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М.А.Вашковьяк 

 

    Аннотация 

Представлены методы и результаты исследования эволюции орбит внешних спутников 
планет-гигантов. Подавляющее большинство из этих спутников были открыты в последнее 
десятилетие. Существенная нерегулярность их орбит потребовала усовершенствования 
известных и развития новых аналитических методов исследования долговременной 
эволюции. Эти методы основываются на различных осредненных вариантах задачи Хилла. 
Их качественные исследования, выполненные ранее в работах Н.Д.Моисеева, А.А.Орлова, 
М.Л.Лидова, Козаи, дополнены построением общего решения двукратно осредненной задачи 
Хилла в работах Киношиты, Накаи и автора, а также комбинированным численно-
аналитическим методом. В препринте представлены табличные и графические результаты 
(зависимости орбитальных элементов от времени), полученные различными методами. 
Проведено сравнение с наиболее точным методом численного интегрирования уравнений 
возмущенного движения реальных внешних спутников планет-гигантов. Особое внимание 
уделено спутниковым орбитам с либрационным характером изменения аргумента 
перицентра. Как правило, эта либрация связана с известным резонансом Лидова-Козаи, 
однако, для орбит трех спутников Юпитера она определяется периодическими солнечными 
возмущениями большой амплитуды.  
 

Mikhail A.Vashkov’yak 

 

    Abstract. 

The methods and results of analysis of the orbital evolution of outer satellites of giant planets are 

presented. The substantial irregularity of their orbits required the refinement of the already known 

and the development of new analytical methods for analyzing their long-term evolution. These 

methods are based on various averaged variants of the Hill problem. H.Kinoshita, H.Nakai, and the 

author of this paper further extended the qualitative analyses of these variants earlier performed by 

N.D.Moiseev, A.A.Orlov, M.L.Lidov, and Y.Kozai, by constructing the general solution of the 

double averaged Hill problem and by developing a combined numerical-analytical method. In this 

paper we present the results graphical form (time dependences of the orbital elements) obtained by 

various methods. We compare these results with those obtained by the most accurate method to 

numerically integrate the equations of perturbed motion of real satellites of giant planets. We put 

special emphasis on the satellite orbits with librational behavior of the variation of the pericenter 

argument. This libration is usually associated with the well-known Lidov-Kozai resonance, 

however, in the case of orbits of three Jovian satellites it is determined by large-amplitude periodic 

solar perturbations. The research, that we present here, stemmed from our interest in new distant 

satellites of giant planets and, in particular, in the celestial-mechanical effects that show up in the 

orbital evolution of these peculiar celestial objects.  
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1. Quite a few papers have been dedicated to the analysis of the orbital 

evolution of actual outer satellites of giant planets. Of the recent studies of this 

problem we point out the interesting and versatile works (Nesvorny, Alvarellos, 

Dones, Levison, 2003; Cuk, Burns, 2004; Christou, 2005; Beauge, Nesvorny, 2007; 

Jewitt, Haghighipour, 2007). These studies were aimed at analyzing various 

mechanisms of the origin of irregular satellites, identification of families of satellite 

orbits and various types of resonances. The papers mentioned above also contain 

extensive bibliography of earlier works. In addition, we also want to index the 

bibliographical review of the studies of the dynamics of natural planetary satellites 

(Ural’skaya, 2003). The descriptions of some specific features of the orbital evolution 

of distant satellites of giant planets can be found in our papers (Vashkov’yak, 2003; 

Vashkov’yak, Teslenko, 2005, 2007). 

Beginning with 1997, ground-based observations allowed the researchers to 

discover more than one hundred outer satellites of giant planets including 54, 38, 9 

and 5 bodies orbiting Jupiter, Saturn, Uranus, and Neptune, respectively. Outer 

satellites have immediately become popular among celestial mechanists because of 

their peculiar (irregular) orbits. During their evolution the eccentricities and 

inclinations of the orbits of these bodies with respect to the plane of the ecliptic may 

vary over a wide range. 

