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Yu.B. Radvogin, Yu.G. Rykov, N.A. Zaitsev. Computation of non-

stationary swirled flows in nozzles and pipes using new ‘explicit-implicit’ type 

scheme. 

 

Abstract. The paper describes the numerical scheme of new type for the 

solving of nonlinear hyperbolic systems of PDEs. The main advantage of this 

scheme is the ability to efficiently compute the non-stationary problems with 

different scales. The tools for its construction include conventional Godunov 

approach, TVD principles and specific switching mechanism, which allows 

performing the calculations with respect to explicit or implicit pattern depending 

on the flow structure. The numerical computation of the swirled flow with the aid 

of first order scheme is demonstrated as an example. The effective calculation of 

the subtle structures of such flow demonstrates the relevance of presented schemes 

construction method. 

 

 

Ю.Б. Радвогин, Ю.Г. Рыков, Н.А. Зайцев. Расчет нестационарного 

закрученного потока в соплах и трубах с использованием схем нового, ‘явно-

неявного’, типа. 

 

Аннотация. В препринте описана численная схема нового класса для 

решения нелинейных систем уравнений в частных производных 

гиперболического типа. Основным достоинством таких схем является 

способность эффективно проводить расчеты нестационарных задач, 

содержащих различные масштабы. Конструкция схем такого типа основана 

на хорошо известном подходе Годунова, принципах ТВД и специфическом 

механизме переключения, который позволяет проводить вычисления в 

соответствии с явной или неявной версией схемы в зависимости от 

структуры рассчитываемого потока. В качестве примера приводится расчет 

закрученного потока с помощью схемы первого порядка точности. 

Эффективный расчет тонкой структуры такого потока демонстрирует 

высокое качество описанного метода построения схем. 
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Introduction  

 

In this paper we present a numerical scheme of new type which is designed 

for fast calculation of non-stationary boundary value problems for hyperbolic 

systems of PDE’s. We call this scheme ‘explicit-implicit’ type scheme. The main 

feature of it is the ability to efficiently calculate problems with different scales. 

Namely, while in some regions (or along some directions, etc.) the flow is rather 

regular large time step can be used and one can use explicit scheme (which is 

preferable because of higher resolution, better stability properties, etc.), in other 

regions the flow can exhibit non-regular behavior with complicated fine structure 

and require fine greed and, accordingly, a small time step for explicit scheme to be 

used. In this case one uses in our scheme the implicit version and retains a rather 

large time step. Such methodology makes it possible to efficiently calculate 

problems with different scales as a whole. Generally speaking, we propose the 

family of schemes whose construction is based on the following principles: 

- use locally explicit scheme where it is possible; 

- use locally implicit scheme where the Courant number exceeds unity; 

- use upwind principle; 

- the switching between various local scheme types must be continuous; 

- use minimal possible stencil (depending on the specific problem). 

Below we describe in detail a realization of the proposed methodology for 

the calculation of non-stationary processes in swirled flows in the nozzles with 

non-trivial geometry. We use Euler equations in cylindrical coordinates as a basic 

model. The swirling coupled with the longitudinal flow and geometry effects 

generates complicated non-stationary regimes with almost periodic behavior, 

possible bifurcations and flow restructuring. Besides, such problem has obviously 

at least two scales inherited from geometry: the longitudinal direction and the 

radial direction. In the radial direction we need a much finer greed to capture the 

flow features. Thus, the problem of swirled flow in tubes/nozzles is suitable for 

testing the ‘explicit-implicit’ technique.   

Our preliminary experience shows that the subsonic regime for swirled 

flows, generally speaking, is simpler than the supersonic one. Hence, we perform 

calculations in case of supersonic flow with respect to the longitudinal coordinate. 

The calculations reveal the oscillating shock wave upstream the diffuser and 

evolving vortexes in the diffuser. These vortexes can grow, push the shock wave 

and destroy it. Then shock wave appears again near the nozzle throat, comes closer 

to the diffuser and the process repeats. 

Our paper is organized as follows. In Section 2 we rigorously formulate the 

problem and in Section 3 we describe in detail the realization of numerical scheme 

for the model equations according to proposed above methodology. Section 4 is 

devoted to such a realization for Euler equations while in Section 5 we concentrate 

on the peculiarities of the case of axisymmetric flows. Finally, in Section 6 we 

present the results of calculations and relevant discussion including the possibility 

to calculate Navier-Stokes equations with this technique. 
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Section 1. Formulation of the Problem 

 

We consider non-stationary axially symmetric flow of swirled non-viscous 

gas in a nozzle, see Fig. 1.  
 

Central body 

Wall 

 

Fig. 1 General scheme of calculation domain 

 

The corresponding system of differential equations in cylindrical coordinates 

(taking into account the fact that the derivatives with respect to the angle vanish) 

can be presented in following two main forms: 

 

1. Divergent form. 
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2. Non-divergent form. 
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Remark: in some cases the following another divergent form is more 

convenient 
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where 1Q  is the vector column   0,,,0,0 2 vwwP  . 

Here   denotes the density; P – the pressure; u , v  and w  are the axial, 

radial and tangential velocity components respectively; c  is the speed of sound; 

 222

2
wvuEe 


,  222

2
wvuWH 


; E  and PEW   are the internal 

energy and enthalpy per unit volume. 

We assume that the gas is perfect, i.e. PE
1

1





, 


P
c 2 , const . 

The geometry of the problem: 0z is the inlet section, Lz   is the outlet 

section;  zRr w  and  zRr b  are the equations of the nozzle wall and the central 

body. We note that the central body can extend either along all the nozzle 

(   0zRb
) or only along its front part (    zzaszRb 0 ) or can be absent 

(   0zRb ). 

For the sake of definiteness of imposing the inlet boundary conditions, we 

suppose here that in some neighborhood of the inlet section both boundaries are 

cylindrical surfaces, i.e. 0
dz

dR

dz

dR bw  in the interval 10 zz  .  

