

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 90 за 2007 г.</u>

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

В.И. Субботин, Ю. Н. Орлов, В.И. Есьман, В.О. Соловьев, В.М. Суслин, Б.Д. Христофоров

Экспериментальные и численные исследования воздействия рентгеновского излучения на жидкометаллическую стенку камеры реактора ИТС

Статья доступна по лицензии Creative Commons Attribution 4.0 International

Рекомендуемая форма библиографической ссылки: Экспериментальные и численные исследования воздействия рентгеновского излучения на жидкометаллическую стенку камеры реактора ИТС / В.И. Субботин [и др.] // Препринты ИПМ им. М.В.Келдыша. 2007. № 90. 18 с. https://library.keldysh.ru/preprint.asp?id=2007-90

1. Введение

В настоящей работе моделируется воздействие ударной волны и продуктов сгорания ВВ на преграду, выполненную из жидкого свинца. Параметры взрыва подбирались таким образом, чтобы смоделировать ударно-волновую нагрузку на стенку камеры предполагаемого термоядерного реактора в концепции тяжелоионного синтеза (Fast Ignition Heavy Ion Fusion). Эта концепция была сформулирована в работах [1-4] и развивалась далее в [5-7].

Кроме тестирования параметров, расчетных характеризующих живучесть камеры при высокоинтенсивном импульсном воздействии, целью данной работы является вещества стенки помощью описание с широкодиапазонного уравнения состояния вещества на основе модели А.Б. Медведева [8-9]. Эта модель обобщает классическое уравнение состояния Ван-дер-Ваальса.

Подбор параметров уравнения состояния, которые приводили бы к расчетным значениям теплового и механического нагружения преграды, приблизительно совпадающими с теми значениями, которые наблюдались в реальном эксперименте, имеет и практическую ценность, особенно для композитных и пористых материалов.

В работе представлено подробное описание одномерного гидродинамического кода, на основе которого были получены новые результаты моделирования взаимодействия продуктов взрыва с плоской преградой. Этот код используется для расчетов процессов распространения ударной волны по преграде, испарения при тепломеханическом воздействии на нее продуктов взрыва и последующего разлета разрушенных фрагментов преграды в окружающей среде.

2. Исходные данные

В расчетах в качестве ориентировочных начальных данных для тестирования численного метода использованы данные об энерговыделении ВВ, полученные в ходе экспериментов, описанных в [10].

Моделирование плоских УВ В веществе при воздействии ΡИ проводилось в [10] взрывом зарядов ТГ50/50 и ударом пластин из алюминия. Характерные параметры моделирующих устройств И нагрузки при воздействии по алюминию приведены в таблице 1, где: W – скорость ударника; ∆ - толщина ударника или заряда BB; I, E - удельные импульс и энергия удара взрыва; $\tau = 2$ Δ/a , $P = I/\tau$ – соответственно длительность и среднее давление при ударе; а - скорость звука в алюминии. Измерения проводились на относительных расстояниях: при ударе - $0 < X/\Delta < 200$; при взрыве - $0 < X/\Delta < 10$. Теплота взрыва Q = 4,87 МДж/кг, скорость детонации D = 7,65 км/с, скорость потока вещества за фронтом ударной волны U = 1,99 км/с, давление детонации $P = 26,6 \Gamma \Pi a$.

	Удар ал	юминиев	ых пласт	ин		Взрыв ТГ50/50, $\rho = 1.68 \text{ г/см}^3$				3
W,	Δ,	Е,	Р,	τ,	I,	Δ,	Е,	P,	τ,	I,
км/с	СМ	Дж/см 2	МΠа	мкс	Па∙с	СМ	кДж/см ²	МПа	мкс	Па∙с
5.9	0.008	376	74300	0.02	1274	5	40.91	31700	17.70	0.561
5.9	0.013	611	74300	0.03	2071	2.5	20.45	31700	8.85	0.281
5.9	0.06	2820	74300	0.18	9558	1.25	10.23	31700	4.42	0.140
1.72	0.05	200	15100	0.15	2322	0.5	4.09	31700	1.77	0.056
1.1	0.019	30	9700	0.05	549	0.3	2.45	31700	1.06	0.034
						0.2	1.64	31700	0.71	0.022

Таблица 1. Параметры моделирующих устройств и создаваемых ими нагрузок

Таким образом, в тестовых расчетах можно считать, что в преграде формируется давление 20-40 ГПа. Длительность воздействия варьируется в широких пределах. Исходя из тех соображений, что длительность рентгеновского излучения от мишени весьма мала и не превосходит 1 мкс, в данном расчете она положена равной 500 мкс.

Теплофизические параметры свинца приведены в таблице 2.