Jupiter has the greatest number of outer satellites discovered so far. The two-

component division is especially apparent in the system of outer satellites of this 

planet. The semi-major axes of prograde orbits range approximately from 7 to 18 

million km, whereas those of retrograde orbits span from about 18 to about 34 million 

km. In the process of their evolution the orbital eccentricities and ecliptic inclinations 

may reach 0.6  0.7 and about 40  60 degrees, respectively. In the Saturnian system 

the intervals of semi-major axes of satellites moving in prograde and retrograde orbits 

overlap. The Uranian system is currently known to include only 9 outer satellites with 

only one of them moving in a prograde orbit. The semi-major axis of its orbit lies 

within the interval of the semi-major axes of retrograde orbits. It is interesting that 

until 1997 Uranus was the only giant planet with no outer observed satellites. 
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Neptune has the smallest number of discovered outer satellites. However, the 

evolving orbit of one of the Neptunian satellites has the record high maximum 

eccentricity 0.9 among the orbits of planetary satellites, and as well as the record 

average planetocentric distance of one of the satellites 52 mln. km. The decrease of 

the number of discovered distant satellites from Jupiter to Neptune appears to be due 

to observations becoming more difficult to perform with increasing distance to the 

planet. Hence there are strong grounds to believe that further improvement of 

observational instruments and techniques will allow many more satellites to be 

discovered in distant neighborhoods of giant planets. 

The appreciable orbital evolution of distant satellites (compared to that of inner 

satellites) made it necessary to develop special analytical as well as numerical-

analytical techniques for computing secular and long-period perturbations. The 

researchers also use extensively more accurate – numerical – methods of integration 

of equations of perturbed motion over up to one hundred million years long time 

intervals. 

Solar gravity is the main perturbing factor that causes the evolution of orbits of 

the considered class. It exceeds the effect of the flattening of the central planet and 

that of other less important perturbations by several orders of magnitude. The above 

peculiarity of distant satellites allows the well-known model of restricted circular 

three-body problem to be used (the Sun – Planet – Satellite) to identify the main 

features of the orbital evolution of these bodies. 

 

2. In the first (main) approximation the orbital evolution of the satellite is 

determined by the problem's perturbing function averaged independently over the 

fastest variables – the mean longitudes of the satellite  and of the perturbing body 1 

(the Sun). In this approximation we neglect the resonances between the orbital 

periods of the satellite and the planet. An investigation of such double averaged 

restricted circular three-body problem led N.D.Moiseev to establish the existence of 

its three independent first integrals (Moiseev, 1945) 
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                  a = c0 ,   (1 – e2)cos2i = с1,    W(a, e, i, ) = c2                        (1) 

 

Hereafter we use standard designations for the Keplerian elements of the 

elliptical orbit: a is the semi-major axis; е - the eccentricity; i - the inclination;  

the argument of the pericenter, and  the longitude of the ascending node. The 

angular variables are referred to the plane of the perturbing body and W is the double 

averaged perturbing function of the problem. However, although this problem is 

integrable, the analytical formula for function W is too complicated preventing the 

inversion of the corresponding quadratures. In the case where the satellite orbit lies 

completely inside the sphere of radius equal to the radius of the orbit of perturbing 

point a1 this formula has the form of a power series in = a/a1  

In  1961  M.L. Lidov  analyzed  the  satellite  variant  of  the  problem  at 

 << 1, which is also known as the double averaged Hill problem (Lidov, 1961). He 

used a simplified formula for function W dropping  and higher-order infinitesimal 

terms. Lidov combined this formula with integral с1 to derive a new explicit formula 

for independent integral  

 

                              e2(2/5 – sin2isin2) = c2.                                         (2) 

 

This integral, together with с0 and с1 allows the problem to be reduced to analysis of 

the behavior of phase trajectories in the (, е) plane as a function of с2 at fixed с1. 