 

Boundary conditions: 

 

1. At the inlet section. 

 urkwv  ,0           (6) 

The first condition is due to the cylindrical geometry of the initial part of the 

nozzle while the second condition imitates the swirling generated by the swirling 

device of vane type. Namely, we suppose that the flow after passing each vane 

turns by the angle  rktg inin  : . The dependence of 
in  on r models the 

variability of the vanes angle. 
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As it is known, four boundary conditions are required at the subsonic inlet 

section (this case is considered in what follows). Thus, besides two kinematical 

conditions (6) it is necessary to specify two additional conditions. These conditions 

might be, for example, the determination of any pair of the following 

functions:  rP ,  r ,  rT , where T  is the temperature. However, the dependence of 

these functions on r  is unknown and the assumption that they are constant with 

respect to r  is hardly true. Therefore, a more natural way is to determine the state 

of the gas at rest in the gas holder – the tank of big volume from which the gas 

goes to the vanes of the swirling device. Such state can be determined through two 

stagnation parameters, either  00 ,TP ,  00 ,P  or  00 ,T . Since the process of gas 

flowing from the gas holder to the vanes can be considered as stationary and 

adiabatic, we assume that at the inlet section the entropy   PS  and the Bernoulli 

integral HB


1
  equal their values at the stagnation point, i.e. equal known values 

0S  and 
0B . Hence to two linear boundary conditions (6) one has to add two non-

linear conditions 
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(one takes into account (6) in boundary condition (8)). 

 

2. At the outlet section. 
 

Here two cases are possible. The first case: the outlet section is supersonic. 

Then the boundary does not require any boundary conditions. The second case: 

subsonic outlet section. Then for problem to be well posed one needs to impose 

one (the positivity of outu  is assumed) boundary condition. Usually the constant 

pressure is set as such boundary condition: 
 

,outPP                        (9) 

 

3. At the nozzle wall and at the surface of central body. 
 

Conventional non-penetration conditions are posed at the nozzle wall and at 

the surface of central body: 

.)(,)( zR
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Here and below the prime denotes the differentiation. 

Let us note that at the axis z  (beyond the central body) no additional 

boundary conditions are required (more precisely, only the boundedness of the 

solution is required). Because of the axial symmetry one has for 0r  
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These relations can be used in numerical algorithm to avoid the loss of 

approximation, which is connected with the coordinate singularity. 

The geometry of the problem allows easy transformation to the simple 

calculation domain. This procedure is done in conventional way – introduction of 

normalizing coordinate : 
 

)()1()( zRzRr bw                             (12) 
 

Now the calculation domain is rectangle  Lz  0,10:  . 

In coordinates  ,z  system (1) takes the form 
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For the non-divergent form (3) one has 
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where 
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Thus we consider the solution of initial-boundary value problem for the 

system (13) (or (15)) in the domain   with boundary conditions (6) – (10). 

 

Section 2. Basic Principles of the Difference Scheme 

 

The specific feature of problem under consideration is the combination of 

swirling and the elongated geometry of the nozzle. With no swirling the flow is 

practically one-dimensional and there is no need to use a fine grid with respect to 

r  (to ). Hence, a difference scheme explicit with respect to  - direction provides 

sufficient accuracy under acceptable boundedness of the time step. As far as 

longitudinal coordinate z  is concerned, the complex and non-stationary structure 

of the flow dictates the choice of explicit scheme. Thus a fully explicit scheme 

makes it possible to achieve the required accuracy for reasonable time for the 

numerical solution of the problem of the gas flow without the swirling. 

In the presence of swirling the picture is totally different. In this case the 

radial gradients are much times greater then longitudinal gradients. So, to preserve 

the approximation it is necessary to use a very fine mesh with respect to and this 

fact makes explicit schemes practically inoperative. 
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On the other hand, the practice of numerical calculation shows that implicit 

schemes have lower resolution than explicit schemes and hence it is desirable to 

reduce the scope of their usage. 

The acceptable compromise can be achieved following the principle: use the 

implicit scheme in those and only those situations when the modulus of 

corresponding Courant number q exceeds unity. The schemes satisfying this 

condition can be called ‘locally implicit’. It is clear that such schemes are 

nonlinear and their structure depends on local properties of the solutions. As far as 

the longitudinal coordinate z  is concerned the structure of the flow defines the 

choice of the explicit scheme. 

To summarize, the desired scheme has to have the following properties: 

1. To be explicit with respect to the z - direction; 

2. To be locally implicit with respect to  - direction, i.e. depending on the 

value of Courant number to become either explicit or implicit; 

3. The switching of such scheme should be continuous. 

The experience of usage of various locally implicit schemes has confirmed 

their efficiency [1], [2]. 

Let us start to discuss the main idea of locally implicit schemes. In present 

study we deal with the schemes of the first order. We first consider the one-

dimensional case. 

Consider the equation 
 

.10,,0 








xconsta

x

au

t

u
          (17) 

 

Following the methodology of concept of finite volumes we split the interval (0,1) 

into subintervals ml of length MmMh ,...,1,/1  . The subintervals’ boundaries 

are mhxm  2/1 . We will refer the values of mesh functions at upper and lower levels 

to the centers of these intervals, i.e. to the points  hmxm 2/1 . Let us introduce 

the fluxes (more exactly the fluxes’ densities) n

mm

n

mm aufauF  

 ,2/1

2/12/1 . Then 
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where .,/ 2/12/1   mmm FFFh  

This closing stage is common for all methods based on the notion of finite 

volumes. Thus, the method of calculation of 2/1mF is the critical stage. 

Multiplying (17) by a , we obtain 
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Precisely this form dictates the construction of both schemes. 
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Scheme 1 (explicit) 
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This scheme of fluxes calculation complemented by the divergent closure 

(18) generates the simplest upwind difference scheme (see Fig. 2) 
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where aq  . 

 

The condition for its stability and monotonicity is 1q . 

 

Scheme 2 (implicit) 
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Excluding 2/1mF from (18) and (22) we obtain 
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(implicit analogue of the scheme (21), see Fig. 3). 

It is easy to see that the scheme 2 is stable (and also monotonic) only when 1q . 