Величина	Зависимость от температуры в	Значение
	диапазоне от 550 до 1000К	при 823К
Давление насыщенного пара, Па	$P = 1.5 \cdot 10^{10} \exp(-22900/T)$	0,012
Плотность, г/см ³	$\rho = 10,45 \left(1 - 1,61 \cdot 10^{-4} T \right)$	9,06
Теплопроводность, Вт/м·К	$\kappa = 1,95(1 + T/100)$	17,99
Теплоемкость, Дж/кг·К	$C_p = 195 - 9,116 \cdot 10^{-3} T$	187,49
Поверхностное натяжение, Н/м	$\sigma = 0.52 - 1.1 \cdot 10^{-4} T$	0,429
Вязкость, Па·с	$\eta = 0.187 \cdot 10^{-3} \exp(1400/T)$	0,001
Теплота испарения, Дж/кг	λ	$0,941 \cdot 10^{6}$
Адиабатическая сжимаемость, Па ⁻¹	$1/K_s$	3,4.10 ⁻¹⁰

Таблица 2. Теплофизические параметры свинца.

Модель распространения возмущений в преграде и ее испарения в результате поглощенной энергии взрыва опирается на законы сохранения массы, импульса и энергии. Изменение этих величин во времени описывается уравнениями гидродинамики с использованием реального уравнения состояния рассматриваемого вещества (свинец).

Считаем, что на границе преграды с внешней средой поддерживаются равновесные параметры. Считаем также, что в начальный момент возмущения в среде отсутствуют, а все теплофизические параметры в преграде отвечают равновесному состоянию.

Запишем постановку задачи сначала в эйлеровой форме (см. [11]). Обозначения: ρ – плотность, u – скорость, ε – плотность внутренней энергии, P – давление, $h = \varepsilon + P/\rho$ – плотность энтальпии. Записываем уравнения законов сохранения массы, импульса и энергии в виде:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0;$$

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}\right) = -\frac{\partial P}{\partial x} + v \frac{\partial^2 u}{\partial x^2};$$

$$\frac{\partial}{\partial t} \left(\rho u^2 / 2 + \rho \varepsilon\right) = -\frac{\partial}{\partial x} \left(\rho u \left(u^2 / 2 + h\right) - v u \frac{\partial u}{\partial x} - (\kappa + \kappa_e) \frac{\partial T}{\partial x}\right).$$
Hanally type vertex us:

Начальные условия:

$$P|_{t=0} = P_{in}; \ \rho|_{t=0} = 9; \ u|_{t=0} = 0; \ T|_{t=0} = 823.$$
 (3.2)

Поставленная задача (3.1)-(3.2) решалась численно в лагранжевых координатах, следуя [12]. Кратко опишем ниже этот подход.

Вводится массовая координата

$$s = \int_{0}^{x} dy \, y^{n-1} \rho(y)|_{t=0} \,, \tag{3.3}$$

где *n* – размерность пространства. В данном случае рассматривается воздействие взрыва на плоскую преграду, так что n = 1. Скорость вещества определяется как $u(s,t) = \partial x / \partial t$. Системе (3.1) тогда отвечают уравнения

$$\frac{\partial}{\partial t} \left(\frac{1}{\rho(s,t)} \right) = \frac{\partial (ux^n)}{\partial s}, \quad \frac{\partial u}{\partial t} = -\frac{\partial}{\partial s} \left((P + p_v) x^n \right),$$

$$\frac{\partial \varepsilon}{\partial t} = -\frac{\partial}{\partial s} \left(u(P + p_v) x^n - (\kappa + \kappa_e) \rho x^n \frac{\partial T}{\partial s} \right).$$
(3.4)

Здесь p_v – диссипативные члены с вязкостью. Начальные и граничные условия модифицируются аналогично.

Далее мы приводим описание расчетного кода и результаты расчетов для вышеописанных начальных условий. Мы ограничились однократной ионизацией, первый потенциал ионизации для свинца $I_1 = 7,41$ эВ.

4. Широкодиапазонное уравнение состояния

Широкодиапазонное уравнение состояния представляет обобщение модели Ван-дер-Ваальса и имеет вид [9]:

$$P = P_c - A \left(\frac{\rho}{\rho_0}\right)^n, \quad n = 2,03, \quad A = 12,9 \,\Gamma \Pi a, \quad \rho_0 = 11,05 \,\Gamma/cm^3. \tag{4.1}$$

Параметр *P_c* (давление отталкивания) определяется из трансцендентного уравнения как функция температуры и плотности:

$$P_c = \frac{\Re T / \mu}{\frac{1}{\rho} - \frac{1}{\rho_0} \left(1 - \frac{1}{\alpha} \ln \frac{P_c}{A} \right)}, \quad \alpha = 5,41.$$

$$(4.2)$$

Здесь \Re – газовая постоянная, а $\mu = 208$ – молярная масса свинца. Это уравнение имеет единственное решение относительно P_c при всех действительных значениях параметров ρ, T . Перейдем к безразмерным величинам температуры, плотности и давления:

$$\overline{T} = \rho_0 \Re T / (\mu A), \quad \overline{\rho} = \rho / \rho_0, \quad \overline{p} = P / A.$$
(4.3)

