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PART I

Introduction

The algorithm of computation of the regular continued fraction [1] of a

number has several fine properties. In particular,
(i) it is simple;

(ii) it gives the best rational approximations to the number;
(iii) it is periodic for square irrational numbers.

In 18–20 centuries a lot of mathematicians attempted to generalize the
algorithm for vectors (Euler [2], Hermit [3], Jacobi [4], Dirichlet, Poincaré

[5], Hurwitz, Brun [6], Minkowski [7], Klein [8], Voronoi [9], Perron [10],
Skubenko [11], Arnold [12] etc.). But their algorithms had not properties
(i) and (ii) together with the property

(iii′) periodicity for cubic irrational numbers.
Only the Voronoi algorithm [9] has properties (ii) and (iii′), but it is too

complicated. Polyhedra of Klein [8]–Skubenko [11]–Arnold [12] do not give a
basis for a good algorithm that was clarified in papers [13–20]. The interest

of one of the authors to generalizations of the continued fraction arose in
connection with his article [21], repeated by Lang [22].

Here we propose a new generalization of the continued fraction which has

properties (i), (ii), (iii′) for cubic irrationalities with positive discriminant.
In a three-dimensional space we consider three homogeneous linear forms.

In another three-dimensional space, where coordinates are absolute values of
these forms, we consider the convex hull of points corresponding to all integer

points of the first space, except the origin [23]. The proposed generalization
of the continued fraction is a motion along the surface of the convex hull [25].

In [24] there are results of computation of the surfaces for eleven cubic forms
being products of three linear forms. The result show periodic structures of
surfaces and confirm the correctness of the proposed generalized algorithm.

Below we consider the generic case only. All vectors are lines and asterisk
means transposition.

1. The polyhedral surface

Let in the space R
3 with coordinates X = (x1, x2, x3) be given three real

homogeneous linear forms

li(X) = 〈Li, X〉, i = 1, 2, 3, det(L1L2L3) 6= 0, (1.1)

where Li = (li1, li2, li3) belong to the space R
3
∗, which is dual to R

3, and 〈·, ·〉

denotes the scalar product. We put

mi(X) = |li(X)|, i = 1, 2, 3, and M(X) = (m1(X), m2(X), m3(X)).
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The transformation M(X) maps the space R
3 into the first octant M ≥ 0

of the space R3 and the set Z
3 \ 0 of all integer points except the origin into

the set Z3. The convex hull of the set Z3 is a polyhedral set M. Its boundary

∂M is a polyhedral surface containing vertices Vi, edges Ri and faces Γi.
Let V1, V2, V3 ∈ Z3 and

Vj = M(Bj), Bj ∈ Z
3, j = 1, 2, 3. (1.2)

Define ω(V1, V2, V3) = | det(B∗
1B

∗
2B

∗
3)|.

Obviously ω takes nonnegative integer values. For a face Γi of the surface
∂M, we define ω(Γi) as the minimum of ω(V1, V2, V3) over all the triples of

different V1, V2, V3 ∈ Z3 that lie on the face Γi.
A face Γi of ∂M is said to be simple if it is a triangle with vertices (1.2).

A face Γi is said to be semi-simple if it is a triangle that contains exactly one
inner point from Z3 and has ω(Γi) = 1. We have ω(Γi) = | det(B∗

1B
∗
2B

∗
3)|

for a simple face Γi with vertices (1.2).

Theorem 1. If ω(Γi) = 0 for a simple face Γi with a vertices (1.2), then

one of the vectors B1, B2, B3 is the sum of the other two.

Theorem 2. In the generic case, all faces Γi of the surface ∂M are

simple ore semi-simple ones and ω(Γi) ≤ 2.

