P=17,
(CB)fu+(CA)fV: If '

(apc) u+(Boc) v+P =17,
() u+(Bec) v-P =15,
where subscript ¢ f * denotes that corresponding values are calculated by the aid of
averaging with respect to the values at neighboring integer points of lower layer
(analogously to calculation of (g®),.,,, in (71)).

Further, U is calculated knowing X , and finally —G. Here the procedure of
fluxes calculation is over. Let us note that G=12(0,c,,—c;,00)as &£=0 and
G=-12(0,c,,—c;,00)as&=1. Hence, the value of Gat the boundaries does not
depend on the invariants 17,17 ,12.

Described above method of fluxes F (according to explicit scheme) and
G (according to locally implicit scheme) calculation constitutes the basis of
algorithm of the transfer to the next layer. X" — X"*. As in the scalar case (see
Section 2) this procedure is fulfilled in two stages.

First stage is completed by the calculation of intermediate values X ,,. To do
this one has first to find U by the aid of divergent closure, i.e. difference form of
system (13):

U, =Un, —x,AF -x,A G, +1Q - (75)

z=x" mk

(74)



19

(For divergent closure it is possible to use other form of equations — analog of (5).
Numerical experiments show that in some cases this form is preferable.)
Then one finds X using the values ofU :

p=U, ,u=U,/U, ,v=U,/U ,w=U,/U,,

P=(y-1U, - pu? +v* +w?)/2]. (76)

The second stage differs from the first one only by substitution ofu", which
is involved in calculation of FandG, with weighted valueu” =wJ" +(@1-v)U".
Taking into account that the stability of scalar scheme is achieved only asv =0.25,

we have

Uvzi(U+&J”). (77)
Let us emphasize that we speak only about the calculation of FandG. Under the
divergent closure process the values U"are not being modified. The result of
second stage is desired mesh vector function X'.

Section 4. The Singularities of Swirled Axisymmetric Flows

Since considered flow does not depend on angular coordinate, the forth
equation of system (1) gives
d—Q:O, g:§+u£+v2, (78)
dt dd ot oz or
whereQ =wr. This equation expresses the conservation of circulation along the
streamline. Under the streamline one understands its trace on the plane(z,r). (Real
streamline is the spiral one.)

Let us look at some consequences of the law of circulation conservation, and
start from stationary flow in the nozzle with central body, see Fig. 1. Suppose at
inlet section w=0in the point, which is situated on the surface (generatrix) C of
central body. Moving forward along C the particle goes down to the axisz, i.e. its
r-coordinate decreases. But Q= const for this streamline. Sow increases along this
line. But full velocity is bounded from above because the Bernoulli integral Bis

constant. Hence,w® <2B,, where B,is the value of Bin gas holder. So this

streamline can not reach the axisz: r=0—w=o. Thus some point on C should
exist where the flow is singular. For example, in such a point the flow detachment
— the line of tangential discontinuity — can form. In this case under such line the
stagnation zone should arise.

In non-stationary case the matters do not change because unbounded growth

of wleads to unbounded growth ofa;t), I.e. finally to the formation of singularity.

In general the law of circulation conservation forbids any streamline with
Q= 0approaching z-axis. This fact actually makes ill-posed the problem of
inviscid flow of swirled gas in the nozzle with central body of finite length. The
location of detachment point and the structure of the flow strictly speaking
essentially depend on the initial data.
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One can overcome this difficulty in two ways. First, it is possible to set such
inlet conditions that the swirling on Cvanishes. In practice such requirement can
be fulfilled using the variability of vanes angles in swirling device. Second, one
can introduce thin tube, for example, cylindrical one of radius ¢, which forbids the
streamline coming to z-axis. Of course the thickness of this tube should be
sufficiently small for not having significant influence on the main part of the flow.

To estimate the sizes (with respect tor) of singular domain let us consider
the following model problem. Suppose the flow is isentropic (S =const),
isoenergetic (B =const), stationary and does not depend on longitudinal
coordinatez. Then v=0and all other functions, which depend only onr, satisfy the
following system of equations

P=S,p, §,=-% (79)
y E+u2+wzz;0 CH R (80)

y=1p 2 y=1 p

r?jFr) = pW°. (81)

Introducingc® =P/ p, rewrite (80) in the form

c2+7/7_1(uz+wz):(y—1)H0 . (82)

It follows from (79) and (81) that

r‘f: (-1 (83)

The exclusion of w*from (82) and (83) gives

;ddCrJrCZ: f(r), (84)

where

f(r):(y—l){Ho—@}. (85)