Let us emphacise that the schemes 1 and 2 coincide for 1q . 

It is convenient to represent both schemes for calculation of F  as formally 

three-point difference equation 
 

,2/12/32/12/1   mmmm DCFBFAF          (24) 
 

where 2/1,, mDandCBA  depend on q  in the following way 
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Let us note that there is an ambiguity for 2/1mD when 0q . In this case one can 

define  n

m

n

mm ffD 12/1
2

1
  . 
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Now let  xaa   and, accordingly,  xqq  . Then the coefficients in (24) are 

calculated in accordance with (25) taking into account the variability of q : q is 

substituted by 2/1mq . The same scheme is valid also for  txaa , . In this 

case n

mqq 2/1 . 

In a number of cases it is technically easier to use the same construction, but 

with respect to 2/1

2/12/1



  n

mm uU , rather than to
2/1mF . Then in (20), (22), (24) and (25) 

F and f are simply substituted byU andu with the same indexes. The solution of 

three-point difference equation gives 2/1mU , after that 2/12/1   mm aUF is calculated. 

Such a simplification is admittable only for continuous solutions. 

It is obvious that for any smooth  xa  the boundary value problem for the 

system in finite differences (24) is well-posed provided the determination of 

boundary conditions for (17) corresponds to the signs of  xa  at the boundaries. 

The same idea is applicable also for one-dimensional hyperbolic system: 

now, a  is diagonalizable matrix with real eigenvalues i .  

Suppose i is the i -th left eigenvector of the matrix a and i is the 

corresponding eigenvalue. Denote by S the matrix with rows i . Then SSa  1  

where  is the diagonal matrix with elements i . 

We transform (19) to the diagonal form. Then we have 
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It now only remains to apply the already known construction to each component of 

system (26), i.e. to the equations 
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Actually it means that the matrixes CBA ,, and vector D in (24) are filled with 

rows. The corresponding table for i -th row has the form (see (25)): 
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Here iiq  . 

Now let us consider two-dimensional analog of equation (17): 
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We start with the case of the constant coefficients a  and b and try to construct a 

difference scheme explicit with respect to x and locally implicit with respect to y  
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by means of the generalization of the above scheme. Now the difference mesh is 

two-dimensional –       ykxm

n

km hkyhmxtyx 2/1,2/1,,,  ,  

KkMmKhMh yx ,...,1;,...,1;/1,/1  . The mesh function is n

kmu , , the fluxes are 
n

kmkm

n

kmkm

n

kmkm

m

kmkm bugaufbuGauF ,,,,

2/1

2/1,2/1,

2/1

,2/1,2/1 ,,,  





 . 

Suppose that 0, ba . Then the simplest two-dimensional analog of presented 

locally implicit scheme should look as follows:  
 

  .1

;

,2/1,2/1,

,,2/1

n

kmkmykmy

n

kmkm

gGqGq

fF








              (30) 

 

The closure stage is standard 
 

.,,,

1

, kmyykmxx

n

km

n

km GFuu              (31) 

Here yyxxyyxx bqaqhh   ,,/,/ , kmkmkmx FFF ,2/1,2/1,   , 

2/1,2/1,,   kmkmkmy GGG . 

It is easy to check that the stability condition for fully explicit variant of the 

scheme (30), (31) has the form 
 

.1 yx qq               (32) 

It is clear that if 1yq , then this scheme is unstable for any 0xq and a 

smooth switching between the schemes is impossible. Thus the simplest and 

seemingly most natural construction shows itself invalid. One should transform it 

in such a way that the stability conditions (for positive ba, ) take the form: 

Scheme 1 (fully explicit) – 1,0  yx qq ; 

Scheme 2 ( x – explicit, y – implicit) – 1,10  yx qq . 

Then their unification gives us the desired locally implicit scheme that has the 

approximation property. 

The realization of these schemes takes place in two steps.  

First step is the calculation of intermediate values of 2/1,,2/1 ,  kmkm GF  and 1

,

n

kmu  

which we denote by tilde 2/1,,2/1

~
,

~
 kmkm GF  and 1

,
~ n

kmu . 

Scheme 1:  
 

;
~

,,2/1

n

kmkm fF               (33) 
n

kmkm gG ,2/1,

~
 .             (34) 

 

Scheme 2 differs from Scheme 1 by the substitution instead of (34) 
 

  .
~~

1 ,2/1,2/1,

n

kmkmykmy gGqGq              (35) 
 