A semi-simple face Γi is naturally partitioned into three triangles, in each
of which two vertices are vertices of Γi and the third vertex is the interior
point of Γi belonging to Z3 (see Fig. 1). Therefore, in the generic case, the

surface ∂M has a natural triangulation.
Theorem 3. If the forms (1.1) are such that the matrix (L∗

1L
∗
2L

∗
3) = SW ,

where S is a nonsingular matrix with rational elements and W is the Wan-

dermond matrix for a cubic polynomial P3(λ) with positive discriminant,

then the surface ∂M has two independent periods.

Example 1. The equation

F3(λ)
def
= λ3 − 2λ2 − λ + 1 = 0

has three real roots

λ1 ≈ −.80193773580, λ2 ≈ .55495813209, λ3 ≈ 2.24697960371.

We put

Li = (1, λ2
i , λ

2
i − 2λi), i = 1, 2, 3 (1.3)

and consider corresponding forms (1.1) (see [24]). The logarithmic projec-

tion
n1 = log m1(X), n2 = log m2(X) (1.4)
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of the surface ∂M for these forms (1.1), (1.3) is shown in Fig. 2. Here the

product of the linear forms

h(X) = l1(X)l2(X)l3(X) (1.5)

is the seventh extremal cubic form found in [26] (see also [20]).
For each point Y = M(X) shown in Fig. 2, there are written the value

|h(X)| and the vector X. The boldface lines show the boundary of the
fundamental domain. Values ω(Γi) are written for each face Γi lying in it.

|h(X)| = 1 for all vertices V = M(X) of the surface ∂M. The fundamental
domain consists of 6 faces. Two faces have ω = 1 and four faces have ω = 0.

The surfaces ∂M for ten other sets of forms (1.1) are shown in [24, 27].

2. Algorithm of motion along the surface ∂M

Let in R
3 be given three linear forms (1.1) and such a vector A =

(α1, α2, α3) that l1(A) = l2(A) = 0. The surface ∂M corresponds to the
forms (1.1). Our aim is to construct the integer approximations Bk ∈ Z

3

to the straight line l1(X) = l2(X) = 0 or X = µA, µ ∈ R.
We denote by the bar the orthogonal projection of a point from R3 into

the plane (m1, m2). For instance, if M = (m1, m2, m3) then M̄ = (m1, m2).

Lemma 2.1. Let three points U, V, W ∈ R3. The plane passing through

them intersects the third axis in the point

y3(U, V, W ) =
det (U∗V ∗W ∗)

|Ū∗V̄ ∗| + |V̄ ∗W̄ ∗| + |W̄ ∗Ū∗|
, (2.1)

where |Ū∗V̄ ∗|
def
= det





u1 v1

u2 v2



 .

Let integer vectors B1, B2, B3 ∈ Z
3 form a lattice base, i.e. det(B∗

1B
∗
2B

∗
3) =

±1. Then we have lij
def
= li(Bj), i, j = 1, 2, 3 and the vector Λ = (λ1, λ2, λ3)

with λ1B1 + λ2B2 + λ3B3 = µ0A. Here
3
∑

j=1
lijλj = 0, i = 1, 2. These initial

data can be written as the table

B1 l11 l21 l31 λ1

B2 l12 l22 l32 λ2

B3 l13 l23 l33 λ3.
(2.2)

Denote Mi = M(Bi), i.e. mij = |lij|, i, j = 1, 2, 3. Below X = (x1, x2, x3) are
coordinates of a point X in the base B1, B2, B3, i.e. X = x1B1+x2B2+x3B3.

A transition to another lattice base B ′
1, B

′
2, B

′
3 consists of the follo-

wing 5 steps.
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Step 1. Here we determine the disposition of three points M̄1, M̄2, M̄3 in

the plane (m1, m2). They are vertices of a triangle. Each its side has an
external normal vector. We take such a side for which the external normal

vector has both components negative. Points M̄i lying in that side are

distinguished. Distinguishing can be made by a picture or by computations
described in [23, 25]. Let for definiteness the distinguished pair be M̄1, M̄2.

