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Данная работа посвящена рассмотрению таких важных в 

нанотехнологическом плане процессов как блистеринг и образование тонких 

пленок на поверхности материала. Эти явления изменяют не только свойства 

материала подложки, но и свойства пристеночной плазмы. Изучение данных 

процессов проводится с помощью математического моделирования. Созданы 

кинетические и стохастические модели флуктуационных стадий 

рассматриваемых процессов, которые основаны на кинетической теории, 

модели Броуновского движения и методе стохастического аналога. 

Флуктуационная стадия является чрезвычайно быстропротекающей во 

времени, но играет существенную роль для дальнейшего протекания как 

блистеринга, так и процесса формирования тонких пленок. Модифицирован 

метод второго порядка точности решения стохастических 

дифференциальных уравнений для применения к рассматриваемым задачам. 

Полученные физические результаты совпадают с экспериментальными 

данными и могут служить основой для проведения лабораторных 

экспериментов. 

 

This paper deals with examination such nanotechnology important processes as 

blistering and thin films formation. These processes change not only substrate 

properties, but also plasma behaviour. Phenomena are studied by numerical 

simulation. Kinetic and stochastic models of fluctuating stage of examined 

processes are created. The models base on kinetic theory, Brownian motion model 

and stochastic analog method. Fluctuating stage is very short, but it is very 

important for development blistering as well as thin film formations. The method 

of second order of accuracy for solution of stochastic differential equations is 

modified for examined problems. Received physical results coincide with 

experimental data and can be basis for laboratory experiments. 
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Development of high-temperature blistering under the influence of plasma or 

ion beams on solid surface. 

 

Introduction. 

Understanding of processes of interaction between solids surfaces and 

plasma has significance for development technologies which have concern with 

cosmophysics, controlled thermonuclear fusion, nanotechnologies. Such problems 

as blistering, flaking and physical processes, which take place under irradiation of 

solids surfaces by ions beams. All these processes result in solids properties 

change, plasma pollution and plasma properties change. Computer simulation of 

interaction between plasma and solids surfaces takes on special significance in 

connection with high price, labor-consuming and complexity of laboratory 

experiments with plasma. 

Fluctuation stage of high-temperature blistering is examined in this work. 

Formation of gas-vacancy pores, which were named blisters, into Ni crystal lattice 

under the influence of He ions is discussed. He ions have energy from 10 keV to 

100 MeV, radiation dose is from 10
16

 to 10
19

 ions/sm
2
, the temperature of sample 

material T is 
melt
TT

melt
T 6.04,0  , Tmelt is melting temperature of Ni. 

Fluctuation stage is very short-range. Its duration is approximately 10
-4

 sec. But 

this stage is defined determinates all following peculiarities of blistering [1-8]. 

 

Model of blistering. Kinetic and stochastic equations of model. 

 Stochastic model of fluctuation stage of high-temperature blistering has been 

suggested. The model under discussion is based on Brownian motion model. 

Blistering is considered as first-order phase transition on its fluctuation stage. 

Bubbles have size approximately of several angstorm and this kind of defects is 

considered Brownian particle with sphere form and variable mass. Blisters can 

interact with each other, with solid lattice and with solid surface. Let us use 

scheme of splitting on physical processes: bubbles formation and its stochastic 

motion. The evolution of bubbles presented as a superposition of the stochastic 

processes of size increase and bubbles stochastic motion in crystalline lattice. It is 

possible since processes of bubble size increase and bubble migration in lattice 

have appreciably different time scales. Characteristic time for blisters size 

increasing is 10
-9

 sec, typical time for its migration in lattice is 10
-8

 sec. Kinetic 

equations of Brownian motion model can be solved by the method of stochastic 

analog.  

