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V.Ryaben’kiy 

 

On the method of difference potentials 

 

 

Abstract 

 

The concise look at the Difference Potentials Method and at the causes of new 

possibilities which are provided by this method; three examples of solved applied 

problems and also the notes about connections between Calderon-Seely and new 

potentials. 

 

 

 

В.С. Рябенький 

 

О методе разностных потенциалов 

 

 

Аннотация  

 

Общий взгляд на метод разностных потенциалов и на причины новых 

возможностей, которые дает этот метод; три примера из числа решенных 

прикладных задач; замечания о связях между новыми потенциалами и 

потенциалами Кальдерона-Сили. 
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The method of difference potentials (DPM) is intended for digital simulation 

and numerical solution of some problems of mathematical physics DPM was 

proposed by the author in his doctoraite (D. Sc.) thesis in 1969 and was 

significantly developed at Keldysh Institute Russian Academy of Sciences, at the 

Department of Computational Mathematics of the Moscow Institute of Physics and 

Technology, at the Institute for Mathematics Modeling of the Russian Academy of 

Sciences, at ICASE (NASA Lengley Reserch Center) as well as some other 

Institutes. 

 This report will be necessarily fragmentary. The almost modern state-of-the 

art of the DPM is reflected in [1]. 

 There (in [1]) are also named others people who take part in developing of 

DPM. Here I would like to mention only Professor Semeon Tsynkov, whose 

participation was very bright and significant. 

 The new possibilities provided by the DPM originate from the fact, that 

DPM combines several advantages of the classical potentials and Calderon’s-type 

potentials with the universality and constructively of difference schemes. 

 The main advantage of classical potential method for discretisation and 

numerical solution the different problems of mathematical physics (Laplas and 

Helmholtz equations, the Lame, Stocks, Maxwell, Cauhy-Riemann systems) is  the 

possibility to digitize the potentials and boundary integral equations by means of 

quadratures. But the kernels of integral operators of this kind are constructed by 

means of fundamental solutions, which must be sufficiently simple. Therefore the 

field of applicability of classical potentials method is bounded, to say the least, by 

equations with constant coefficients, and can’t  be used for equations with variable 

coefficients. 

 A.P.Calderon [2] and R.T.Seeley [3] have constructed and studied the 

pseudodifferential potentials, boundary pseudodifferential equations with projectors 

for elliptic equations with variable coefficients. But Calderon-Seeley equations 
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can’t be digitized by means of quadratures, because they do not contain any 

integrals. 

 We have constructed some simple auxiliary boundary problems which are 

used instead of using symbols of differential operators. These modified potentials 

are defined not only for elliptic equations, they have similar properties, but they 

also can’t be digitized by means of quadratures because they also do not contain the 

integrals. However, we have constructed earlier the difference potentials. Those can 

be used for discrete approximation of new potentials and boundary 

pseudodifferential equations with projectors, connected with them. It is possible to 

say that the difference potentials play the role of non-classic quadratures for 

modified Calderon-Seeley potentials. 

 Thus the modified Calderon-Seeley potentials can be used for discrete 

simulation and numerical solution of different problems of mathematical physics, 

not only elliptic.  

 Note, however, that really the difference potentials were proposed much 

earlier then modification of Calderon-Seeley potentials was made (1983). This 

modification was made firstly to close the constructions of difference potentials 

when grid step tends to zero. 

 The difference potentials can be used also for discrete simulation and 

numerical solution of different problems directly, without using the modified 

Calderon-Seeley potentials. 

 Note also, that theory of DPM is mainly algebraic and algorithmic. The 

general metric properties of new potentials are studied only partially (see [1], part I-

III). We will speak here below only about one sort of difference potentials, namely, 

about the so-called difference potentials of Cauchy-type and about three examples 

of applications of DPM to some numerical problems. 
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I. The constructions and properties of Cauchy-type difference potentials. 

The difference potentials of Cauchy-type and more general potentials are 

constructed for solutions of linear system of difference equations of general form. 