The variation of the longitude of the ascending node can be found via a quadrature. 

At the same time, the famous Japanese researcher Y.Kozai studied a somewhat 

more general (asteroid) variant of the problem under weaker condition  < 1. In this 

case, integral с2 can be written as a partial sum of a power series in (Kozai, 1962)

                        



4

1n
Wn (e, i, ) 2n = c2                                                      (3) 

The symmetry of the problem allows to analyze the families of phase trajectories 

to be restricted to the first quarter of the variation domain of the argument of the 

pericenter, because the double averaged perturbing function depends on  only via 
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cos2. A qualitative analysis of these families led the researches to interesting 

celestial-mechanical results. 

Firstly, in the case of sufficiently large and physically possible values of с1 > 

0.6,  varies monotonically with time. 

Secondly, at с1  0.6, the double averaged problem has satellite-orbit solutions 

with fixed eccentricity and fixed argument of the pericenter. There are the domain of 

circulation (с2 > 0) and domain of libration  (с2<0) separated by the separatrix, i.e. 

by the limit solution (с2 = 0).  

Thirdly, at small  
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where a0 is the radius of the planet, the orbital evolution starting with whatever initial 

 and е results in such an increase of the eccentricity that the pericenter distance q = 

c0 (1 - e) inevitably becomes equal to a0 and the satellite naturally falls onto the 

planet. In the particular case of с1 = 0, when the satellite orbit is perpendicular to the 

orbital plane of the perturbing point, the orbit evolves into a straight-line segment 

within a finite time interval and the satellite collides with the attracting center 

whatever its initial eccentricity and argument of the pericenter. This is author’s 

formulation of Lidov's theorem and their corollary. 

The calculation of the evolution of the lunar orbit hypothetically turned 

orthogonal to the ecliptic plane performed by Lidov is a dramatic illustration of the 

“falling effect”. His computations showed that such an “orthogonal Moon” perturbed 

by the Sun would fall to the Earth within only four and a half years! Professor 

I.V.Novozhilov of Moscow State University was so impressed by this result that he 

portrayed Lidov in a friendly caricature (Fig. 1). This illustration is taken from the 

book of Professor V.V.Beletsky (Beletsky, 2001). 
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                              Fig. 1. Lidov Drops the Moon on the Earth. 

                   Friendly Caricature of Professor I.V.Novozhilov (MSU)          

3. Note that the property of almost orthogonal satellite orbits, established by 

Lidov, was inconsistent with quiet existence of the close Uranian satellites known at 

that time. Their almost circular and almost equatorial orbits are inclined by about 98 

to the plane of the ecliptic (or the plane of the Uranocentric orbit of the Sun). 

However, Lidov’s analysis showed that solar perturbations play no crucial part in the 

orbital evolution of close Uranian satellites. The double averaged Hill problem with 

the allowance for the flattening of the central planet as considered by Lidov is 

nonintegrable (integral c1 does not exist in the general case with no axial symmetry). 

However, one of its integrable cases describes the evolution of equatorial satellite 

orbits when the equatorial plane of the planet is orthogonal to the plane of motion of 

the perturbing body. This case approximately takes place in the system of inner 

Uranian satellites. It allows the existence of almost circular orbits whose evolution is 

determined mostly by flattening of the planet (Lidov, 1963a). Hence the flattening of 

Uranus prevents its close satellites from falling onto the planet, and allows the 

conflict to be resolved in terms of a real physical model. 
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Returning to the double averaged Hill problem (without the allowance for 

flattening of the planet) let us point out that the stationary singular point and 

librational variation of the pericenter are usually referred to as the “Kozai-resonance” 

in special celestial-mechanics publications after the Japanese researcher Y.Kozai, 

who studied the asteroid variant of the problem one year after Lidov had made his 

analysis. The work that Lidov published in 1961, became known abroad only after 

1962, when it was presented at the international meeting in Paris and was published 

in English in two leading journals on space research (Lidov, 1962, 1963b). Given that 

the asteroid case of the problem maintains all the qualitative features found by Lidov, 

it would be fair to use the term “Lidov-Kozai-resonance” as suggested by Professor 