The main idea of the method is change of kinetic equations its stochastic analogs 

and solve stochastic differential equations [9]. Authors apply not only splitting on 

physical processes but splitting on coordinate too [1-8], because we have taken 

into account the interaction of all defects with surface. Received kinetic equation 

and its stochastic analogs display below. Let us present our model by the system of 

two kinetic partial differential equations of Fokker-Planck-Kolmogorov and 

Smoluchovskiy-Kramers kinds. 
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The first equation under consideration (Kinetic Fokker-Planck-Kolmogorov 

equation for evaluation of blister size) is follow:  
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g is number of He atoms in bubble, 
r
f  is distribution function, ),( tg

g
D  is 

diffusion coefficient in phase space of all possible bubble sizes, ),,( trg


  is 

Gibbs potential of bubble (cluster) formation. 

The equation Ito in Stratonovich form, which is equation of stochastic analog of 

Fokker-Planck-Kolmogorov equation, is presented below 
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Tk is full time of computation, )(t  is stochastic function, 3/2
0
g

g
D

g
D  . The 

same equation can be formulated for vacancies into lattice, but we are examined 

only He atoms for simplicity of presentation. 
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We have taken into account the difference between chemical potentials of two 

phase (

a ), surface tension on bubble –metal surface (b), elastic force of lattice 

reaction (c) [3-8], inequality between locations in lattice points and internodes 

(
r

 ), relcases in crystalline lattice (
break

 ) [3-8]. Nbr is number single 
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relcases, 
break

  is energy of single relcase, 
lat
E  is binding energy in lattice. 

0
)(






crggdg

d
, gcr is critical size of bubble, 

kTcrggg  )()
max

()
min

( , 
maxmin
gcrgg  . The choosen 

of initial state of clusterization depends on fluctuation instability of system 

 

The Gibbs potential has form which is presented on figure below. 

 

 

Fig.1  

  

The dependence of Gibbs potential (Joule/atom) from the both blister size (g) and 

position in crystal lattice (r). Blister size is measured in number of helium atoms in 

bubble. r is measured in lattice parameter of Ni (lattice parameter of Ni a=3.5 Å). 

The break on g 80 corresponds the first break of due to increasing of blister size. 



 - 6 - 

 

Fig.2 

One-dimensional Gibbs energy versus cluster size. This figure illustrated the 

region of instability of  for fluctuation- dependent stochastic process            

{g(t), t0}. 

 

 

Cluster migration into lattice can be modelized by 3-dimentional Brownian 

motion. The kinetic equation for motion of blisters is following 
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We consider that blister comes out surface and dies on it if z z2. 

 kT 

g0min g0max 

Gibbs 

energy, 

Joule/ atom 

Number of He atoms in blister gcr 
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Fig. 3 presents examined region schematically. 

 

x,y,z are measured in lattice parameter, zmin is surface, zmax = 2 Rp, Rp is middle 

depth of projection run, origin of coordinates is in point                          {x=0, y=0, 

z=0}, ),( trgf


 is kinetic distribution function, ),( trrD


 is diffusion coefficient in 

lattice space, Mg is mass of blister,   is dissipative factor, ,
),,(

x

zyxU
x
F


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  

),,( zyxU  is potential of indirect interaction between bubbles by way of acoustic 

phonons and Friedel oscillation of electron density in the case of metal substrate 

[10]. 
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where ar, br, cr are fitting coefficient of model. 

 

The stochastic analog of the kinetic equation for one coordinate is following: 
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Em is energy of migration, dW is increment of Wiener stochastic process. For z 

coordinate U=Ubb+Ubs, Ubb is potential of interaction between bubbles and Ubz is 

interaction potential between bubble and surface. 
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Fig.4 

 

 

The fusion of blister is considered in model under discussion. The fusion of two 

bubbles is made approximately. Two bubbles interflow if following condition is 

realized: distance between centers of mass bubbles is less than sum of blisters 

radiuses and some model parameter f. 0  f a, a is lattice parameter [3-8]. 

Fig. 5 

Used model allows to find the distribution functions of bubbles from size and 

pozition in lattice at different moment of time.  
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Such characteristics as middle size of bubbles, porosity of layers, tension in layers, 

number of blasted blisters and dependence of these values from time can be find as 

a result of processing of these distribution functions. 

The modified Artem’ev method [11, 3-8] has been used for solution of stochastic 

differential equations. 