But we will speak here only about difference potentials of Cauchy-type, using the 

Poisson equation 
2 2

2 2
( , )

u u
f x y

x y

 
 

 
 and its simplest difference analogue 

,  

m

mn n m

n N

a u f


  

where mN  is five-point stencil of difference scheme. Namely, we use grid 

1 2( ,  )m m h m h , with step h; 1 2, 0, 1,...,m m    and stencil mN , which contain 

following five points: 

1 2 1 2 1 2{( ,  ),  (( 1) ,  )),  ( ,( 1) )}.mN m h m h m h m h m h m h    

 

 

I. 1. The auxiliary difference problem.  

To construct the difference potentials we use the following auxiliary 

difference problems. 

 Let 0D  be a bounded domain in the xy-plane. We will assume that 0D  is 

some square, whose sides are lying on grid line x=kh, or y=lh, where k and l are any 

integers (Fig.1). 

 Let M
0 

be the set of points 1 2( ,  )m m h m h , which belong to interior part of 

square 0D  (the black points on Fig.1). We consider the following difference 

equation 

 

 0,       .

m

mn n m

n N

a u f m M


   (1) 

Obviously, the left-hand side of this equation is meaningful for the functions 

0
0{ },   nN

u u n N  , whose grid domain 0N  is 0 0,   mN N m M  . We add some 
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linear homogeneous condition to the difference equation (1). For example we 

assume 

0 00,      .nu n N D    

 

 
 

Fig.1. 

 

We can rewrite these boundary conditions as inclusion 

 

 0 0N N
u U  (2) 

 

where 0N
U  is the space of all functions 0N

u , which equal to zero on boundary 

0 0N D . 

 

I. 2. The grid boundary and Cauchy-type potential with jump.  

Let 0D D   be given subdomain of 0D  (Fig.2). By M   we denote the set 

of points m lying in the interior of D  or on its boundary D   , and consider 

the equation 

 

 ,       .mn n ma u f m M    (3) 
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Fig.2. 

 

The left-hand side of this equation is meaningful only for the functions { }nu , 

defined on the set 

 

,      .mN N m M    

 

By D  we denote the domain 0 \D D D   and by M   the set of grid points 

lying in D : 

 
0{ |   } \ .M m m D M M      

 

We consider system 

 

 ,       ,mn n ma u f m M    (4) 

 

on the set M  . The left-hand side of system (4) is meaningful for the function { }nu  

that are defined on the set 

 

,      .mN N m M    

 

Thus system (1) splits into two subsystems (3) and (4) whose solutions are defined 

on N   and N   respectively. 

 Let us define the boundary  between grid domains N   and N  , by setting  
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N N    (see Fig.3). 

We shall speak that functions 0 0N N
u U  from space 0N

U  are regular. 

 Let 0 0N N
u U   and 0 0N N

u U   be two arbitrary regular functions. We define 

the piecewise-regular function 0,   nu n N  , by setting 

 

 
if ,

           
if .

n
n

n

u n N
u

u n N

 


 

 
 



 (5) 

 

Let us introduce the linear space 0N
U   all functions of the form (5). The function (5) 

takes two values nu  and nu  at each point n  of the grid boundary . 

 

 

Fig.3. 

 

A single-value function v , defined at the points n  by the formula 

 

[ ] ,    ,n n nn
v u u u n  
      

 

will be called a jump of the piecewise-regular function u  on the grid boundary . 

The piecewise-regular function (5) will be called a piecewise-regular solution of 

the problem 
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 0,     mn na u u U     (6) 

 

if the functions ,  ,nu n N   and ,  ,nu n N   satisfy the homogeneous equations 

 

0,     ,mn na u m M    

0,     .mn na u m M    

 

Theorem. Let v  be an arbitrary function which is defined on . There exists 

one and only one piecewise-regular solution u  of the problem (6) with jump v . 

 Definition. The piecewise-regular solution u  of problem (6) with given 

jump v  will be called a difference potential u P v 
  with density v . 

 

I. 3. An analogy between the Cauchy-type difference potential and the classical 

Cauchy-type integral. 

 Suppose that  is a non-self-intersecting closed contour that divides the 

complex plane z=x+iy into the bounded part D  and the complimentary 

unbounded part D . The classical Cauchy-type integral 

 

 
1 ( )

( ) ,     
2

v
u z d D

i z

 




    

   (7) 

 

can be determined as a piecewise analytic function tending to zero at infinity and 

exhibiting the jump ( ) [ ]v u    on the contour . Here ( )u z  and ( )u z  are the 

values of the Cauchy-type integral (7) for z D  and z D  accordingly.  