The straight line passing through them is denoted as L (see Fig. 3).
In R

3 the line µA intersects the plane x3 = 0 in the point x1 =

x2 = 0 and the plane x3 = signλ3
def
= a3 = ±1 in the point X =

(λ1/|λ3|, λ2/|λ3|, λ3/|λ3|).

Step 2. We compute ai = [λi/|λ3|], i = 1, 2, 3, where square brackets [α]
mean the integral part of α.

Step 3. In the planes x3 = 0 and x3 = a3 we take integer points nearest
to the line µA. In the plane x3 = 0 there are two such points (B1 + B2) and
(B1 − B2) (see Fig. 4). In the plane x3 = a3 there are four such points

W1 = a1B1 +a2B2 +a3B3,
W2 = (a1 + 1)B1 +a2B2 +a3B3,
W3 = a1B1 +(a2 + 1)B2 +a3B3,

W4 = (a1 + 1)B1 +(a2 + 1)B2 +a3B3

(2.3)

(see Fig. 5). We denote U1 = M(B1 + B2), U2 = M(B1 − B2), Vj =
M(Wj), j = 1, 2, 3, 4. The points Ui, Vj, which projections Ūi, V̄j lie on

the right side of the line L, are rejected, and the points Ui, Vj on its left side
(i.e. more close to the origin) are kept.

Step 4. For each kept point Ui and Vj , by Lemma 1 we compute the point
of intersection of the plane, passing through points M1, M2 and the point

Ui or Vj, with the third coordinate axis. We select the smallest computed
value (2.1) and the corresponding point Ui or Vj.

Step 5. If the point selected in the step 4 is Ui, we do the step 5a. If it is
Vj, we do the step 5b.

Step 5a. Let the point U1 be selected. In the triangle with vertices

M̄1, M̄2, Ū1 we take such a side, containing the point Ū1, which has the
negative external normal vector. Let the point M̄2 belong to that side. Then

we keep the vector B2 and replace the vector B1 by the vector B1 + B2, i.e.
we pass from the base B1, B2, B3 to the base B4 = B1 + B2, B2, B3:











B′
1

B′
2

B′
3











def
=











B4

B2

B3











= N











B1

B2

B3











, N =











1 1 0
0 1 0

0 0 1











.

The matrix N ∗−1 gives the transformation
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Λ∗′ = N∗−1Λ∗, N∗−1 =











1 0 0

−1 1 0
0 0 1











.

Step 5b. Let the point Vj = M(Wj) be selected, where Wj = ã1B1 +

ã2B2 + a3B3 according to (2.3). Then we pass from base B1, B2, B3 to the
base B1, B2, Wj: 









B′
1

B′
2

B′
3











def
=











B1

B2

Wj











= N











B1

B2

B3











, N =











1 0 0

0 1 0
ã1 ã2 a3











.

Here
Λ∗′ = N∗−1Λ∗, N∗−1 =











1 0 −a3ã1

0 1 −a3ã2

0 0 a3











.

Vectors B′
1, B

′
2, B

′
3 form the new base, and the vector Λ′ is the vector

Λ = µ0A in that new base. Thus, the transition from the base B1, B2, B3

to the new base B ′
1, B

′
2, B

′
3 is finished and we can write new table (2.2) of

initial values for the next transition.
First, we assume that on the surface ∂M:

all the faces Γi are simple or semi−simple (2.4)

and have

ω(Γi) ≤ 1. (2.5)

According to Theorem 2 property (2.4) holds in the generic case.
Theorem 4. Under assumptions (2.4) and (2.5), if the points M1 and

M2 are associated with the edge of a natural triangulation of ∂M, then the

indicated transition to another base yields the natural triangle on ∂M with

vertices M1, M2 and Ui or Vj.