 

The numerical scheme is presented below: 

Fig.6 

 

here Ag –operator of size change; ABr –operator of lattice broken; AUD- operator 

of diffusion, bubbles interaction and interaction between bubble and surface; AFus- 

operator of fusion; ASurf – operator of exit on surface, reflection from it or 

destruction on it. 

 

We used 10
6
 trajectories of stochastic process for receiving of physical results, 

which are presented below. 
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Fig.7 
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Dispersion of blister 
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The porosity of layer with number j is calculated as 
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where V is volume of all sample, Vj   is volume of layer with number j, gi is size of 

blister at examined time moment, g0 is size of blister at initial time, f(g,z,t) is 

distribution function at examined time, f(g) is distribution function at initial time 

 z is distance between surface and centre of blister, z is measured in lattice 

parameter, z=0 is surface under irradiation 
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Stress in point (x,y,z) is calculated as 
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z is distance between surface and centre of blister, z is measured in lattice 

parameter, z=0 is surface under irradiation 

 

The dependence of stress from layer 

 

 

Fig. 14 
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Fig. 16 
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The dependence of blister size at finish of calculation from different temperatures 

 

 

 

 

Fig. 18 

 

 

 
Fig. 19 
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Conclusions. 

The most interesting results of these experiments are:  

1. the new kinetic and stochastic model of fluctuation stage of blistering are 

created; 

2. the Artem’ev method is modified for solution of system of stochastic 

equation with functional-coefficients; 

3. the complex of programs for simulation of fluctuation stage of blistering 

is elaborated; 

4. distribution functions of bubbles from sizes and coordinates are 

nonequilibrium during fluctuation stage;  

5. blisters chains are formed athwart to incident flux of ions;  

6. quasi-lattice of bubbles is observed;  

7. blister size can reach 12 Å during fluctuation stage, decrease of growth 

rate after bubble size 10 Å is connected with increase of crystal lattice 

damage;  

8. bubbles size reaches maximum when relation of solid temperature to 

melting temperature of materials is 0.47;  

9. the bubbles migration into the direction of surface under irradiation if 

bubble radius is less than 5 A, in the other case bubbles stop;  

10. the greatest porosity and greatest tensions are observed on depths of  

0.85 Rp and  0.35Rp, Rp is middle depth of projection run; 

11. approximately 15% of blisters destroyed on solid surface during 

fluctuating stage. 
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Thin films formation under the influence of plasma or ion beams on solid 

surface. 

 

Introduction. 

 Numerical simulation of adatoms clusterization of solids surfaces under 

plasma influence is interesting for creation of thin films and covers with necessary 

behaviour. Release coatings, anticorrosion covers, nano-functional, resistant to 

pollution and ultrahydrophobic coverings are examples of coatings with defined 

properties. The study of nano-capsules and ions implantation into near surface 

layers, interstitial atoms and formed clusters migrations from solids to surface is 

very important for creation of self-repair materials and coves. The fluctuation stage 

of thin films formation is examined in this paper.  

 

Model, kinetic and stochastic equations of model. 

The modified by ions substrate is choosen metal W. Let us consider this problem 

using stochastic approach, similar has been used in blistering model, which had 

been presented in [1-8]. The surface of metal substrate has been contacted with 

vapour of Ni. For example the thin film material can be examined liquid Ni metal. 

Thin films behaviour differs from behaviour of solids consisting from same 

material. Cover formation includes adsorption, creation of new phase islands, 

increase/decrease of them sizes, motion of new phase islands on surface and others 

processes. The initial fluctuating stage of thin films formation is of great important, 

parameters of processes during this stage determine the behaviour of covers in 

many respects. The duration of this stage is approximately 10
-4

 sec. The island of 

new phase (cluster of adatoms) consists of deposited atoms of evaporated material 

predominantly and small number of implanted atoms which went on surface as 

result as diffusion on material lattice. Increasing or decreasing of island (i.e. cluster 

of adatoms) depends on fluctuations during its sizes stochastic changes and jump-

like fusion of clusters. Initial stage of cover formation has been considered as the 

geterogeneous first-order phase transformation (from vapour to liquid on the 

substrate), here have not be examined chemical reactions during fluctuation stage 

of this phase transition. Let us model the stochastic diffusion of islands on the 

surface as a brownian motion adapted for flat coordinate configuration. Following 

previous experience of computer simulation [1-8] we can use stochastic analog 

approach as well physical processes splitting. The sizes of islands formation and 

stochastic migration of islands processes have the different time of development. 