Solving (84) by standard methods one has

cz(r):%jsf (s)ds, (86)

where ¢ is an arbitrary constant.
Supposeu(r)= const = u,. Denoting corresponding value of f through f, >0,

one infers
c’(r)= fo(l—‘;j. (87)
Thus,
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()= (25 £
p<r)=[;—go(1—f—§ﬂﬂ - (88)

P(r)=S, L%(l_f_ﬂ

For the longitudinal Mach number M, one has

M, - u{ f{l— rﬂ (89)

And finally

Q=wr=¢ if0 = const . (90)
y-1

Hence, considered flow exists only beyond ¢ -vicinity of z-axis, i.e. only
forr>¢. As r—&+0, the values of Pas well as ptend to zero, while the values of

wand M, tend to infinity.
It follows from (90) that

e=0(2H,~uZ) ™", (91)
which is in fact desired estimate of ¢. The variability of u(r) does not lead to
principal change in the flow picture, but only complicates the formulas.

Section 5. The Results of Calculations and Discussion

The calculations are done for various forms of the channel and various flow
parameters, but the calculations scenario is the same for all cases: first stationary
flow without swirling has been calculated (k(r)in formula (6) equals zero), then
instantly or for short time period the swirling vanes acquire given angle. At this the
channel geometry and flow parameters are such that in minimal (critical) section
the sonic velocity is achieved for stationary flow and downstream the flow is
supersonic at least in the part of the channel. This allows separating up to the
proper degree the investigation of the flows in the premix chamber (the domain
from the end of central body to critical section) and downstream.

Let us now touch the point about the role of central body. A number of
numerical experiments produced with the presented algorithm confirm that
stationary flows in the nozzles and pipes without central body, even in the presence
of swirling, exist and can be obtained with the aid of time relaxation method
without special tricks. Required relaxation time equals approximately to the time
interval for which the perturbations travel 3 — 5 times along the calculation domain
(upstream and downstream). The same is true for the flows in the nozzles and pipes
with central body, but without the swirling.
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However, the presence of any free swirling at the nozzle inlet and as a
consequence at the surface of central body drastically changes the flow picture. In
particular, stationary flow becomes impossible. Indeed, the value Q=rw is
transferred along the streamline (see equation (78)), and following the arguments
of Section 4, the streamline must detach from the central body at some point.
Moreover, by the very same reason this streamline cannot come to the
axiszdownstream. Hence, one infers that in the neighborhood of zaxis the
stagnation zoneU =0, p=const is formed. This fact contradicts the structure of the
stationary flow near the critical section.

It follows from the above that in the presence of swirling after some time the
detached flow is formed at some point of central body and then weak reverse flow
is also formed. Thus, the contact discontinuity arises. Further evolution of the flow
in the neighborhood of z-axis is determined by the numerical approximation
scheme, in particular by scheme viscosity.

Yet first calculations of the flow in the premix chamber confirm the
theoretical derivations that the flow structure depends essentially on the swirling
character. In case if one determines the inlet swirling by the formulaw=k(r)u,
where k(r)=(r-R)/(R,—R,) (here R, is the radius of central body, R,is the outer
radius of the channel at the inlet), u is longitudinal and w is circumferential
components of the velocity, the singular point does not arise at the surface of
central body, and the flow is rapidly stabilized. Typical distribution of
circumferential velocity in the middle of the premix chamber is shown in Fig. 3.
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Fig. 3 The profile w(r) in the section z =140 mm for the calculation with
linearly growing swirling; grid 175x40 (see geometry below in Fig. 5)
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If one poses at the inletw=ku, where k =tge thus imitating the flow passage
through the vanes with turning angle «, the flow character changes. The flow
rather rapidly stabilizes visually, but then slow quasi-stationary regime starts when
thin axial jet of non-swirling flow being very slowly swept out. As it is said above,
the singular point arises at the descending surface of central body. This point
separates the flow in the premix chamber by inner and outer zones that can be
discerned by different distributions of w (see next Fig. 4). In this figure the profiles
of circumferential velocity component in the middle section of the premix chamber
for three grids at the same moment of time are shown. It can be seen that, first,
scheme viscosity allows the swirling to penetrate to the domain below the contact
surface and, second, scheme viscosity becomes weaker with the growth of grid size
and this leads to the increase of maximal value of w. If one does not use special
means further under sufficiently fine grid such configuration destroys itself (either
pressure becomes negative or oscillations arise, which finally lead also to negative
pressure or/and density).

This fact lies in the very nature of the problem. By the formation of contact
surface the flow is separated in two immixing parts: upper ‘active’ flow and axial
stagnation zone. The evolution of stagnation zone is mute and, seems, is
determined by the factors that are external to the problem under consideration.