Тогда уравнение состояния (4.1) примет вид:

$$f(\overline{p}_c, \overline{\rho}, \overline{T}) \equiv \frac{1}{\overline{\rho}} - \frac{T}{\overline{p}_c} - 1 + \frac{1}{\alpha} \ln(\overline{p}_c) = 0, \quad \overline{p}_c = \overline{p} + \overline{\rho}^n.$$
(4.4)

Для табулирования и визуализации зависимости $\overline{p}_{c}(\overline{\rho},\overline{T})$, определяемой неявным уравнением (4.4), мы используем метод Ньютона. Табуляцию функции $f(\overline{p}_{c},\overline{\rho},\overline{T})$ начинаем с области малых значений $\overline{\rho}$ и больших значений \overline{T} , где хорошо работает приближение идеального газа. Тогда начальным приближением служит тройка

$$\bar{p}_0, \ \bar{T}_0, \ \bar{P}_0 = \bar{T}_0 / \bar{\rho}_0.$$

Вводя далее приращения плотности и температуры, так что $\overline{\rho} = \overline{\rho}_0 + \delta \overline{\rho}$, $\overline{T} = \overline{T}_0 + \delta \overline{T}$, организуем итерационный процесс нахождения $\delta \overline{P}$ для определения соответствующего давления отталкивания $\overline{p}_c = \overline{p}_c^0 + \delta \overline{p}_c$:

$$\delta \overline{p}^{n+1} = -\frac{f(\overline{p}_c^n, \overline{\rho}, \overline{T})}{\partial f(\overline{p}_c^n, \overline{\rho}, \overline{T}) / \partial \overline{p}_c^n}.$$
(4.5)

Равновесная кривая $\overline{p}_{eq}(\overline{\rho})$ находится из условия равенства температур, давлений и потенциалов Гиббса паровой (v) и жидкой (l) фаз: $G(\overline{\rho}_v, \overline{p}, \overline{T}) - G(\overline{\rho}_l, \overline{p}, \overline{T}) \equiv 0,$ (4.6)

$$G(\overline{\rho},\overline{p},\overline{T}) = \frac{\overline{p}}{\overline{\rho}} - \frac{\overline{\rho}^{n-1}}{n} + \frac{1}{\alpha}(\overline{p} + \overline{\rho}^n) - \overline{T}\ln\left(\frac{r_e\sigma(T)}{A}\frac{T^{5/2}}{\overline{P} + \overline{\rho}}\right) - \overline{T}.$$
(4.7)

Для численного нахождения $\bar{p}_{eq}(\bar{\rho})$ стартуем с известных точек на равновесной кривой $(\bar{p}_0, \bar{\rho}_{0\nu}), (\bar{p}_0, \bar{\rho}_{0l})$, соответствующих температуре \bar{T}_0 . Тогда приращению $\delta \bar{p}$ отвечают приращения $\delta \bar{\rho}_l$ и $-\delta \bar{\rho}_{\nu}$. В паровой и жидкой фазах справедливо также и барическое уравнение состояния. Тогда систему уравнений (4.6), (4.7) приближенно записываем в виде (штрих означает производную):

$$-G(\overline{\rho}_{0\nu},\overline{p}_{0},\overline{T}) + G(\overline{\rho}_{0l},\overline{p}_{0},\overline{T}) + G'_{\rho}(\overline{\rho}_{0\nu},\overline{p}_{0},\overline{T})\delta\overline{\rho}_{\nu} + G'_{\rho}(\overline{\rho}_{0l},\overline{p}_{0},\overline{T})\delta\overline{\rho}_{l} + G'_{\rho}(\overline{\rho}_{0\nu},\overline{p}_{0},\overline{T})\delta\overline{p} - G'_{\rho}(\overline{\rho}_{0l},\overline{p}_{0},\overline{T})\delta\overline{p} \equiv 0;$$

$$-f(\overline{\rho}_{0l},\overline{p}_{0},\overline{T}) + f'_{\rho}(\overline{\rho}_{0l},\overline{p}_{0},\overline{T})\delta\overline{p} - f'_{\rho}(\overline{\rho}_{0l},\overline{p}_{0},\overline{T})\delta\overline{\rho}_{l} \equiv 0;$$

$$-f(\overline{\rho}_{0\nu},\overline{p}_{0},\overline{T}) + f'_{\rho}(\overline{\rho}_{0\nu},\overline{p}_{0},\overline{T})\delta\overline{p} + f'_{\rho}(\overline{\rho}_{0\nu},\overline{p}_{0},\overline{T})\delta\overline{\rho}_{\nu} \equiv 0.$$