So, typical time for change of island size 10
8

 sec and for migration on substrate 

surface 10
7

 sec. The moving of clusters on surface is realizes under exposure of 

surface potential and long-range indirect potentials of interaction of clusters each 

with other.  

The phase transition on the surface can be formulated using fundamental 

Leontovich equation, which is presented by the system of two kinetic equations of 
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Kolmogorov-Feller and Smolukhovskii-Kramers kinds (which have been received 

after splitting procedure of problem): 
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where S is source of vapour which generats ion with f - maxwell ion function, 

which is characterized by temperature 2500 K, g is the number of atoms which is 

consisted in island-clusters, ),( tgDg  is the diffusion coefficient in the space of 

cluster sizes; ),( tg
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f  is the bubble size distribution function – the probability to 

find the cluster with size g in interval of values of g  [g,g+g], ),,( trg


  is the 

Gibbs energy, Mg is the cluster mass,  is constant of friction, distribution function 
),( trf

g


 is the islands space function rr


),(  is the position of cluster mass centre in 

orthogonal coordinates system: 
leftx  = 200, 

rightx  = 200, 
lefty  = 200, 

righty  = 200, ),(,
),(

yxU
x

yxU
xF 


  is the potential of long-range clusters 

interaction between them through phonons and oscillation of electron density. The 

form of potential is similar [3-8], firstly this interaction had been formulated by 

[10] in problem of light defect clusterization into lattice.  

.
3||

))(cos(
4)(

4)(4)(

5

3

),( 
 

























N

ji j
r

i
r

j
r

i
r

r
c

r
a

j
r

i
r

j
y

i
y

j
x

i
x

r
b

yxU 




   
22

iii
yxr   

ar, br, cr is model parameters. 
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The non-linear functional coefficient of equation  20 1 x
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The Gibbs energy looks like following: 
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Fig. 20 The scheme of new phase island on solid surface. 

 

where )(
3

)coscos32( 3











адат

V
a , )(


   is difference of 

chemical potential of phases (vapor and liquid), 

)(2sin)cos1(2
SS

b








  , SS 
 ,,  are surface 

tension between Ni vapour-liquid Ni in island, liquid Ni island-W, Ni vapour-W, c 

is coefficient of elastic lattice reaction, 
break

  is the energy required for breaking 

of a single bond with lattice, in our case it is value from laboratory experiment, 

break
  is the bond energy in lattice, 

breakb
N

break
 , Nb is number of 

broken bonds. 
r  shows influence of substrate lattice and the fact that influence 

of substrate lattice decreases when cluster size increases, when cluster locates in 

point (x,y) ))
2

cos()
2

cos(2)(,(
ya

y

xa

x
gr

r





, here ax and ay are lattice 

parameter on x and y axes, in our case ax=ay=a, a is lattice parameter of W.  is 
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model function which is depended on islands sizes, also the dislocation of the 

lattice. If cluster locates in point (x,y) then ),( gr


  
g

1
, otherwise 1, the 

dislocation can be simulated by  decreasing in same times. All parameters are 

non-dimensional, it is traditional for kinetic theory. The 
3/2

0),( gDtgD gg   and 

),,( trg


  are nonlinear functional-coefficients which dependence on clusters sizes.  

Gibbs energy includes difference of chemical potential of vapour and liquid 

phases, interface tensions on surfaces of condensate- vapour, condensate- 

substrate, substrate- vapour, elastic force of lattice and possibility of relcases of 

part of connections in lattice, non-equivalence of islands positions on surface. The 

heterogeneous condensation is considered on substrate and on clusters surfaces.  
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Fig. 21 The 
r

  without cluster and dislocation is presented in this figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. This figure presents 
r

 when the cluster has size equated two lattice 

parameters and located in place with coordinates (3;2). x and y measured in lattice 

parameters of W. 