0.35 T T T T T T T T

0.3 !

0 r r r r r r r r
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Fig.4 The comparison of profiles w(r) in the section z=140 mm for three
grids: 175x20 (...), 350x40 (0oo00) and 350x80 (— ) (see geometry below in Fig. 5)

Because of this reason all other calculations are performed in modified
domain as is theoretically suggested in Section 4: a thin tube (needle), which
separates the flow from the axis r=0, has been located in the flow domain. The
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needle radius has been determined in two ways. Either, preliminary calculation
without the needle has been performed, the detachment point at the surface of
central body has been determined and then main calculation is fulfilled with the
needle that contains such detachment point; or the needle radius has been estimated
by formula (91). Both methods give close results. The intensity of perturbations
that are generated by the needle depends on the parameters of the problem under
consideration: the greater swirling entails the greater thickness of the needle. If the
perturbations become too large the problem has to be posed in another way (to take
viscosity into account, to allow the reverse flow at outlet boundary, etc.) In present
calculations the area of the section of the needle is approximately 1% of critical
section area.

To estimate the accuracy of the method the series of calculations is
performed for the channel with central body, see the geometry in Fig. 5. The
turning angle of the vanes is 45°, needle thickness 1s 0.001 (critical section radius
is 0.01). Fig. 5 also shows the isolines of pressure that is scaled by the stagnation
pressure po. One can see sharp pressure drop towards the nozzle axis. Such
pressure drop is the characteristic feature of the swirled flows in the nozzles and
pipes. Figures 6 — 8 demonstrate the profile of p(r)/p, , and the profiles of u(r),
w(r) that are scaled by the local speed of sound. Shown data are referred to the
section z=0.180 and obtained for the same configuration but for various grids:
55x30, 110x60, 220x120 and 440x240. The non-uniform convergence of the
solution with respect to the grid size can be seen: while number of mesh points
increases the solution stays practically unchanged near the nozzle wall but
converges rather slowly in the zone near the axis. It seems that this fact can be
explained by the sharp change of values in the neighborhood of the needle.
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Fig. 5 Isolines of pressure under turning angle of the vanes 45° (needle
thickness is 0.001)



25

0.1 [ [ L [ L L L L [
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Fig. 6 Profiles p(r) as z = 0.180 for four grids: circles — 55x30 points; dot-and
dash — 110x60; dashed line — 220x120; solid line — 440x240.
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Fig.7 Profiles u(r), scaled with respect to local sound speed, as z=0.180 for
four grids: circles — 55x30 points; dot-and-dash — 110x60; dashed line — 220x120;
solid line — 440x240.
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Fig.8 Profiles w(r), scaled with respect to local sound speed, as z=0.180 for
four grids: circles — 55x30 points; dot-and-dash — 110x60; dashed line — 220x120;
solid line — 440x240.

Moreover, two points deserve close attention. First, one can observe the
presence of significant high-speed jet in the neighborhood of the axis. The
longitudinal component of the velocity in the jet is two times greater than in the
main stream. Second, ‘angular’ speed becomes supersonic in some neighborhood
of the axis before the flow passes the critical section. Figures 9 — 11 demonstrate
analogues profiles in the section z=0.420 where the longitudinal component of the
velocity is already supersonic. The abovementioned features of the flow take place
in this case also.
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Fig. 9 Profiles p(r) as z = 0.420 for four grids: circles — 55x30 points; dot-and-
dash — 110x60; dashed line — 220x120; solid line — 440x240.
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Fig.10 Profiles u(r), scaled with respect to local sound speed, as z=0.420 for
four grids: circles — 55x30 points; dot-and-dash — 110x60; dashed line — 220x120;
solid line — 440x240.
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Fig.11 Profiles w(r), scaled with respect to local sound speed, as z=0.420 for
four grids: circles — 55x30 points; dot-and-dash — 110x60; dashed line — 220x120;
solid line — 440x240.

The purpose of the following numerical experiment is to demonstrate the
abilities of the algorithm to calculate the flows with internal, including ‘hanged’,
shock waves. For calculations the supersonic flow in the tube of variable section
has been chosen. The geometry of the tube is shown in Fig. 12. (The scale is
distorted for visualization purpose: real cross sectional sizes are 20 times smaller.)
At the tube inlet one has supersonic flow with Mach number M = 1.1. Horizontal
and inclined walls are conjugated in a smooth way. Central body is absent, hence
the artificial needle is also absent.
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Fig. 12 The domain geometry and the distribution of v component of the
velocity

The calculations are performed for the sequence of grids, but presented
results are referred to the grid 960x640. Such fine grid is necessary to get known
theoretical result for axially symmetric non-swirled flows that the regular
reflection of the shock waves from the axis is impossible — Mach reflection should
arise, i.e. one has lambda-shock: the shock wave impinges the axis with respect to
the normal direction to the axis. The same figure shows the distribution of radial
component v of the velocity. This distribution rather well reflects the structure of
shocks system. One can clearly see the system of oblique shock waves. At this first
wave 1s ‘hanged’. It is also clearly seen that when passing the consecutive shock
waves the v component changes sign.