$$(4.8)$$

Используя систему (4.8), организуем итерационный процесс:

$$\overline{p}^{s+1} = \overline{p}^s + \delta \overline{p}^s, \ \overline{\rho}_l^{s+1} = \overline{\rho}_l^s + \delta \overline{\rho}_l^s, \ \overline{\rho}_v^{s+1} = \overline{\rho}_v^s - \delta \overline{\rho}_v^s.$$

$$(4.9)$$

Приращения находятся по формулам (температуру в аргументах опускаем):

$$\begin{split} \delta \overline{p}^{s} &= \frac{X(\overline{\rho}_{l}^{s}, \overline{\rho}_{v}^{s}, \overline{p}^{s})}{Y(\overline{\rho}_{l}^{s}, \overline{\rho}_{v}^{s}, \overline{p}^{s})}, \\ X(\overline{\rho}_{l}^{s}, \overline{\rho}_{v}^{s}, \overline{p}^{s}) &= G(\overline{\rho}_{l}^{s}, \overline{p}^{s}) - G(\overline{\rho}_{v}^{s}, \overline{p}^{s}) + \\ &+ f(\overline{\rho}_{l}^{s}, \overline{p}^{s}) \frac{G'_{\rho}(\overline{\rho}_{l}^{s}, \overline{p}^{s})}{f'_{\rho}(\overline{\rho}_{l}^{s}, \overline{p}^{s})} - f(\overline{\rho}_{v}^{s}, \overline{p}^{s}) \frac{G'_{\rho}(\overline{\rho}_{v}^{s}, \overline{p}^{s})}{f'_{\rho}(\overline{\rho}_{v}^{s}, \overline{p}^{s})}, \end{split}$$
(4.10)
$$\begin{aligned} Y(\overline{\rho}_{l}^{s}, \overline{\rho}_{v}^{s}, \overline{p}^{s}) &= G'_{p}(\overline{\rho}_{l}^{s}, \overline{p}^{s}) - G'_{p}(\overline{\rho}_{v}^{s}, \overline{p}^{s}) + \\ &+ f'_{p}(\overline{\rho}_{l}^{s}, \overline{p}^{s}) = G'_{p}(\overline{\rho}_{l}^{s}, \overline{p}^{s}) - G'_{p}(\overline{\rho}_{v}^{s}, \overline{p}^{s}) + \\ &+ f'_{p}(\overline{\rho}_{l}^{s}, \overline{p}^{s}) \frac{G'_{\rho}(\overline{\rho}_{l}^{s}, \overline{p}^{s})}{f'_{\rho}(\overline{\rho}_{l}^{s}, \overline{p}^{s})} - f'_{p}(\overline{\rho}_{v}^{s}, \overline{p}^{s}) \frac{G'_{\rho}(\overline{\rho}_{v}^{s}, \overline{p}^{s})}{f'_{\rho}(\overline{\rho}_{v}^{s}, \overline{p}^{s})}, \\ &\delta \overline{\rho}_{l}^{s} &= \frac{f'_{p}(\overline{\rho}_{l}^{s}, \overline{p}^{s})\delta \overline{p}^{s} - f'(\overline{\rho}_{l}^{s}, \overline{p}^{s})}{f'_{\rho}(\overline{\rho}_{l}^{s}, \overline{p}^{s})}, \delta \overline{\rho}_{v}^{s} &= -\frac{f'_{p}(\overline{\rho}_{v}^{s}, \overline{p}^{s})\delta \overline{p}^{s} - f'(\overline{\rho}_{v}^{s}, \overline{p}^{s})}{f'_{\rho}(\overline{\rho}_{v}^{s}, \overline{p}^{s})}. \end{aligned}$$

За исходную точку итерационного процесса берем критические значения $(\bar{\rho}_{cr}, \bar{p}_{cr}, \bar{T}_{cr})$.

5. Описание расчетного гидродинамического кода

Приведем схему численного решения задачи нахождения параметров течения вещества. Величину гидростатического и вязкого (включая искусственную вязкость) давления $P + p_V$ обозначаем далее для краткости через g, коэффициент теплопроводности – через κ_t . Тогда получаем

$$\frac{\partial x}{\partial t} = u(s,t),$$

$$\frac{\partial}{\partial t} \left(\frac{1}{\rho(s,t)}\right) = \frac{\partial(ux^k)}{\partial s},$$

$$\frac{\partial u}{\partial t} = -\frac{\partial}{\partial s} \left(gx^k\right),$$

$$\frac{\partial \varepsilon}{\partial t} = -\left[g\frac{\partial}{\partial s}(ux^k) + \frac{\partial}{\partial s}(x^kW)\right],$$

$$p = p(p,\rho,T,n_i),$$

$$\varepsilon = \varepsilon(p,\rho,T,n_i),$$

$$W = W(s,t) = -\kappa_t \rho x^k \frac{\partial T}{\partial s}.$$
(5.1)

Система (5.1) аппроксимировалась на двух взаимосвязанных сетках: на основной сетке s_m с шагом (вообще говоря, неравномерным) h_m (т.е. $s_{m+1} = s_m + h_m$, m=1,..., M-1), и промежуточной ($s_{m+1/2} = s_m + h_m$, m=0,..., M), причем основная сетка служит для аппроксимации величин ρ , u, x, W, а промежуточная – для p, T, ε .