 A Cauchy-type integral can be interpreted as a potential for the solutions of 

the Cauchy-Riemann system  
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 ,     ,
a b b a

x y x y

   
  

   
 

 

connecting the real and imaginary parts of an analytic function. 

 

Thus the Cauchy-type difference potentials  u P v
   plays the same role for 

solutions of general linear difference equations as the Cauchy-type integral 

plays for solutions of the Cauchy-Riemann system. 

 

II. The examples of applications of DPM.  

 The difference Cauchy-type potentials play the same role for general 

difference schemes as Cauchy-type integral play for Cauchy-Riemann system. 

 The Cauchy-type integral has many applications to different problems, which 

are connected with Cauchy-Riemann system. Therefore it is naturally to expect, 

that the difference Cauchy-type potentials must have many applications to the 

different and distant one to other problems. Really, it is so. 

 We give here several examples of applications of DPM. 

 These and many others ones are reflected in the book [1] and many papers. 

 

 

II. 1. Artificial boundary conditions for stationary problems. 

 A typical example of problem requiring the construction of artificial 

boundary conditions is the problem of calculating the velocity and pressure of the 

air flow around a body, usually in the close vicinity of the body. However, for 

computation we have to take considerably larger neighborhood.  

 The DPM gives the possibilities to construct the nonlocal artificial boundary 

conditions on the external boundary of the finite computational subdomain, which 

demonstrate some advantages in comparison with ordinary classical artificial 

boundary conditions. It was demonstrated by means of some NASA tests ([1], part 

V). 
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II. 2. Nonreflecting artificial boundary conditions for long-time calculations of 

acoustic and electromagnetic waves propagation. 

 Let we need to calculate a table of values some function u(t,x,y,z) on grid of 

points 
0 1 2 3

( , , , )m m m mt x y z  0 1 2 3( ,  ,  ,  , ),m m h m h m h  const ,h    h>0, 0 0,1,...;m   

1 0, 1,...;m    2 0, 1,...;m    3 0, 1,...m    which are lying inside of the unique 

sphere  

 

 2 2 2
1 2 3( ) ( ) ( ) 1m h m h m h    

 

on the time-levels 0 0,   0,1,...,
T

t m m
 

     
 and T can be arbitrary great number. 

Obviously, the amount of grid points, where we have to find function u(t,x,y,z) has 

the order of 4( )O Th . Therefore there is no method, which requires less then 
4( )O Th  arithmetic operations to calculate this table. 

 We consider now this problem in case when function u(t,x,y,z) is the solution 

of the following problem 

 

 

2 2 2 2
2

2 2 2 2

2 2 2

( , , , )

( , , , ) 0,      if    0,

( , , , ) 0,      if    0   or   1.

u u u u
c f t x y z

t x y z

u t x y z t

f t x y z t x y z

    
    

    

 

    

 

The calculation by means of ordinary difference scheme with grid mech h  for x,y,z 

and 
3

3
h   for t requires 4 4( )O T h  arithmetic operations and becomes 

impossible even for not very large values of T.  

 But using the lacunas of wave equation in 3 dimensional space x,y,z together 

whit DPM we constructed algorithm  which takes only 4( )O Th  and which 

therefore can’t be improved. 
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 Recently this result was obtained also for solution 
E

u
H

 
  
 

 Maxwell system, 

namely, were constructed non-reflecting artificial boundary conditions for change 

the Maxwell system in vacuum out computational subdomain 2 2 2 1x y z   . 

These results valid also, if inside sphere 2 2 2 1x y z    there are some scattering, 

cavities or any non linearity. 

 These results can be used for long-time calculations of some problems of 

acoustic and electrodynamics (see [1], part VII). 

 

II. 3. Difference simulating of active shielding problem.  

 We will consider following problem, which describes single-frequency 

harmonic sound 

 

 

0

2 2
2 0

2 2
( , ) ( , ),     ( , ) ,

0
D

u u
x y u f x y x y D

x y

u


 
   

 



 (8) 

 

on domain 0D  (see Fig.2). We will assume that ( , ) ( , ) ( , )f x y f x y f x y   , 

where 

 

 
( , ), ( , ) ,

( , )     
0, ( , )

f x y x y D
f x y

x y D







 


 

 

is a density of useful sound of sources, and function 

 

 
0, ( , ) ,

( , )     
( , ), ( , )

x y D
f x y

f x y x y D







 


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is a  density of noise sources accordingly. We will assume also, that neither  f(x,y) 

nor u(x,y) is given. We know only two functions 
D

u 
 and 

D

u

n 




 on boundary 

D   , which reflect the sum either the useful sound and noise. 