The divergent closure completes the step 
 

.
~~~

,,,, kmyykmxx

n

kmkm GFuu              (36) 
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Second step is the ultimate calculation of 2/1,,2/1 ,  kmkm GF  and 1

,

n

kmu  values. 

First, weighted value 
kmu , of the solution is calculated: 

 

  .1~
,,,

n

kmkmkm uuu               (37) 
 

Then for Scheme 1 
 

;,,,2/1


kmkmkm aufF              (38) 

.,,2/1,


kmkmkm bugG              (39) 

 

For the Scheme 2 (39) is substituted with 
 

  .1 ,2/1,2/1,


kmkmykmy gGqGq              (40) 

 

Finally, divergent closure (31) gives ultimate result. 

Thus, second step differs from the first one by the substitution of n

kmu , with 

‘weighted’ value 
kmu , when we calculate 2/1,,2/1 ,  kmkm GF (but not in closure 

equation!). 

Let us use conventional technique to obtain necessary stability conditions. 

Suppose   Eeu kmin

km  
, . Then 

 

EuEbGEaF kmykmxkm 
~~,

~~
,

~~
,2/1,,2/1   ,         (41) 

 

where according to (33), (34) and (36) 
 

  










 .21

11
~

1
~

1
Schemeforeqq

Schemefor

i

yy

y

x






          (42) 

 

It follows from (35) that 
 

    ,21121
~

QQ              (43) 

where 

 

  ,11

,
2

1





 i
xx

yx

eqZ

ZZQ
             (44) 

 
 
 























.21
1

1

;111

Schemefor
eqq

eq

Schemeforeq

Z

i

yy

i

y

i

y

y







         (45) 

 

Second stage gives 
 

.,, 1

,2/1,,2/1 EuEbGEaF n

kmykmxkm   

          (46) 
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It is easy to see that 
 

      .121
~

,121
~

 QQ yyxx           (47) 
 

And finally 
 

     .121121  QQ             (48) 
 

This scheme should be stable for any positive values of yq  and for 
xq  

belonging to the segment  1,0 . In particular, this should be true in case 

when 1 yx qq , i.e. both schemes coincide. Then  i

y

i

x eZeZ   1,1 . The 

stability condition is 1  for all  , . Taking 2/   one has iQ   and 

hence  i 4121  . So, 1  if 4/1  and the scheme is unstable. 

For 4/1 , according to (48), 2Q . Since 1xq , then 1xZ . It is easy to 

demonstrate that 1yZ  under the condition 1yq . Hence, 1
2
 Q , and we 

prove the stability of the scheme in this case. 

Other combinations of signs of a  and b  lead to the same result.  

The generalization to the case of hyperbolic system is fulfilled by the 

analogy with one-dimensional problem because each stage is actually one-

dimensional. 

The proof of the stability of the scheme for symmetric matrixes ba,  is again 

performed by the generalization of above method. Since u is now a vector, 

then   Eueuu kmin

km 



  
, , where u is constant vector. Then 

 

EuuEGGEFF kmkmkm   ~~,
~~

,
~~

,2/1,,2/1            (49) 

., 2/1,,2/1 EGGEFF kmkm               (50) 

Let transform ba,  to diagonal form 
 

,, 11

yyyxxx SSbSSa               (51) 
 

where yx  , are diagonal matrixes with the elements iyix ,, , and yx SS , are 

orthonormal matrixes. 

The substitution of (49) into the formulas from the first stage gives 

  ,2~
  uQEu               (52) 

(compare with (43)), where 

  .
2

1 11

yyyxxx SZSSZSQ               (53) 

Here yx ZZ , are diagonal matrixes with elements that are determined via (44), (45), 

and therefore lie within the unit circle. 

Performing averaging with 4/1 and substituting (50) into the formulas of 

the second stage, one finds that 

.21

, 

  uQun

km                (54) 

Since 1 yx SS , it follows from (53) that 1Q , which proves the stability. 
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It is clear that the scheme is stable and for the systems reducible to 

symmetric ones, in particular, for linearised Euler equations. 

We’ve presented above only the basic ideas of the construction of locally 

implicit schemes. Each specific realization certainly contains a number of peculiar 

elements, which take into account the essentials of the problem under 

consideration. 

 

Section 3. The Difference Scheme For Euler Equations 

 

Proposed algorithm is using both forms of main system: non-divergent (15) 

as well as divergent (13). The basic element of the algorithm is the calculation of 

fluxes F  and G  at lateral sides of calculation cell, i.e. 2/1,,2/1 ,  kmkm GF . 
 

1/ 2, 1/ 2

n

i jU  

1/ 2, 1/ 2

n

i jU    

, 1/ 2

z

i jF   1, 1/ 2

z

i jF    

1/ 2,i jF 

  

1/ 2, 1i jF 

   

 1

1/ 2, 1/ 2

n

i jU 

   
t 

z 

 

 

Fig. 2 Calculation cell 

 

 

Let us start with z -direction, for which the fluxes F  can be calculated with 

respect to the explicit scheme. The construction of this scheme uses left 

eigenvectors A  of Jacobi matrix 
U

F




 and its eigenvalues A . Suppose A  is the left 

eigenvector of matrix A : AAA A   . Since AAA

U

F
 




 and 

1























X

U
A

X

U

U

F
, 

then 
1















X

UAA  . 

It is easy to see that 
 

cucuu AAAAA  54321 ,,            (55) 
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   

 

   1,0,0,,0,1,0,0,,0

0,1,0,0,0

0,0,1,0,0,1,0,0,0,

54

3

2

2

1







cc

c

AA

A

AA







          (56) 

The matrixes 
X

U




 and 

1














X

U
have the form 

 

;

1

1

2

000

000

000

00001

2









































wvu
V

w

v

u

X

U
           (57) 

       

,

1111
2

1

0
1

00

00
1

0

000
1

00001

2

1





























































wvu
V

w

v

u

X

U
      (58) 

where 2222 wvuV  . 

 

It follows from these expressions that the following vectors can be taken as 
A

i  

 

 

.1,,,
1

,
21

;1,,,
1

,
21

;0,1,0,0,

;0,0,1,0,

;1,,,,
21

2

5

2

4

3

2

22

1


















































wvu
cVuc

wvu
cVuc

w

v

wvu
Vc

A

A

A

A

A














         (59) 

 

Let us determine unknown fluxes, taking into account the analogy to the 

scalar case, from the following one-dimensional system 
 

.0













z

F

U

F

t

F
             (60) 

 

Let us freeze matrix coefficients and after transforming (60) to diagonal form one 

get for the invariants FI A

i

A

i  the following system 
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.0









z

I

t

I A

iA

i

A

i               (61) 

 

Then on the basis of the above one infers the algorithm for calculation of kmF ,2/1 : 

1. Calculation of kmX ,2/1  and  
km

A

i ,2/1
  at lateral side with the aid of simple 

averaging with respect to the points  km,  and  km ,1 ; 

2. Calculation of  
km

A

i ,2/1
  provided kmX ,2/1  for any 5,...,1i . 

3. Determination of kmF ,2/1  from the system of linear equations, 5,...,1i  

 
   
   

.
0,

0,

,2/1,1

,2/1,

,2/1,2/1


















km

A

ikm

A

i

km

A

ikm

A

i

kmkm

A

i
F

F
F




         (62) 

 

Since in the flows under consideration strong discontinuities (shocks) arise 

only in z-direction, this situation has also to be taken into account. For the change 

of the sign of A

i  do not lead to unphysical solutions, the algorithm includes the 