Theorem 5. Let B1, B2, B3 be the initial base and a pair of distinguished

points from M(Bi), i = 1, 2, 3 belong to an edge of the natural triangula-

tion of ∂M. If the final base B̃1, B̃2, B̃3 is obtained after several indicated

transitions to intermediate bases and, in the last transition, a point of Vj is

chosen, then under assumption (2.4) and (2.5) the points M(B̃i), i = 1, 2, 3

are vertices of natural triangle on ∂M.

If the assumption (2.5) is violated then the described algorithm passes

through a face Γi with ω(Γi) = 2 using a point Pi. A pyramid ∆i with the
base Γi and the vertex Pi corresponds to the face Γi with ω(Γi) = 2. The

subtraction of all such pyramids ∆i from the set M gives a concave-convex
set N with the boundary ∂N.

Thus, the proposed algorithm is the directed motion along the surface ∂N,
and one stage of this motion gives the transition from a triangle with ω = 1
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to the nearest triangle with the same property. More detail presentation see

in [18, 29].
Example 2 (continuation of Example 1). Let for forms (1.1),(1.3), we

start from the base B1 = (1, 0, 0), B2 = (0, 1, 0), B3 = (1, 0, 1), then the
distinguished points are M(B2) and M(B3). In the first transition, we re-
place B3 by the vector B4 = B2−B3 = (−1, 1,−1). Now the distingui-

shed points are M(B2) and M(B4). In the second transition, we replace
B1 by the vector B5 = −B1 +3B2 = (−1, 3, 0). Vectors B2, B4, B5 form a

base and points M(B2), M(B4), M(B5) are vertices of the surface ∂M. Now
points M(B2), M(B5) are distinguished and the new vector B6 = B5−B2 =

(−1, 2, 0) should be taken instead of B2. Now points M(B5), M(B6) are
distinguished and the new vector B7 = B4+3B5 = (−4, 10,−1). The final

base is B6, B5, B7. According to Fig. 2 in logarithmic coordinates (1.4),
the triangle {M̄(B6), M̄(B7), M̄(B5)} can be obtained from the initial tri-
angle {M̄(B1), M̄(B2), M̄(B3)} by a parallel translation. Thus, the linear

transformation X = Y T with 









B6

B7

B5











= T











B1

B2

B3











induces the linear automorphism of the surface ∂M, i.e.

T =











B6

B7

B5





















B1

B2

B3











−1

=











−1 2 0

−3 10 −1
−1 3 0











.
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PART II

Introduction

Hear we propose a generalization of the continued fraction giving periodic

expansion for cubic irrationality with negative discriminant. In 1850, Hermit
[3] proposed his generalizations of the continued fraction, which were used by

Sharve [30] for finding unities of simplest number fields. In 1896, Voronoi [9,
part II] considered linear and quadratic forms, and suggested his algorithm
for finding their successive relative minima (or best approximations). Other

algorithms were proposed in [31-34] (see [35, Ch. 5]). All these algorithms
consist in computation of the sequence of integer bases with imbedded first

octants containing the ray to be approximated. Two latter properties of the
sequence of bases are superfluous restrictions on the algorithm leading to its

unjustifiable complication.
In [25, §§ 1,2], we considered various types of continuous fractions and

their plain interpretations. The most appropriate for generalization is the

diagonal continued fraction, which was first introduced by Minkowski in
1896 [8, part I, case Ω = 1] (without the name). In 1902, he introduced it

once again with the name [36] (see also [37, 38]). A detailed expounding see
in [39]. Below all vectors are lines and asterisk means transposition.