Следуя [12], для аппроксимации системы (5.1) была использована двухслойная (с шагом τ), чисто неявная, полностью консервативная схема. Избегая громоздкости формул, в величинах на промежуточной сетке будем использовать целочисленные индексы, так что, например, g_m означает $g_{m+1/2}$. Вводим оператор

$$R_{m}^{k} = \begin{cases} 1, \ k = 0 \\ 0.5(\tilde{r}_{m} + r_{m}), \ k = 1 \\ (\tilde{r}_{m}\tilde{r}_{m} + \tilde{r}_{m}r_{m} + r_{m}r_{m})/3, \ k = 2. \end{cases}$$
(5.2)

Тильда означает, что данное значение берется с искомого слоя по времени. Тогда расчетный алгоритм описывается следующими формулами:

$$\begin{split} \widetilde{u}_{m} - u_{m} &= -\tau R_{m}^{k} \left[\frac{\widetilde{g}_{m} - \widetilde{g}_{m-1}}{0.5(h_{m} + h_{m-1})} \right], \\ \widetilde{r}_{m} - r_{m} &= 0.5\tau (\widetilde{u}_{m} + u_{m}), \\ \frac{1}{\widetilde{\rho}_{m}} - \frac{1}{\rho_{m}} &= \frac{0.5\tau}{h_{m}} \left[R_{m+1}^{k} (\widetilde{u}_{m+1} + u_{m+1}) - R_{m}^{k} (\widetilde{u}_{m} + u_{m}) \right] \end{split}$$
(5.3)
$$\widetilde{p}_{m} &= P(\widetilde{p}_{m}, \widetilde{\rho}_{m}, \widetilde{T}_{m}, (\widetilde{n}_{i})_{m}), \\ \widetilde{\varepsilon}_{m} - \varepsilon_{m} &= -\tau \left[\widetilde{g}_{m} \frac{R_{m+1}^{k} (\widetilde{u}_{m+1} + u_{m+1}) - R_{m}^{k} (\widetilde{u}_{m} + u_{m})}{2h_{m}} + \frac{R_{m+1}^{k} W_{m+1} - R_{m}^{k} W_{m}}{h_{m}} \right] + \\ &+ \tau (Q_{V})_{m}, \\ \widetilde{\varepsilon}_{m} &= E(\widetilde{p}_{m}, \widetilde{\rho}_{m}, \widetilde{T}_{m}, (\widetilde{n}_{i})_{m}), \quad (\widetilde{n}_{i})_{m} = N(\widetilde{p}_{m}, \widetilde{\rho}_{m}, \widetilde{T}_{m}, (\widetilde{n}_{i})_{m}). \end{split}$$

Система разностных уравнений (5.3) задает общую схему численного решения системы. Общим методом ее решения служит метод раздельных прогонок [12], когда система (5.3) делится на две группы: «динамическую» и «тепловую». Каждая из них решается отдельно некоторым итерационным методом (причем величины из другой группы считаются замороженными), с последующими итерациями между группами.

Рассмотрим, например, «динамическую» группу для k=0. Величина p_v , определяющая псевдовязкое давление, имеет вид

$$(p_{\nu})_{m} = -0.5\rho_{m} \frac{(u_{m+1} - u_{m} - |u_{m+1} - u_{m}|)}{h_{m}} \left[\mu \frac{|u_{m+1} - u_{m}|}{h_{m}} + \nu \right],$$
(5.4)

а уравнение состояния определено в параграфе 4. Итерационный процесс в этой группе организован следующим образом. Разностное уравнение для скорости

$$u_{m}^{s+1} - u_{m} = -\frac{\tau}{0.5(h_{m} + h_{m-1})} \left[\left(\tilde{p}_{m} \right)^{s} - \left(\tilde{p}_{m-1} \right)^{s} \right] + \frac{\tau}{0.5(h_{m} + h_{m-1})} \left\{ \rho_{m}^{s} \frac{\left(u_{m+1}^{s+1} - u_{m}^{s+1} - \left| u_{m+1}^{s+1} - u_{m}^{s+1} \right| \right)}{h_{m}} \left[\mu \frac{\left| u_{m+1}^{s} - u_{m}^{s} \right|}{h_{m}} + \nu \right] - \right\} \right\}$$
(5.5)
$$\left\{ \rho_{m-1}^{s} \frac{\left(u_{m}^{s+1} - u_{m-1}^{s+1} - \left| u_{m}^{s+1} - u_{m-1}^{s+1} \right| \right)}{h_{m-1}} \left[\mu \frac{\left| u_{m}^{s} - u_{m-1}^{s} \right|}{h_{m-1}} + \nu \right] \right\}$$
(5.5)