analysis of A

i  signs in points neighboring (with respect to m ) to given facet. In this 

case, if   0
,


km

A

i or   0
,1


 km

A

i , then corresponding equation in system (62) has to 

be changed using 

    .
2

,1,

,2/1,2/1,2/1

kmkm

km

A

ikmkm

A

i

FF
F






           (63) 

 

For the inlet section four equations of system (62), which correspond to 

positive A

i , are substituted with boundary conditions. For subsonic outlet last 

equation from (62) is substituted with boundary condition outPP  . In case of 

supersonic outlet the right hand side in (62) is fully determined (because of 

positiveness of all A

i  at such boundary). 

The eigenvectors A

i , which are necessary for the calculation of boundary 

fluxes, are calculated not by averaging with respect to neighboring points (it is 

impossible), but by simple extrapolation or even transfer of A

i  values from 

neighboring inner point. 

Now let us look at  -direction. Since in present problem the cross-sectional 

shocks are absent, the calculation of corresponding fluxes G  can be performed 

using non-divergent form (15) of the main system. This fact essentially simplifies 

the calculation formulas. According to (16) the matrix B  has the form 
 

.

00

0000

000

000

00

22 





































vcuccccc

vcuc

c
vcuc

c
vcuc

vccvcuc

B

ABBA

AB

B

AB

A

AB

BAAB









        (64) 

Hence for the eigenvalues of the matrix B  one has 
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,,, 1514321 ddvcuc BBBB

BA

BBB           (65) 
 

where 22

BA ccd  . 

Corresponding left eigenvectors B

i  are 

 
 

 

 

 .1,0,,,0

;1,0,,,0

;0,1,0,0,0

;0,0,,,0

;1,0,0,0,

5

4

3

2

2

1











cc

cc

cc

c

B

B

B

AB

B

B











            (66) 

Here dcdc BA /,/   . 

Since now basic vector is notU , but X (see (4)), the analog of (61) will be 

,5,...,1,0 








i

I

t

I B

iB

i

B

i


            (67) 

where 

.XI B

i

B

i                (68) 

Locally implicit (with respect to  -direction) scheme is being constructed by 

natural generalization of scalar case (17). This approach leads to difference system 

of type (22), where now CBA ,, are  55  matrixes: 
 

,2/12/32/12/12/12/12/1   k

B

kk

B

kk

B

kk DICIBIA          (69) 
 

where BI is vector column with the components B

iI . 

Each equation ( i row) of this system is the difference approximation of 

appropriate equation of the system (67) (index ‘ m ’ is omitted for the sake of 

simplification of writings): 
 

              .
2/12/32/12/12/12/12/1 


kik

B

ikik

B

ikik

B

iki dIcIbIa        (70) 

Here 

       
   
   

        .,1,,0:1

;,0,1,0:01

;,0,1,0:10

;,0,,1:1

1112/1

12/1

2/1

2/1

















k

B

iik

B

iik

B

iiik

B

i

k

B

iiiiik

B

i

k

B

iiiiik

B

i

k

B

iiik

B

iik

B

iik

B

i

Idqcqbaq

Idcbaq

Idcbaq

Idcqbqaq

      (71) 

 

Courant numbers y

B

i

B

iq  and invariants B

iI are calculated at lower layer ntt  . All 

values that are rendered to lateral sides of calculation cell, i.e. have fractional index 

with respect to k , are calculated by the averaged values  n

k

n

k

n

k XXX 12/1
2

1
  . 

The system (69) is closed by boundary non-penetration conditions at both 

boundaries 0  and 1 : 

,0 vcuc BA              (72) 

which can be expressed through the invariants BI4 and BI5 as 

.054  BB II               (73) 
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(Let us remind that   PdcvcucI BA

B  /5,4  .) 

Since at both these boundaries 03,2,13,2,1  BB q , then under reasonable choice 

of time step  the value 13,2,1 Bq also at the points neighboring to the boundary 

points. Hence, at the boundaries and at adjacent to the boundaries facets first three 

invariants BBB III 321 ,, are calculated with respect to the explicit scheme. And so 

actually the system (69) contains an isolated subsystem of the same type, but for 3-

vectors    BBB IIII 321

3 ,, . The solution of this subsystem is easy to find with the aid 

of conventional sweep method. 

As far as the rest of invariants BB II 54 , is concerned, these invariants can be 

found from corresponding subsystem (69) for 2-vectors    BB III 54

2 , . In this 

subsystem at each boundary the difference equation, which corresponds to the 

coming into the domain characteristics (i.e. for 0  – forth equation, and for 

1 – fifth equation), has to be substituted with the boundary condition in the form 

(73). Then at the lower boundary the matrix coefficient A (more exactly, the part of 

this coefficient corresponding to 2-vector  2I ) turns to zero, and at the left 

boundary so does the matrix coefficient B . Thus resulting subsystem has the 

standard three diagonal structure and conventional sweep method can be used for 

its solution. 

The solution of both subsystems gives at all facets the complete set of 

invariants BB II 51  . After that it remains to find X at the same facets from the system 

   

   

    ,

,

,

,

5

4

2

1

2

B

ff

B

ff

B

fAfB

B

f

IPvcuc

IPvcuc

Ivcuc

IPc















           (74) 

where subscript ‘ f ’ denotes that corresponding values are calculated by the aid of 

averaging with respect to the values at neighboring integer points of lower layer 

(analogously to calculation of  
2/1k

B

iq  in (71)). 

Further, U is calculated knowing X , and finally –G . Here the procedure of 

fluxes calculation is over. Let us note that  0,0,,,05 BA

B ccIG  as 0  and 

 0,0,,,04 BA

B ccIG  as 1 . Hence, the value of G at the boundaries does not 

depend on the invariants BBB III 321 ,, . 

Described above method of fluxes F (according to explicit scheme) and 

G (according to locally implicit scheme) calculation constitutes the basis of 

algorithm of the transfer to the next layer: 1 nn XX . As in the scalar case (see 

Section 2) this procedure is fulfilled in two stages. 

First stage is completed by the calculation of intermediate values kmX ,

~ . To do 

this one has first to find U
~ by the aid of divergent closure, i.e. difference form of 

system (13): 

kmkmyykmxz

n

kmkm QGFUU ,,,,,

~   .          (75) 
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(For divergent closure it is possible to use other form of equations – analog of (5). 

Numerical experiments show that in some cases this form is preferable.) 

Then one finds X
~ using the values ofU

~ : 
 

    .2/1

,/,/,/,

222

5

1413121

wvuUP

UUwUUvUUuU








         (76) 

 

The second stage differs from the first one only by substitution of nU , which 

is involved in calculation of F andG , with weighted value   nn UUU   1
~ . 

Taking into account that the stability of scalar scheme is achieved only as 25.0 , 

we have 

 nUUU 3
~

4

1
 .             (77) 

Let us emphasize that we speak only about the calculation of F andG . Under the 

divergent closure process the values nU are not being modified. The result of 