A.I.Neishtadt. For the same reason, it would be fair for the possible substantial 

variation of the eccentricity and the inclination angle of the satellite orbit is referred 

to as the “Lidov-Kozai-mechanism”. These terms have been used in recent years by 

some of the authors who analyzed the orbital evolution of a number of outer satellites 

of giant planets. 

They were the discoveries of outer satellites that made it necessary not only to 

perform a qualitative analysis of the double averaged Hill problem, but also to derive 

the time dependences of the real orbital elements of such satellites for arbitrary initial 

conditions. The general solution of the evolutionary problem was constructed in 

papers (Kinoshita, H.Nakai, 1999, 2007) and in (Vashkov’yak, 1999). 

J. Kovalevsky and especially A. A. Orlov further analyzed the satellite variant of 

the averaged problem. The equations, that describe the satellite orbital evolution in 

the restricted three-body problem, were derived using the Zeipel method up to third 

order infinitesimal in the small parameter m - the ratio of the mean motions of the 

perturbing body and the satellite. Thus the above authors (Kovalevsky, 1964, 1966; 

Orlov, 1965a, 1965b) constructed an m3 order solution, which is more accurate, than 

the solution of the double-averaged Hill problem (order m2). The results of Orlov 

were essentially used by us in developing the numerical- analytical method for the 

analysis of the orbital evolution of distant satellites. 
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4. Not only the model of double averaged restricted circular three-body 

problem, but also the corresponding singly averaged model may prove to be of use 

for the analysis of the orbital evolution of some distant Jovian satellites. N. D. 

Moiseev introduced such an averaged problem (or scheme) in 1945, and it later came 

to be named after him. In this problem (Moiseev, 1945) only the fastest variable - the 

mean longitude of the satellite - has been excluded from the perturbing function. At 

the same time, the evolutionary equations contain the periodic functions of time that 

are due to the motion of the perturbing body during one satellite revolution. The 

double-averaged model described above does not contain these functions. However, 

the effect of perturbations with the intermediate period equal to half the orbital period 

of the planet may be great. 

A combined numerical-analytical method found its application in many 

problems of celestial mechanics along with analytical and numerical methods. The 

version of this method that M. L. Lidov proposed in 1978 for Hamiltonian systems 

includes the following three main components (Lidov, 1978): 

The first component is an analytical construction of a sequence of canonical 

changes of variables to eliminate rapidly oscillating functions of time from the 

Hamiltonian. These transformations establish a relation between the osculating and 

average orbital elements. The second component is a derivation of a new 

Hamiltonian written in terms of average elements (this procedure is also performed 

analytically). The third component is an effective numerical integration of 

differential equations written in terms of average elements with a long time step of 

the order of several orbital periods of the satellite. 

Our proposed numerical-analytical method for the computation of the orbital 

evolution of distant satellites is also based on the main constructive idea of Lidov, the 

Zeipel method, and the series of Orlov’s papers (Vashkov’yak, 2005). 

 

5. The first new outer satellites among the large family of such objects 

discovered were the Uranian satellites U16 (Caliban) and U17 (Sycorax) found in 

1997. The ephemerides of these and of other outer satellites of giant-planets, 
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discovered later, are calculated in the papers (Emelyanov, 2005; Emelyanov, Kanter, 

2005). These ephemerides are updating constantly in accordance with new 

observations and are available on the servers 

(http://lnfm1.sai.msu.su/neb/nss/index.htm) and http://www.imcce.fr/sat.  