1. Statement of the problem

Let two forms be given in the space R
3 with coordinates X = (x1, x2, x3):

the linear
l1(X) = 〈J, X〉

def
= j1x1 + j2x2 + j3x3 (1.1)

and the quadratic

l2(X) = 〈K, X〉〈K, X〉, (1.2)

where J = (j1, j2, j3) is a real vector, K = (k1, k2, k3) is a complex vector, K

is complex conjugate vector, and the brackets 〈K, X〉
def
= k1x1 + k2x2 + k3x3

mean scalar product. We denote L(X) the product of forms li(X):

L(X) = l1(X)l2(X). (1.3)

It is obvious that for X ∈ R
3, both forms l1(X) and l2(X) are real. Let

the vector A be such that l2(A) = 0. Then the form l2(X) vanishes at the
straight line X = µA, µ ∈ R. We assign

mi(X) = |li(X)|, i = 1, 2, (1.4)

M(X) = (m1(X), m2(X)). (1.5)
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We say that an integer point X ∈ Z
3 gives the best approximation to the

straight line X = µA or to the plane l1(X) = 0 if there is no such an integer
point Y ∈ Z

3, Y 6= 0 that

M(Y ) ≤ M(X), m1(Y ) + m2(Y ) < m1(X) + m2(X). (1.6)

Problem: Find the best integer approximations X̃ (not necessarily all

of them) to the straight line X = µA with arbitrary small m2(X̃).

2. Principal construction

Introduced by (1.4), (1.5) the vector-function M(X) maps R
3 into the

first quadrant R2
+ of the plane with coordinates M = (m1, m2). Two circles

of the space R
3 are mapped in one point M ∈ R2

+, i.e. one circle for l1 < 0,
and another for l1 > 0. Hence we restrict ourselves to the semi-space πR

3 =
R

3 ∩ {l1 > 0}. Let the set of integer points X ∈ Z
3, excluding X = 0, be

mapped into the set Z2 under this map, i.e. Z2 = M(Z3 \ 0). Generically,

no more than one integer point X ∈ πZ
3 def

= πR
3 ∩ Z

3 is mapped in a point
M , i.e. the integer pre-image in πZ

3 is unique.

Let M be the convex hull of the set Z2, and ∂M be its boundary. Ob-
viously, ∂M is the convex polygonal line. It consists of vertices and edges.

All vertices are images M(X) of integer points X ∈ Z
3. But on ∂M, there

may be other images of integer points placed inside the edges. Let all images
of integer points be numbered sequentially by integer indices in the direction

of growth of m1. We denote these points as Uk = (u1k, u2k), u1k < u1,k+1,
and their integer pre-images with l1 > 0 as Fk, i.e.

Uk = M(Fk), k ∈ Z. (2.1)

Lemma 1. The minors of the matrix (F ∗
k−1F

∗
k ) have no common divisors.

For every k, we define

ω(k) = | det(F ∗
k−2F

∗
k−1F

∗
k )|. (2.2)

Obviously, ω(k) takes integer non-negative values.

Lemma 2. For every integer l ≥ 0, there exist forms (1.1) and (1.2)
such that ω(k) ≥ l for some k.

Similar proposition for consecutive minima was proved in [34].
The algorithm of the regular continued fraction gives a sequence of bases,

and the transition to the following base is given by a unimodular matrix.
In our three-dimensional case, we can form the sequence of bases consisting

only of vectors Fk and linked by unimodular transformations only if ω(k)
takes the values 0 and 1. If, on the other hand, ω(k) has values grater
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than one, then the points Fk do not suffice for such sequence of bases to be

formed.
We assign to each pair of neighboring points Uk−1, Uk a point V ∈ R2 by

the following rule. Among all points G ∈ Z
3, we choose those for which

det(F ∗
k−1F

∗
k G∗) = −1, 0, +1. (2.3)

According to Lemma 1, for each among these tree values, there exists a two-

dimensional lattice of points G with the property (2.3). Among these points
G, we keep only those for which m1(G) > m1(Fk), and we denote as Gk the

set of these points G. Now among the points M(G) with G ∈ Gk, we choose
the point (denote it as M̃) for which the segment [U, M(G)] is inclined the
most to the axis m1, i.e. all points M(G) with G ∈ Gk lie no lower than the

straight line going through points Uk and M̃ . Technically, we can do this
marking the point of intersection of the straight line going through points

Uk and M(G) with the axis m1. It is easy to note that for M = M(G), this
value

m1 = η1(Uk, M)
def
=

det |U∗M∗|

m2 − u2k

. (2.4)

If for all G ∈ Gk, the points M(G) have m2(G) > u2k, then η1(Uk, M(G)) <
u1k. In this case, we take the M(G) as M̃ , where min η1(Uk, M) is attained
over G ∈ Gk.