second stage is desired mesh vector function 1

,

n

kmX . 

 

Section 4. The Singularities of Swirled Axisymmetric Flows 

 

Since considered flow does not depend on angular coordinate, the forth 

equation of system (1) gives 

,,0
r

v
z

u
tdt

d

dt

d

















           (78) 

where wr . This equation expresses the conservation of circulation along the 

streamline. Under the streamline one understands its trace on the plane  rz, . (Real 

streamline is the spiral one.) 

Let us look at some consequences of the law of circulation conservation, and 

start from stationary flow in the nozzle with central body, see Fig. 1. Suppose at 

inlet section 0w in the point, which is situated on the surface (generatrix) C of 

central body. Moving forward along C the particle goes down to the axis z , i.e. its 

r -coordinate decreases. But const for this streamline. So w  increases along this 

line. But full velocity is bounded from above because the Bernoulli integral B is 

constant. Hence, 0

2 2Bw  , where 0B is the value of B in gas holder. So this 

streamline can not reach the axis z :  wr 0 . Thus some point on C should 

exist where the flow is singular. For example, in such a point the flow detachment 

– the line of tangential discontinuity – can form. In this case under such line the 

stagnation zone should arise. 

In non-stationary case the matters do not change because unbounded growth 

of w leads to unbounded growth of
t

P




, i.e. finally to the formation of singularity. 

In general the law of circulation conservation forbids any streamline with 

0 approaching z -axis. This fact actually makes ill-posed the problem of 

inviscid flow of swirled gas in the nozzle with central body of finite length. The 

location of detachment point and the structure of the flow strictly speaking 

essentially depend on the initial data. 
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One can overcome this difficulty in two ways. First, it is possible to set such 

inlet conditions that the swirling on C vanishes. In practice such requirement can 

be fulfilled using the variability of vanes angles in swirling device. Second, one 

can introduce thin tube, for example, cylindrical one of radius  , which forbids the 

streamline coming to z -axis. Of course the thickness of this tube should be 

sufficiently small for not having significant influence on the main part of the flow. 

To estimate the sizes (with respect to r ) of singular domain let us consider 

the following model problem. Suppose the flow is isentropic ( constS  ), 

isoenergetic ( constB  ), stationary and does not depend on longitudinal 

coordinate z . Then 0v and all other functions, which depend only on r , satisfy the 

following system of equations 

0
0 0

0

,
P

P S S





               (79) 

2 2

0
0 0

0

,
1 2 1

PP u w
H H

 

   


   

 
          (80) 

.2w
dr

dP
r                (81) 

Introducing  /2 Pc  , rewrite (80) in the form 

   2 2 2

0

1
1 .

2
c u w H





               (82) 

It follows from (79) and (81) that 

  .1 2
2

w
dr

dc
r                (83) 

The exclusion of 2w from (82) and (83) gives 

  ,
2

2
2

rfc
dr

dcr
              (84) 

where 

   
 2

01 .
2

u r
f r H

 
   

 
            (85) 

Solving (84) by standard methods one has 

   2

2

2
,

r

c r sf s ds
r



              (86) 

where  is an arbitrary constant. 

Suppose   0uconstru  . Denoting corresponding value of f through 
0 0f  , 

one infers 

  .1
2

2

0

2











r
frc


             (87) 

Thus, 



 

 

21 

 

 

 

0

1

2 1
0

2

0

2 1
0

0 2

0

2

1

1

1

f
w r

r

f
r

S r

f
P r S

S r



























  
   

  

  
   

  

.            (88) 

For the longitudinal Mach number zM one has 

2

1

2

2

00 1



















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r
fuM z


.            (89) 

And finally 

.
1

2
0 constfwr 





            (90) 

Hence, considered flow exists only beyond  -vicinity of z -axis, i.e. only 

for r . As 0r , the values of P as well as  tend to zero, while the values of 

w and zM tend to infinity. 

It follows from (90) that 

 
1/2

2

0 02 ,H u


                    (91) 

which is in fact desired estimate of  . The variability of  ru  does not lead to 

principal change in the flow picture, but only complicates the formulas. 

 

Section 5. The Results of Calculations and Discussion 

 

The calculations are done for various forms of the channel and various flow 

parameters, but the calculations scenario is the same for all cases: first stationary 

flow without swirling has been calculated ( )(rk in formula (6) equals zero), then 

instantly or for short time period the swirling vanes acquire given angle. At this the 

channel geometry and flow parameters are such that in minimal (critical) section 

the sonic velocity is achieved for stationary flow and downstream the flow is 

supersonic at least in the part of the channel. This allows separating up to the 

proper degree the investigation of the flows in the premix chamber (the domain 

from the end of central body to critical section) and downstream. 

Let us now touch the point about the role of central body. A number of 

numerical experiments produced with the presented algorithm confirm that 

stationary flows in the nozzles and pipes without central body, even in the presence 

of swirling, exist and can be obtained with the aid of time relaxation method 

without special tricks. Required relaxation time equals approximately to the time 

interval for which the perturbations travel 3 – 5 times along the calculation domain 

(upstream and downstream). The same is true for the flows in the nozzles and pipes 

with central body, but without the swirling. 
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However, the presence of any free swirling at the nozzle inlet and as a 

consequence at the surface of central body drastically changes the flow picture. In 

particular, stationary flow becomes impossible. Indeed, the value Ω=rw is 

transferred along the streamline (see equation (78)), and following the arguments 

of Section 4, the streamline must detach from the central body at some point. 

Moreover, by the very same reason this streamline cannot come to the 

axis z downstream. Hence, one infers that in the neighborhood of z axis the 

stagnation zone 0U


, p const  is formed. This fact contradicts the structure of the 

stationary flow near the critical section. 

It follows from the above that in the presence of swirling after some time the 

detached flow is formed at some point of central body and then weak reverse flow 

is also formed. Thus, the contact discontinuity arises. Further evolution of the flow 

in the neighborhood of z -axis is determined by the numerical approximation 

scheme, in particular by scheme viscosity. 

Yet first calculations of the flow in the premix chamber confirm the 