Our following presentation of the computed orbital evolution of these and other 

satellites is based on the data from the special Internet server set up by 

N.V.Emel'yanov (SAI MSU). One can download from this server, in particular the 

orbital elements refined with using all the observations available for the times of their 

discovery. We use these elements as the initial values in computations employing 

various methods. These initial orbital elements usually differ from the preliminary 

elements posted on the Minor Planet Electronic Circular Internet site (http://cfa-

www.harvard.edu/mpec/RecentMPECs.html). We computed the time dependencies 

of the orbital elements of the outer satellites and, in particular, those of Caliban and 

Sycorax, using the three methods described above over the time intervals ranging 

from one to several periods of precession of nodes. In the Fig. 2, 3 and in the other 

figures the solid lines show the results obtained by numerically integrating the exact 

equations of motion; the dots - correspond to the results obtained using the 

numerical- analytical method, and the dashed lines correspond to the analytical 

solution of the double averaged Hill problem.  

 

 

 

 

 

 

 

 

 

 

 

                      Fig. 2 U16 (Caliban); Abscissa axis – time t (years),  
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                ordinate axis: 1 – e(t), 2 – ieclip (t),3 - (t), deg, 4 - (t), deg, 

            strict numerical calculation;   numerical-analytical method; 

            analytical method (double averaged Hill problem). 

 

 

 

 

 

 

 

 

 

 

 

                                          Fig. 3. U17 (Sycorax) 

The orbit of satellite U23 (Margaret) (Fig. 4) differs from those of Caliban and 

Sycorax by the librational variation of the argument of the pericenter and by its 

prograde motion.  

 

 

 

 

 

 

 

 

 

 

 

                                     Fig. 4. U23 (Margaret) 
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The data for the outer Uranian satellites lead us to conclude that the results 

obtained using numerical method agree well with those obtained using numerical-

analytical method. The time dependencies of the orbital elements computed using 

analytical method differ from the corresponding time dependencies computed using 

numerical methods. The differences are due mostly to inaccurately computed periods 

of the variation of the pericenter arguments and of the ascending-node longitudes. 

However, in the cases where their results agree qualitatively, the two methods yield 

sufficiently similar extreme parameters of evolution. 

The orbital evolution of two Neptunian satellites with circulatory N9 (Halimede) 

and librational N11 (Sao) variations of the pericenter arguments is characterized by 

the substantial amplitudes of oscillation of the eccentricities and inclinations in 

accordance with the Lidov-Kozai-mechanism. The orbital elements of two Jovian 

satellites – J18 and J46 and two Saturnian satellites – S9 and S24 show similar 

temporal variations. 

The orbits of a number of outer satellites proved to exhibit librational variation 

of the arguments of the pericenter. This is a rather rarely encountered feature even 

among the ensemble of several thousand asteroid orbits. Y.Kozai was the first to 

discover an actual  - librational orbit of the asteroid Cincinnati. The first -librators 

discovered among the planetary satellites by solving the double-averaged Hill 

problem were the outer Saturnian satellites S22 (Ijiraq) and S24 (Kiviuq). A number 

of similar orbits were later found in the satellite systems of Jupiter - Carpo, Uranus - 

Margaret, and Neptune Sao and Neso. All these satellites are demonstrative examples 

of natural realization of the Lidov-Kozai-resonance in the satellite systems of giant 

planets. The phenomenon of this resonance was also confirmed via numerical 

integration of strict equations of motion of the satellites mentioned above. 