If there are G ∈ Gk with m2(G) < u2k, then for them η1(Uk, M(G)) >
u1k. In this case, we take such M(G) where min η1(Uk, M) is attained for

G : m2(G) < u2k. This selection can be simplified if we put

ζ1(Uk, M(G)) def=
1

η1 − u1k

=
m2 − u2k

u2k(u1k − m1)
. (2.5)

As M̃ , we take the point M(G) with G ∈ Gk where ζ1(Uk, M(G)) attains

maximum. If there are several such points, then we take the closest to the
point Uk.

Thus, the point Vk = M̃ is assigned to each pair of neighboring points
Uk−1, Uk. If ω(k + 1) = 0 or ω(k + 1) = 1, then the point Vk coincides with

the point Uk+1. If ω(k +1) > 1, then the point Vk is different from the point
Uk+1 and lies inside the convex hull M (Fig. 6).

Theorem 1. u1,k < v1,k < u1,k+1.
Analogous inequality for second coordinates, v2,k < u2,k, generally spea-

king, is not correct: often v2,k > u2,k.

Let the pre-image of the point Vk in πZ
3 be Gk, i.e. Vk = M(Gk).

Theorem 2. If Gk 6= Fk+1, then | det(F ∗
k G∗

kF
∗
k+1)| ≤ 1,

| det(G∗
kF

∗
k+1G

∗
k+1)| ≤ 1.
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Let P (λ) def= λ3 + aλ2 + bλ + c be a polynomial with integer coefficients

and negative discriminant. It has tree roots λ1, λ2, λ3, λ1 ∈ R, λ2 = λ3 ∈ C,
where the bar at the top means complex conjugate. We will assume that

the number λ1 is irrational.
Theorem 3. For the forms (1.1), (1.2) with vectors (2.6), the sequence

{Fk} is periodic, i.e. there exist natural t and unimodular matrix T such that

Fk+t = TFk, k ∈ Z. (2.7)

Using period, one can easily find the fundamental unity of the correspon-

ding number field.

3. Algorithm of generalized continued fraction

Let there be a base

B1, B2, B3, (3.1)

which is ordered in such a way that m11 < m12 < m13, where

Mi = M(Bi) = (m1i, m2i), i = 1, 2, 3. (3.2)

We describe one transition to another ordered base B ′
1, B

′
2, B

′
3. Consider all

points of the type

G = a1B1 + a2B2 + a3B3, (3.3)

where
a1 = −1, 0, +1, a2, a3 ∈ Z, (3.4)

and we choose among them the point for which

(i) m1(G) > m13,
(ii) ζ1(M3, M(G)) has the greatest value over all points G.
If a1 6= 0 for the chosen point (3.3), then instead of B1, we include into the

base the vector G, and we obtain the new base B2, B3, B4 = G. If a1 = 0 in
(3.3), then G is taken instead of B2, and the new base now is B1, B3, B4 = G.

Technically, it can be done as follows. Let the vector A in the base
B1, B2, B3 be Λ = (λ1, λ2, λ3), i.e.

A











B1

B2

B3











= Λ, (3.6)

where all vectors are lines. We compute integers

ai = [λi/|λ1|], i = 1, 2, 3, a1 = ±1,
bi = [λi/|λ2|], i = 2, 3, b2 = ±1,
c = [|b3|/10] + 1,

(3.5)
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and assign

X0 = a1B1 +a2B2 +a3B3,
Xk = X0 +kB3, −c ≤ k ≤ c,

Y0 = X0 +B2,
Yk = Y0 +kB3, −c ≤ k ≤ c,

Zl = b2B2 +lB3, −|b3|−1 ≤ l ≤ |b3|+1.