решается с помощью прогонки. Тогда находятся значения пары величин на следующем слое:

$$r_{m+1}^{s+1} = r_m + 0.5\tau (u_m^{s+1} + u_m),$$

$$\frac{1}{\rho_m^{s+1}} = \frac{1}{\rho_m} + \frac{0.5\tau}{h_m} \Big[(u_{m+1}^{s+1} + u_{m+1}) - (u_m^{s+1} + u_m) \Big]$$
(5.6)

По известным значениям ρ_m^{s+1} , p_m^s , T_m^s , $(n_i)_m^s$ давление p_m^{s+1} находится из уравнения состояния с помощью итерационного метода Ньютона. Если при этом p_m^{s+1} пересекает кривую равновесия (использовалась табулированная кривая на 10000 точек, полученная по описанной выше методике – см. п. 4), то выбирается значение давления в точке пересечения.

Для решения «тепловой» части запишем формулу для энергии (в приближении однократной ионизации) в виде:

$$\varepsilon = \varepsilon_{pot} + \frac{A}{\rho_0} \left(\frac{3}{2} bT + Z^{-1/2} (\frac{3}{2} bT + aI_1) \right);$$
(5.7)

$$\varepsilon_{pot} = \frac{A}{\rho_0} \left(-\frac{\overline{\rho}^{n-1}}{n-1} + \frac{p_{\text{rep}}}{\alpha} \right), \qquad Z = [1 + \alpha_1 p_{rep} T^{-5/2} \exp(I_1 / kT)],$$

$$p_{rep} = \overline{p} + \overline{\rho}^n.$$

Теперь, опуская для краткости индекс *m* в правой части, получаем:

$$\begin{split} \widetilde{\varepsilon}_{m} - \varepsilon_{m} &= (\widetilde{\varepsilon}_{pot}) - (\varepsilon_{pot}) - \\ &- \left[\frac{1}{2} \frac{A}{\rho_{0}} \alpha_{1} \widetilde{Z}^{-3/2} (\frac{3}{2} b \widetilde{T} + a I_{1}) \widetilde{T}^{-5/2} \exp(I_{1} / k \widetilde{T}) \right]^{s} (\widetilde{p}_{rep} - p_{rep}) + \\ &\left[\frac{1}{2} \frac{A}{\rho_{0}} \alpha_{1} \widetilde{Z}^{-3/2} (\frac{3}{2} b \widetilde{T} + a I_{1}) \widetilde{T}^{-5/2} \exp(I_{1} / k \widetilde{T}) p_{rep} \left(\frac{I_{1}}{k \widetilde{T}^{2}} + \frac{5}{2 \widetilde{T}} \right) \right]^{s} (\widetilde{T}^{s+1} - T) \\ &+ \frac{A}{\rho_{0}} \frac{3}{2} b \left(1 + \widetilde{Z}^{-1/2} \right) \end{split}$$
(5.8)

Верхний индекс s здесь относится только к температуре (также и в функции \tilde{Z}). Подставив эту формулу в соответствующее уравнение системы (5.3), получим разностное уравнение относительно \tilde{T}^{s+1} , решаемое прогонкой.

6. Моделирование РИ механическим воздействием

Сопоставление расчетов с экспериментальными данными [10] основаны на физической концепции моделирования результатов воздействия рентгеновского излучения на вещество посредством некоторого подходящего механического воздействия. При этом надо понимать, что физические процессы, приводящие к возникновению ударной волны, идущей вглубь преграды, в этих двух случаях различны. В частности, хотя рентген и поглощается в достаточно тонком слое вещества (порядка микрона), но его действие вызывает не только испарение, но и ионизацию вещества, поэтому скорость испарения этого слоя не будет соответствовать наблюдаемой в эксперименте при механическом воздействии на поверхность. В то же время можно ожидать, что профили ударных волн в среде будут достаточно близки.

В работе [10] предложены расчетные и экспериментальные методы моделирования воздействия импульсов мощного рентгеновского излучения на жидкометаллические теплоносители и жесткие стенки камер реактора ядерных энергетических установок путем воздействия на них плоской ударной волной или ударом тонких пластин, метаемых продуктами взрыва химических взрывчатых веществ. Там же приведены результаты экспериментальных и расчетных исследований поведения ударных волн при взрывном и ударном нагружении различных материалов. С использованием разработанных методик проведены исследования поведения жидкой теплозащитной пленки из Li₁₇Pb₈₃ на стенке взрывной камеры, когда вся энергия облучения идет на испарение и возникает максимальный импульс отдачи.