 

6. Note that in some cases the simple evolutionary model initially yielded 

paradoxical results. The analysis of the orbits of the outer Saturnian satellites S20 

(Paaliaq) and S29 (Siarnaq) performed in framework of the double averaged Hill 

problem implied the librational behavior of the variation of the pericenter arguments 
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 (c2 < 0). However, the computations made by more accurate numerical and 

numerical-analytical methods showed that the actual variations of  for these orbits 

are circulatory. This qualitative discrepancy is due to the fact that the phase point in 

the (, e) plane is close to the separatrix of the integrable double averaged Hill 

problem, where constant c2 is very close to zero. The allowance for minor 

perturbations revealed the actually circulatory behavior of the evolution of  for the 

orbits mentioned above. As a result, the simple evolutionary model was found to be 

in need of refinement for the domains of orbital parameters e, i and  lying within 

the close neighborhood of the separatrix. The same is also true for the orbit of the 

Saturnian satellite S/2007 S1 and Neptunian satellite N10 (Psamathe). By contrast, 

the analysis of the orbital evolution of the Neptunian satellite N13 (Neso) made in 

framework of the double averaged Hill problem yields circulatory behavior of , 

whereas more accurate methods show librational variation of this parameter. 

The evolutionary model had also to be refined in another case where orbital 

parameters e, i and  are such that not only c2  0, but c1 is close to its bifurcation 

value of 0.6. Under such conditions, the (, e) plane develops a pair of singular 

points. Integral surfaces с2 (, е) deform along с1 = 0.95; 0.6; 0.05; 0 (Fig. 5, from 

above down). First, a sufficiently smooth surface develops singularities (с1 = 0.6) and 

then does depressions and “discharges” (с1 = 0) along which the phase flow 

«discharges» onto the boundary of the domain (е = 1). When с1  0.6 and с2 0 the 

evolutionary equations become extremely sensitive to any perturbations of the double 

averaged Hill problem and, hence, their solution may undergo qualitative changes.  
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The Fig. 6 shows the separatrices с2 = 0 in the plane of the initial parameters (i0, 

0). The circles and triangles, respectively indicate the -librators and orbits that 

actually proved to be circulatory. The asterisks indicate the peculiar orbits of three 
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pericenter arguments  of these orbits vary within limited intervals about the 

equilibrium value of 90.  

 

 

 

 

 

 

Fig. 7. Time dependences of the elements of the 

evolving orbit for the Jovian satellite J34 

(Euporie) as the result of the numerical 

integration of the rigorous equations of motion. 

 

 

This paradox is due to strong periodic solar perturbations that are neglected in 

the double averaged problem. The Fig. 8 shows the curves с1 = 0.6 and the above 

orbits in the plane of initial parameter values (i0, e0).  

 

 

Fig. 8. Real and supposed  -  

librators in the plane (i0, e0); sign 

 -  circulates for 4 satellite 

orbits. 

 

 

 

When с1  0.6, it is the unaccounted about six-year periodic perturbations (with 

half of the Jovian orbital period) that introduce qualitative changes in the behavior of 

the evolution of  for the above orbits. Taking into account such perturbations in the 

singly averaged model allowed qualitatively to explain the librational behavior of the 
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corresponding arguments of the pericenters. It is possible to construct analytically 

special surface  

                        f [e, h = (t)-1(t),  = ±90°] = Cd/dt.                                  (4) 

The image of this surface is indicative of the reversal of the sign of derivative of 

with respect to t when  =  90. Furthermore, for satellite J34 (Euporie) we also 

quantitatively confirmed the domain of variation of  to span from 64 to 116. For 

this satellite Fig. 9 shows the phase points on the (, e) plane, whose positions were 

computed by numerically integrating the singly averaged Hill problem over a 10000-

year long time interval.  

 

 

 

 

 

 

 

 

The phase pattern of «classical»  - librators, which are in the state of the 

Lidov-Kozai resonance, resembles a rather narrow ring-shaped domain. By contrast, 

the phase points of the orbit of J34 (Euporie) fill virtually the entire domain of 

libration. The orbits of the Jovian satellites Kore and S/2003 J3 exhibit similar 

patterns. Note that the ranges of eccentricity variations are wider than those obtained 

from the strict numerical solution. Therefore the averaged evolutionary model for the 

orbits of these three Jovian satellites is in need of further refinement. 
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