As points G, we take all points Xk, Yk, Zl. We select those from them for
which the property (i) holds, and among them we find max ζ1(M3, M(G)).

If we choose one of the points Xk or Yk, then instead of B1, we take the

selected point G and obtain the new base B2, B3, B4 = G = ã1B1 + ã2B2 +
ã3B3, i.e.











B′
1

B′
2

B′
3











= N











B1

B2

B3











, N =











0 1 0

0 0 1
ã1 ã2 ã3











.

The matrix N ∗−1 gives the transformation

Λ∗′ = N∗−1Λ∗, N∗−1 =











−ã1ã2 1 0

−ã1ã3 0 1
ã1 0 0











.

If one of the points Zl is chosen, then instead of B2, we take the chosen
point G = Zl = b̃2B2 + b̃3B3 and obtain the new base B1, B3, B4 = G, i.e.











B′
1

B′
2

B′
3











= N











B1

B2

B3











, N =











1 0 0
0 0 1

0 b̃2 b̃3











.

Here

Λ′ = N∗−1Λ, N∗−1 =











1 0 0

0 −b̃2b̃3 1

0 b̃2 0











.

This algorithm is programmed.

Example 1. Voronoi [9, part II] computed the period of expansion of the
vector (1, ρ, ρ2), where ρ3 = 23. The period consists of 21 transitions of his
algorithm. Our algorithm has period of 16 transitions. The corresponding

fundamental unity is inverse to the unity found by Voronoi, and it coincides
with the unity found by Markov.

Example 2. We consider the equation λ3 + 22λ2 + 11λ + 25 = 0,
J ≈ (1, 0.393582, 0.861731).
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k Bk d L l1(Bk) l2(Bk) ã1 ã2 ã3

1 1 0 0 1 .1000e+1 .1000e+1

2 0 1 0 25 .2154e+2 .1160e+1
3 0 0 1 1 625 .4641e+3 .1347e+1 1 0 1

4 1 0 1 1 109 .4651e+3 .2344e+0 1 0 2
5 2 1 2 1 113 .9087e+3 .1244e+0 -1 2 3

6 8 3 7 -1 157 .3192e+4 .4918e−1 -1 0 2
7 15 6 13 1 85 .5919e+4 .1436e−1 -1 1 3
8 51 20 44 -1 235 .2004e+5 .1173e−1 -1 0 2

9 94 37 81 1 1 .3689e+5 .2711e−4 0 1 21
10 2025 797 1745 0 25 .7947e+6 .3146e−4 1 -9 22

11 43719 17207 37674 -1 109 .1716e+8 .6353e−5 0 -1 2
12 85413 33617 73603 0 113 .3352e+8 .3371e−5 1 1 3

13 300052 118095 258564 -1 157 .1178e+9 .1333e−5 -1 0 2
14 556385 218983 479454 1 85 .2184e+9 .3893e−6 -1 1 3
15 1883794 741427 1623323 -1 235 .7393e+9 .3178e−6

Here
d = dk = det(B∗

k−2B
∗
k−1B

∗
k), k ≥ 3.

The period of the algorithm is t = 7. Here the convex polygonal line ∂M

contains the points M(Bk) with numbers k = 1, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15.

Correspondingly, the points with numbers k = 2, 3, 8, 10 lie higher than the
convex polygonal line. Absolute values of determinants det(B∗

i B
∗
j B

∗
k), where

M(Bi), M(Bj), M(Bk) are neighboring points of the convex polygonal line,
are equal to 1, 1, 1, 2, 22, 1, 1, 1, 1 respectively.
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7. Klein, F., Über eine geometrische Auffassung der gewöhnlichen Kett-
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