Fig. 13 shows the distribution of pressure p at the tube wall. It is distinctly
seen from this figure that the first shock wave is ‘hanged’ because the point of
shock origination is located rather close to the wall and at the tube wall one sees
the break (the discontinuity of the derivative) in the pressure graph, but not the
shock.
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Fig. 13 The pressure profile along the tube wall

However the secondary wave coming to the wall at reference point z ~ 0.127
can be clearly seen in Fig. 13 as the shock wave, smeared because of numerical
approximation. The next shock at the wall is also seen though its smearing
increases.

Next calculation is devoted to the case of swirled flow in the channel with
subsonic outlet. The geometry of the channel is shown in Figs. 14, 15. The main
difficulty in posing of the problem under the condition of subsonic outlet lies in the
fact that in swirled flows the pressure sharply changes across the channel, and so it
is unnatural to conventionally determine the pressure as constant at the channel
outlet. The consequences of such determination would be crucial: at best the flow
hardly distorts near the outlet and this disturbance influences all domain of the
flow; but as a rule the inflow arises near the axis which requires other boundary
conditions and hence other way of the problem determination. To leave out such
difficulties we place here the outlet rather far from the axis in such a way that the
swirling is moderate and boundary condition p = const can be satisfied. But even
in this case the stationary flow is hardly achievable. In most cases the flow comes
to the quasi-periodic regime with rather large amplitude of the shock wave
movement along the channel. At this in the diffuser zone (in the domain of sharp
channel expansion) large-scale intensively evolving vortex emerges. It emerges
either in upper part of the diffuser or in lower part, but in a number of calculations
from time to time goes from upper part to lower and inverse. We fail to observe
any pattern in this process. Figs. 14, 15 demonstrate the stream lines for two
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moments of time in one of the calculations. These stream lines are in fact the
integral curves for the field (u,v) that are obtained by the integration of the system
of ordinary differential equations {dz/dt=u,dr/dt=v} with respect to fictive time t
under various initial data. At every stream line the points, which correspond to
equal interval of fictive time t, are drawn. This allows scoring the fluid speed along
the stream line by the comparison of curves length between the points. The same
pictures show the position of shock wave drawn by dash line. The notable
displacement of the shock wave is observed. Other calculations reveal that this
displacement can be rather big and even can lead to the destruction of the shock
wave and to the temporal transformation to subsonic regime. The evolution of the
shock wave is not directly connected with the sizes and position of the vortex — the
flow has essentially non-stationary character. Such character of the flow is also
confirmed by the non-closed stream lines in the vortex.
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Fig. 14 Streamlines and shock wave. One moment of time
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Fig. 15 Streamlines and shock wave. Another moment of time
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To summarize, presented numerical method allows effectively performing
the calculations for non-stationary as well as for stationary swirled flows in the
channels with central body (and without it also). Such flows can have rather
complicated structure: near axis jet, sharp pressure drops, supersonic swirling
already in the premix chamber, the system of shocks in the diffuser, nontrivial and
non-uniform evolution of shock wave position in the central part of the channel,
etc. Typical ratio of the mesh size with respect to the radius and the mesh size
along the channel attains 1/25, and such ratio does not influence the algorithm
robustness. As the result of the calculations one can see the specifics of the
problems formulation for the swirled flows in the channels of complicated
geometry: the swirling at the inlet is determined by the vanes angle modeling; the
nozzle ‘launching’ is gradual; the central body in the swirled flow generates
detachment of the flow with the rise of stagnation zone; the outlet of the
calculation zone should be far enough from the axis, etc. Also the features of the
swirled flows in the channels with central body can be seen: the stationary regime,
if exists, is not an attractor; large scale traveling vortexes arise; the shock wave can
travel on the large distance, provided enough place for this, etc.

So, proposed calculation methodology works rather well for shown
complicated multi-scale flow. It is desirable to increase the accuracy of the
algorithm up to the second order provided that the algorithm robustness is
conserved. Then this technique could be applied to other complicated Euler flows
with the presence of various scales and to the problems, which involve Navier-
Stokes equations.
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