Joule/adatom 
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Fig. 23 This figure presents 
r

  near dislocation which placement can be 

described by equation y=x 

 

 

For solve these kinetic equations authors used original computational method of 

stochastic simulation [9, 12, 1-8]. The main idea of this method is using the 

fundamental qualities of partial differential equations Fokker-Planck kind, which 

give us possibility to present physical problem by set Ito-Stratonovich equations 

with functional- coefficients. SDE are equivalent to kinetic problem formulated 

with Fokker-Planck formalism. We replace of kinetic equation by these stochastic 

analogs – stochastic differential stochastic Ito-Stratonovich equations /SDE/. The 

SDE (analogue of equation for fr(g,t)) looks like following: 

 ,)(),(2
),(

2

1),(
),(

1
ttggD

g

tggD

g

tg
tg

g
D

kTdt

dg










  

,2)(  , ]
max

g,
min

[
0

)
0

(   ,
0

 tgggtg
k

Ttt  

where Tk is duration of fluctuating stage,  is stochastic function related with 

increment of Wiener process, g0 is initial cluster size, gmin and gmax are borders of 

unstable region of initial size of cluster which calculated from 

kTg
cr
gg

cr
g  )

max
()()

min
()( , T is temperature of cluster, 

0/ 
cr

g
g , gcr is critical size.  

For solve of systems of stochastic equations authors modified Artemiev’s method 

[11]; it is a second-order accuracy method, with infinite domain of stability. For all 

i=1,2,...10
6
 trajectories of Wiener stochastic process we can use the following 

Joule/adatom 
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determination of the function )
2

2cos(
1

log2  
i

, where 
1 и 

2 are 

random numbers evenly distributed in region (0,1). 

 

 
Fig. 24 presents of calculation scheme. 
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Fig. 25 The distribution function of islands from x and y coordinate at initial time 

moment is shown on this figure. The distribution function is normalize on 1. 

 

 

 

 

 

 
 

Fig. 26 The distribution function of islands from x and y coordinate at finish 

moment of time is presented on this figure. 
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Fig. 27 This figure presents distribution function of clusters from size at initial and 

finish moments of time. The radius in lattice parameters of W is shown on abscissa 

axis. 

 

 
Fig. 28. The snap of surface at finish moment of time is presented in this figure. 

initial time moment 

finish moment of time 
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Fig. 29. The ratio of total islands square from total islands square at initial time 

moment is shown. The time in xy is put off on abscissa axis. 

 

 
Fig. 30. This figure describes change of logarithm of the ratio of total islands 

square from total islands square at initial time moment depend on logarithm of 

time. Time is supposed in sec. 
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Fig. 31. presents the dependence of rate of stress in layer at finish time to stress on 

surface at initial time moment from layer depth. Z is layer depth measured in 

lattice parameter of W.  

 

Conclusions 

As we can see from presented pictures, radius of islands distribute uniformly from 

5.31 Å to 17.7 Å at initial time moment. From 10
-4

 sec form of distribution 

function shows that two most probably radiuses exist. The first size ( 16 Å) is 

similar to critical size and corresponds to newly form clusters, second size ( 61 Å) 

corresponds to islands which grow including at the expense of fusions during 

calculation. 

The number of islands placed near linear dislocation is more than clusters number 

far from it approximately at 8 times. So, the thin films formation begins on defects 

of surface such as dislocations. 

Three stage of cover formation during fluctuation stage are discovered. The first 

stage lasts from 0 to 810
-7

 sec, it is stage of slow development. The second stage 

continues from 810
-7

 sec to 510
-5

 sec and it is stage of quick growth of thin film. 

The third stage lasts from 510
-5

 sec to 10
-4

 sec and it is notable for deceleration of 

growth velocity. At that, cover square increases at 11 times approximately with 

respect to cover square at initial moment of time. 

The calculations confirm that influence of cover reaches on depth of 5 lattice 

parameters approximately. At the same time, stress on surface and near surface 

finish time 

initial time moment 
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layers caused by thin film formation does not exceed the stress caused by blisters 

development. The stress on surface connected with cover growth increase at 21 

times during fluctuating stage. 
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