Моделирование воздействия РИ проводилось в [10] с использованием химических зарядов ВВ специальной конструкции и осуществлялось двумя способами:

- воздействием плоской ударной волны (УВ), генерируемой зарядом заданной толщины;

-воздействием плоской металлической пластины заданной толщины, метаемой продуктами детонации используемого заряда.

Подчеркнем, что мягкое РИ поглощается в поверхностном слое облучаемого объекта, имеющего толщину 10⁻⁶ см, за время порядка 10⁻¹⁵ с, что на много порядков меньше, чем в случае механического воздействия. Воздействие РИ приводит к испарению поверхностного слоя вещества и возникновению УВ под действием импульса отдачи. Повреждения взрывной камеры при таком облучении связано с действием механической нагрузки генерируемой УВ, вызывающей деформацию корпуса, разрушение и расслоение теплозащитного покрытия, а также откольное разрушение внутренней поверхности несущей оболочки.

Методы моделирования механического действия РИ взрывом тонких накладных зарядов ВВ и ударом пластин основаны на асимптотическом решении распространения плоской УВ. Данные методы позволяют воспроизвести в преграде параметры ударной волны, близкие к натурным условиям, при равенстве импульса моделирующего воздействия импульсу отдачи, если начальная длина УВ много меньше толщины преграды.

Для отработки моделирующих устройств в [10] применялась различные датчики и высокоскоростная фотография. В металлах измерялась скорость свободной поверхности мишени электроконтактным методом или емкостными датчиками. В диэлектриках измерялась скорость вещества электромагнитным методом. Манганиновые датчики давления применялись при измерениях в металлах и диэлектриках. Параметры УВ определялись из

законов сохранения на фронте по результатам измерений. В этих расчетах пренебрегалось приращением энтропии на фронте УВ и прочностью материала, который считался жидким.

В качестве уравнения состояния во всей области течения в [10] использовались ударные адиабаты. Расчет затухания УВ проводился в приближении центрированной простой волны с прямыми характеристиками, исходящими из одной точки на границе мишени [4].

Ниже мы предлагаем результаты расчетов по модели, призванной описать качественную картину, наблюдаемую в описанных экспериментах.

7. Результаты расчетов

Численное моделирование откольного эффекта при импульсном воздействии излучений различных типов на жидкометаллические и, возможно, слоистые преграды является центральным пунктом нашей программы. Особенность предлагаемого метода состоит в том, что как таковых откольных напряжений в расчетную модель не вводится. В результате численных расчетов наблюдается движение вещества в рамках гидродинамической модели, в которой, еще раз подчеркнем, используется реальное уравнение состояния вещества. Последнее означает, что в отсутствие внешней среды (воздуха) как составной части модельной системы вакуум между отдельными частями среды (расчетными ячейками) не образуется. Напомним, что моделируется камера реактора, где кроме паров теплоносителя с давлением около 0,01 Па ничего нет. Разрыв (откол) тогда интерпретируется как почти свободное движение двух достаточно плотных ячеек, одна из которых (убегающая) имеет более высокую скорость, чем вторая, и эти две ячейки разделены третьей, плотность которой по сравнению с ними очень мала – на 3-5 порядков меньше.

Преграда моделировалась как одномерный массив физической толщиной 1 см. Внешняя граница массива считается мягко нагруженной (градиент давления и других параметров равен нулю). По оси абсцисс на графиках отложена одномерная лагранжева координата в преграде, в качестве которой в представляемых ниже расчетах был взят расплав свинца при начальной температуре 823 К.

В процессе развития возмущений в среде после окончания импульса давления на одну из поверхностей плоской среды ударная волна, отражаясь от свободной второй поверхности, приводит к большому отрицательному давлению и последующему расслоению среды на отдельные «капли», пространство между которыми заполнено очень разреженным газом.

Нижеследующие расчетные графики показывают возникновение и развитие откольных напряжений. Рассчитывались температура, плотность, давление и скорость движения среды.

Рис. 1. Профили давления в жидкой преграде в начале воздействия.

Рис. 2. Профиль давления в жидкой преграде после отражения УВ от ее внешней границы.

Возникающее большое отрицательное давление в жидком свинце приведет на следующих этапах расчета к разрыву его на отдельные слои (одномерные капли). Возникновение такой капли показано на Рис. 3.

Рис. 3. Распределение плотности в преграде через 4,5 мкс после импульса.

Рис. 4. Распределение плотности в преграде через 7 мкс после импульса.

На графиках Рис. 3-4 видно, как ударная волна, отраженная от внешней границы, приводит к расслоению среды. Сначала в плотной среде образуется область пониженной плотности, которая быстро развивается до состояния высокой разреженности. Затем по мере прохождения волны разрежения такие области образуются и в других расчетных ячейках.