 The problem of active shielding the subdomain D  against sources, which 

are located outside D , we are setting in the following way: to construct function 

g(x,y), 0( , )x y D , in order that the solution v(x,y) of the problem 

 

 

0

2 2
2 0

2 2
( , ) ( , ),     ( , ) ,

0
D

v v
v f x y g x y x y D

x y

v


 
    

 



 (9) 

 

and the solution w(x,y) of the problem 

 

 

0

2 2
2 0

2 2
( , ),     ( , ) ,

0
D

w w
w f x y x y D

x y

w





 
   

 



 (10) 

 

were coinciding on domain D : 

 

 ( , ) ( , ),     if     ( , ) .v x y w x y x y D   

 

The function g(x,y) in this case will be called the active suppress of noise. 

 We will construct now digital simulation of this problem and give its general 

solution. 

 Instead of problem (8) we consider its five-points difference analogue (Fig.2) 

 

 
0 0

0,       ,

.

mn n m

N N

a u f m M

u U

 




 (11) 

 

We consider the difference analogue of problem (9) 
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0 0

0,       ,

.

mn n m m

N N

a v f g m M

v U

  




 (12) 

 

where 0,  mg m M , is an arbitrary grid function.  

 We also consider the problem 

 

 
0 0

0,       ,mn n m

N N

a w f m M

w U

 




 

 

where 

 

 
, if    ,
      

0, if    .

m
m

f m M
f

m M







 


 

 

The grid function will be called active digital suppress function, if the following 

equality is valid: 

 

 ,    if   .n nv w n N    

 

Theorem. All active suppress digital functions 0
0{ },   ,mM

g g m M   have 

the form 

 

 
0, if    ,

      
, if    ,

m
mn n

m M
g

a z m M






 

  
 (13) 

 

where 0 0N N
z U  is an arbitrary function from 0N

U  which coincides with given 

,  nu n : 

 

 ,     n nz u n   (14) 

 

on the grid boundary . 
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  Note that the function 0 0 0 0,  ,  ,  
N N N M

u v w f  are unknown. We know only 

,  nu n  which can be measured. And we know, that influence of active suppress 

function 0M
g  has the same effect as if we switch off all noise sources, i.e. change 

,   mf m M  , supposing  

 

0,     if   .mf m M    

 

About the more general setting and solution of active shielding problem see [1], 

part VIII. 

 

 

III. On some properties of modified Calderon potentials and  approximation 

of these potentials by means of difference potentials. 

 The general scheme of modified Calderon-Seeley potentials is based on 

using of auxiliary boundary-value problems instead of the symbols of differential 

operators. The modified in accordance with this general scheme potentials save the 

main properties of Calderon-Seeley potentials and have some additional useful 

characteristics. Namely, modified potentials contains some unrestraint of choice of 

the auxiliary problems, which can be taken in attention of the particularity of 

problem we have to consider. The modified Calderon-Seeley potential can be 

approximated by difference potential and then can be used for numerical solution of 

the original problem. 

 The examples of application of DPM given above and many other ones, 

which book [1] contains or reflects, allow to say that DPM is one among other 

numerical methods. 

  At the same time the book [1] contains mainly the algebraic and algorithmic 

parts of theory DPM, but metric part is developed much less. 

 Maybe it would be interesting to obtain the theorems about metric 

characteristics of modified Calderon-Seeley potentials and accordance pseudo-

differential boundary projectors for different classes of differential equations like 
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that, as it is made for Calderon potentials and boundary pseudodifferential 

projectors of elliptic equations by Seeley [3]. 

 Maybe it would be interestingly also to obtain some theorems about metric 

characteristics of difference potentials and about approximation of modified 

Calderon’s potential by means of difference ones, when mesh step tends to zero. 

 The example of similar investigation contains in the part I of book [1], where  

the problems, which are connected with Poisson equation and corresponding fife 

point difference scheme, were considered . 
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