theoretical derivations that the flow structure depends essentially on the swirling 

character. In case if one determines the inlet swirling by the formula ( )w k r u , 

where ( ) ( ) /( )b w bk r r R R R    (here bR  is the radius of central body, 
wR is the outer 

radius of the channel at the inlet), u  is longitudinal and w  is circumferential 

components of the velocity, the singular point does not arise at the surface of 

central body, and the flow is rapidly stabilized. Typical distribution of 

circumferential velocity in the middle of the premix chamber is shown in Fig. 3. 
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Fig. 3 The profile ( )w r  in the section z 140 mm for the calculation with 

linearly growing swirling; grid 175х40 (see geometry below in Fig. 5) 
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If one poses at the inlet w ku , where k tg thus imitating the flow passage 

through the vanes with turning angle  , the flow character changes. The flow 

rather rapidly stabilizes visually, but then slow quasi-stationary regime starts when 

thin axial jet of non-swirling flow being very slowly swept out. As it is said above, 

the singular point arises at the descending surface of central body. This point 

separates the flow in the premix chamber by inner and outer zones that can be 

discerned by different distributions of w  (see next Fig. 4). In this figure the profiles 

of circumferential velocity component in the middle section of the premix chamber 

for three grids at the same moment of time are shown. It can be seen that, first, 

scheme viscosity allows the swirling to penetrate to the domain below the contact 

surface and, second, scheme viscosity becomes weaker with the growth of grid size 

and this leads to the increase of maximal value of w. If one does not use special 

means further under sufficiently fine grid such configuration destroys itself (either 

pressure becomes negative or oscillations arise, which finally lead also to negative 

pressure or/and density).  

This fact lies in the very nature of the problem. By the formation of contact 

surface the flow is separated in two immixing parts: upper ‘active’ flow and axial 

stagnation zone. The evolution of stagnation zone is mute and, seems, is 

determined by the factors that are external to the problem under consideration. 
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Fig.4 The comparison of profiles ( )w r  in the section z 140 mm for three 

grids: 175х20 (…), 350х40 (ооо) and 350х80 ( ____ ) (see geometry below in Fig. 5) 

 

Because of this reason all other calculations are performed in modified 

domain as is theoretically suggested in Section 4: a thin tube (needle), which 

separates the flow from the axis r=0, has been located in the flow domain. The 
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needle radius has been determined in two ways. Either, preliminary calculation 

without the needle has been performed, the detachment point at the surface of 

central body has been determined and then main calculation is fulfilled with the 

needle that contains such detachment point; or the needle radius has been estimated 

by formula (91). Both methods give close results. The intensity of perturbations 

that are generated by the needle depends on the parameters of the problem under 

consideration: the greater swirling entails the greater thickness of the needle. If the 

perturbations become too large the problem has to be posed in another way (to take 

viscosity into account, to allow the reverse flow at outlet boundary, etc.) In present 

calculations the area of the section of the needle is approximately 1% of critical 

section area. 

To estimate the accuracy of the method the series of calculations is 

performed for the channel with central body, see the geometry in Fig. 5. The 

turning angle of the vanes is 45º, needle thickness is 0.001 (critical section radius 

is 0.01). Fig. 5 also shows the isolines of pressure that is scaled by the stagnation 

pressure p0. One can see sharp pressure drop towards the nozzle axis. Such 

pressure drop is the characteristic feature of the swirled flows in the nozzles and 

pipes. Figures 6 – 8 demonstrate the profile of p(r)/p0 , and the profiles of u(r), 

w(r) that are scaled by the local speed of sound. Shown data are referred to the 

section z=0.180 and obtained for the same configuration but for various grids: 

55x30, 110x60, 220x120 and 440x240. The non-uniform convergence of the 

solution with respect to the grid size can be seen: while number of mesh points 

increases the solution stays practically unchanged near the nozzle wall but 

converges rather slowly in the zone near the axis. It seems that this fact can be 

explained by the sharp change of values in the neighborhood of the needle. 
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Fig. 5 Isolines of pressure under turning angle of the vanes 45º (needle 

thickness is 0.001) 
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Fig. 6 Profiles p(r) as z = 0.180 for four grids: circles – 55x30 points; dot-and-

dash – 110x60; dashed line – 220x120; solid line – 440x240. 
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Fig.7 Profiles u(r), scaled with respect to local sound speed, as z =0.180 for 

four grids: circles – 55x30 points; dot-and-dash – 110x60; dashed line – 220x120; 

solid line – 440x240. 
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Fig.8 Profiles w(r), scaled with respect to local sound speed, as z =0.180 for 

four grids: circles – 55x30 points; dot-and-dash – 110x60; dashed line – 220x120; 

solid line – 440x240. 

 

 

 

Moreover, two points deserve close attention. First, one can observe the 

presence of significant high-speed jet in the neighborhood of the axis. The 

longitudinal component of the velocity in the jet is two times greater than in the 

main stream. Second, ‘angular’ speed becomes supersonic in some neighborhood 

of the axis before the flow passes the critical section. Figures 9 – 11 demonstrate 

analogues profiles in the section z =0.420 where the longitudinal component of the 

velocity is already supersonic. The abovementioned features of the flow take place 

in this case also. 
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Fig. 9 Profiles p(r) as z = 0.420 for four grids: circles – 55x30 points; dot-and-

dash – 110x60; dashed line – 220x120; solid line – 440x240. 
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Fig.10 Profiles u(r), scaled with respect to local sound speed, as z =0.420 for 

four grids: circles – 55x30 points; dot-and-dash – 110x60; dashed line – 220x120; 

solid line – 440x240. 
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Fig.11 Profiles w(r), scaled with respect to local sound speed, as z =0.420 for 

four grids: circles – 55x30 points; dot-and-dash – 110x60; dashed line – 220x120; 