Сравнивая графики плотности и температуры на Рис. 4 и Рис. 5 видим, что низкой плотности отвечает и низкая температура. Однако состояние разреженного вещества при этом является газообразным.

В «оторвавшихся» каплях, напротив, температура возрастает вследствие роста давления.

На последующих графиках показано распределение давления и скорости в расчетных ячейках среды. Характерно, что давление на поверхности, интерпретируемой как поверхность разрыва, оказывается близким к нулю, что также согласуется с общим подходом к моделированию откола как образованию свободной поверхности.

Развитие этого процесса приводит в конечном итоге к образованию свободно летящих отколовшихся капель.

Рис. 6. Распределение давления в преграде через 7 мкс после импульса.

Рис. 7. Распределение скорости среды через 7 мкс после импульса.

Рис. 8. Распределение температуры в среде через 20 мкс после импульса.

Рис. 9. Распределение давления в среде через 20 мкс после импульса.

Рис. 10. Распределение плотности в среде через 20 мкс после импульса.

Рис. 11. Распределение скорости в среде через 20 мкс после импульса.

Сравнивая Рис. 11 с Рис. 7 видим, что при разлете среды формируется стационарный ступенчатый профиль скорости, где каждая ступень отвечает отдельной капле. Отделившиеся капли могут быть идентифицированы по большей скорости, с которой они удаляются от остальной среды. Некоторые капли, как показывают те же расчеты, являются временно оторвавшимися, т.к. вскоре их настигнут другие капли и произойдет их слияние. Процессы слияния и дробления будут происходить и дальше в течение разлета.

представленном расчете видны В 7 четких капель, летящих практически независимо, внутри которых также происходят процессы дробления, но последние, однако, приводят К окончательному не формированию новых капель.

Итак, в работе представлены численные результаты моделирования откола при воздействии удара высокой интенсивности на преграду в подходе «естественного» гидродинамического образования разрыва среды. Такое описание возможно при использовании реального широкодиапазонного уравнения состояния вещества. Оно может быть также применено и при описании прохождения импульса давления через слоистую преграду. Эти расчеты будут приведены в отдельной работе.

Благодарности

Авторы выражают глубокую признательность академику РАН В.И. Субботину, инициировавшему эту работу, а также профессорам М.В. Масленникову и С.А. Медину, многократные обсуждения с которыми различных аспектов модели принесли авторам неоценимую помощь.

Работа выполнена при частичной финансовой поддержке гранта РФФИ, проект № 07-08-00389, и при частичной поддержке Программы Президиума РАН № 14.

Литература

1. Koshkarev D.G. Charge-Symmetric Driver for Heavy-Ion Fusion. // IL Nuovo Chimento, Vol.106 A, No.11, p.1567-1573. 1993.

2. Koshkarev D.G., Korenev I.L., Yudin L.A. Conceptual Design of Linac for Power HIF Driver. / CERN 96-05, VI, p.423-426. 1996.

3. Чуразов М.Д., Аксенов А.Г., Забродина Е.А. Зажигание термоядерных мишеней пучком тяжелых ионов. // ВАНТ, Сер. Математические модели физических процессов, Вып. 1, №.20. 2001.

4. Medin S.A. et al. Evaluation of a power plant concept for fast ignition heavy ion fusion // Laser and Particle Beams, 2002. V.20. P.419-423.

5. Medin S.A. et al. Reactor Chamber and Balance-of-Plant Characteristics for Fast-Ignition Heavy-Ion Fusion Power Plant // Fusion Science and Technology, 2003. V.43. No.3. P.437-446.

6. Medin S.A., et al. Conceptual Analysis of Energy Conversion in Power Plant for Fast Ignition Heavy Ion Fusion / 30-th EPS Conference on Controlled Fusion and Plasma Physics. Russia, S-Petersburg, July 7-11, 2003.

7. Basko M. M., Churazov M. D. and Aksenov A. G. Prospects of heavy ion fusion in cylindrical geometry. // Laser and Particle Beams, 2002. V.20.P.411-414.

8. Копышев В.П., Медведев А.Б. Термодинамическая модель сжимаемого коволюма. Саров: РФЯЦ-ВНИИЭФ, 1995.

9. Медведев А.Б. Модификация модели Ван-дер-Ваальса для плотных состояний. / В сб.: Ударные волны и экстремальные состояния вещества. Под ред. В.Е. Фортова, Л.В. Альтшулера, Р.Ф. Трунина и А.И. Фунтикова. М.: Наука, 2000.

10. Соловьев В.О., Христофоров Б.Д. Моделирование механического воздействия импульсного рентгеновского излучения на стенки камер ядерных реакторов. /

11. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика, Т.VI. Гидродинамика. М.: Наука, 1988.

12. Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. М.: Наука, 1980.

13. Физика взрыва. Ред. Орленко Л.П. Том 2. М. Физматлит. 2004. 656 с.