solid line – 440x240. 

 

 

 

The purpose of the following numerical experiment is to demonstrate the 

abilities of the algorithm to calculate the flows with internal, including ‘hanged’, 

shock waves. For calculations the supersonic flow in the tube of variable section 

has been chosen. The geometry of the tube is shown in Fig. 12. (The scale is 

distorted for visualization purpose: real cross sectional sizes are 20 times smaller.) 

At the tube inlet one has supersonic flow with Mach number M = 1.1. Horizontal 

and inclined walls are conjugated in a smooth way. Central body is absent, hence 

the artificial needle is also absent. 
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Fig. 12 The domain geometry and the distribution of v component of the 

velocity 

 

The calculations are performed for the sequence of grids, but presented 

results are referred to the grid 960x640. Such fine grid is necessary to get known 

theoretical result for axially symmetric non-swirled flows that the regular 

reflection of the shock waves from the axis is impossible – Mach reflection should 

arise, i.e. one has lambda-shock: the shock wave impinges the axis with respect to 

the normal direction to the axis. The same figure shows the distribution of radial 

component v of the velocity. This distribution rather well reflects the structure of 

shocks system. One can clearly see the system of oblique shock waves. At this first 

wave is ‘hanged’. It is also clearly seen that when passing the consecutive shock 

waves the v component changes sign. 

Fig. 13 shows the distribution of pressure p at the tube wall. It is distinctly 

seen from this figure that the first shock wave is ‘hanged’ because the point of 

shock origination is located rather close to the wall and at the tube wall one sees 

the break (the discontinuity of the derivative) in the pressure graph, but not the 

shock. 
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Fig. 13 The pressure profile along the tube wall 

 

However the secondary wave coming to the wall at reference point z ~ 0.127 

can be clearly seen in Fig. 13 as the shock wave, smeared because of numerical 

approximation. The next shock at the wall is also seen though its smearing 

increases. 

Next calculation is devoted to the case of swirled flow in the channel with 

subsonic outlet. The geometry of the channel is shown in Figs. 14, 15. The main 

difficulty in posing of the problem under the condition of subsonic outlet lies in the 

fact that in swirled flows the pressure sharply changes across the channel, and so it 

is unnatural to conventionally determine the pressure as constant at the channel 

outlet. The consequences of such determination would be crucial: at best the flow 

hardly distorts near the outlet and this disturbance influences all domain of the 

flow; but as a rule the inflow arises near the axis which requires other boundary 

conditions and hence other way of the problem determination. To leave out such 

difficulties we place here the outlet rather far from the axis in such a way that the 

swirling is moderate and boundary condition p = const can be satisfied. But even 

in this case the stationary flow is hardly achievable. In most cases the flow comes 

to the quasi-periodic regime with rather large amplitude of the shock wave 

movement along the channel. At this in the diffuser zone (in the domain of sharp 

channel expansion) large-scale intensively evolving vortex emerges. It emerges 

either in upper part of the diffuser or in lower part, but in a number of calculations 

from time to time goes from upper part to lower and inverse. We fail to observe 

any pattern in this process. Figs. 14, 15 demonstrate the stream lines for two 
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moments of time in one of the calculations. These stream lines are in fact the 

integral curves for the field (u,v) that are obtained by the integration of the system 

of ordinary differential equations {dz/dt=u,dr/dt=v} with respect to fictive time t 

under various initial data. At every stream line the points, which correspond to 

equal interval of fictive time t, are drawn. This allows scoring the fluid speed along 

the stream line by the comparison of curves length between the points. The same 

pictures show the position of shock wave drawn by dash line. The notable 

displacement of the shock wave is observed. Other calculations reveal that this 

displacement can be rather big and even can lead to the destruction of the shock 

wave and to the temporal transformation to subsonic regime. The evolution of the 

shock wave is not directly connected with the sizes and position of the vortex – the 

flow has essentially non-stationary character. Such character of the flow is also 

confirmed by the non-closed stream lines in the vortex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Streamlines and shock wave. One moment of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Streamlines and shock wave. Another moment of time 
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To summarize, presented numerical method allows effectively performing 

the calculations for non-stationary as well as for stationary swirled flows in the 

channels with central body (and without it also). Such flows can have rather 

complicated structure: near axis jet, sharp pressure drops, supersonic swirling 

already in the premix chamber, the system of shocks in the diffuser, nontrivial and 

non-uniform evolution of shock wave position in the central part of the channel, 

etc. Typical ratio of the mesh size with respect to the radius and the mesh size 

along the channel attains 1/25, and such ratio does not influence the algorithm 

robustness. As the result of the calculations one can see the specifics of the 

problems formulation for the swirled flows in the channels of complicated 

geometry: the swirling at the inlet is determined by the vanes angle modeling; the 

nozzle ‘launching’ is gradual; the central body in the swirled flow generates 

detachment of the flow with the rise of stagnation zone; the outlet of the 

calculation zone should be far enough from the axis, etc. Also the features of the 

swirled flows in the channels with central body can be seen: the stationary regime, 

if exists, is not an attractor; large scale traveling vortexes arise; the shock wave can 

travel on the large distance, provided enough place for this, etc. 

So, proposed calculation methodology works rather well for shown 

complicated multi-scale flow. It is desirable to increase the accuracy of the 

algorithm up to the second order provided that the algorithm robustness is 

conserved. Then this technique could be applied to other complicated Euler flows 

with the presence of various scales and to the problems, which involve Navier-

Stokes equations. 
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