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A magnetic attitude control system, owing to absence of moving parts and 

certain simplicity of realization, is common used in practice. Such kind of systems 
require low power, are relatively lightweight and inexpensive. Due to these features 
the active magnetic attitude control system is one of the most common attitude 
control system implemented on board of small satellites. The serious limitation 
during their realization is a control torque vector direction singularity. Control 
systems with magnetic actuators combined with other active or passive control 
elements, for example with a gravitational boom and/or with flywheels, are more 
effective and more often are realized in practice. In the present work a dynamically 
symmetrical satellite equipped by a pitch flywheel and active magnetic control 
system is considered. The general approaches of magnetic control algorithm design 
are considered. Realization of the proposed method is illustrated by some special 
cases. 

 
Key words: magnetic attitude control system, pitch flywheel, control algorithm 

design 
 
Активное магнитное управление динамически симметричным 

спутником, оснащенным тангажным маховиком. А.А. Дегтярев, Хао-Ши 
Чанг, М.Ю. Овчинников. Препринт ИПМ им. М.В. Келдыша РАН, Москва, 
31 страница, 17 рисунков, библиография: 12 наименований. 

 
Магнитные системы ориентации конструктивно просты, просты в 

реализации, не потребляют значительных энергетических ресурсов спутника, 
имеют малую массу и недороги. Благодаря этому магнитные системы часто 
устанавливают на малых аппаратах. Серьезным ограничением при их 
реализации является тот факт, что управляющий механический магнитный 
момент всегда лежит в плоскости перпендикулярной вектору напряженности 
геомагнитного поля. Системы управления, в которых магнитные актюаторы 
сочетаются с другими активными или пассивными системами, например с 
гравитационными или маховичными системами, более эффективны и чаще 
всего реализуются на практике. В работе рассматривается реализация 
активного магнитного управления динамически симметричным спутником, 
оснащенным тангажным маховиком. Рассматриваются общие подходы к 
построению управления подобной системой. Реализация предложенного метода 
иллюстрируется на примере частных случаев. 

 
Ключевые слова: активная магнитная система управления, тангажный 

маховик, разработка алгоритма управления 
 



3 
 

 

Introduction ..................................................................................................................... 4 

1. Equations of motion ................................................................................................... 4 

2. Geomagnetic field model ........................................................................................... 6 

2.1. Inclined dipole model .......................................................................................... 7 

2.2. Direct dipole model ............................................................................................. 7 

2.3. Averaged geomagnetic field model ..................................................................... 7 

3. Control low synthesis ................................................................................................. 8 

3.1. Equilibrium orientation existence and stability ................................................... 9 

3.2. Asymptotical stability of the equilibrium orientation ....................................... 11 

4. Some special cases of the magnetic control synthesis ............................................. 12 

4.1. One-axis controlled rotation .............................................................................. 12 

4.1.1 Results of numerical integration ................................................................. 15 

4.2. Motion of a dynamically symmetrical satellite ................................................. 19 

4.2.1 The conditions of required orientation existence ....................................... 19 

4.2.2 Stability conditions of required orientation ................................................ 20 

4.2.3 Asymptotical stability of required orientation ............................................ 21 

4.2.4 Results of numerical integration. ................................................................ 21 

Conclusion ...................................................................................................................... 23 

References ....................................................................................................................... 24 



4 
 

 Introduction 

Motion of the satellite equipped with a magnetic attitude control system 
(MACS) is considered1. The satellite is actuated by a set of mutually perpendicular 
magnetic coils. The concept is that interaction between the Earth’s magnetic field and 
a magnetic dipole generated by the coils results in a mechanical torque used for 
attitude control. Such kind of systems, owing to absence of moving parts and certain 
simplicity of realization, are common used in practice for tumbling of a satellite, 
flywheel unloading, disturbed motion damping and even to provide a unique three-
axis orientation. Magnetic control is attractive for small, low cost satellites in low 
Earth orbits. Magnetic systems require low power, are relatively lightweight and 
inexpensive. 

Satellite three-axis orientation by active MACS only is considered, for example 
in [1-5]. However, realization of the control systems meets difficulties. The most 
serious one is a control torque vector direction limitation. It can be generated only 
perpendicular to the geomagnetic field vector induction. 

Control systems with magnetic actuators combined with other active or passive 
control elements, for example with a gravitational boom and/or with flywheels, are 
more effective and more often are realized in practice [6-8]. However, there is a study 
[4] where advantage of “pure” MACS for three-axis orientation with respect to an 
orbital reference frame without the boom is shown. 

In the present work a dynamically symmetrical satellite equipped by a pitch 
flywheel and active magnetic control system is considered. Flywheel provides one-
axis satellite orientation as its angular momentum vector is collinear to the satellite’s 
dynamic symmetry axis and perpendicular to Kepler’s orbit plane. The magnetic coils 
provide three-axis orientation of the satellite. 

The main idea of a considered magnetic control algorithm is a synthesis of two 
control components. The first component orients a satellite providing the Lyapunov 
stability of the attitude and the second one provides an asymptotical stability of 
equilibria and carries out oscillation damping. Both components of control have the 
same physical nature and are realized simultaneously by the same actuators. Here the 
general approaches of magnetic control algorithm design are considered. Realization 
of the proposed method is illustrated by some special cases. 

1. Equations of motion 

Consider the motion of a gyrostat-satellite subjected to gravitational and 
magnetic control torques. The latter appears due to interaction between the Earth 
magnetic field and a magnetic dipole moment generated by the coils. We introduce 
two right-hand Cartesian coordinate frames with origin in the satellite center of mass 
O. 1 2 3OX X X  is the orbital reference frame (ORF). The axis 3OX  is directed along 
                                                 

1 The work is supported by the Russian Foundation for Basic Research (Grant 
07-01-92001) and the National Scientific Council of Taiwan (Project RP07E03). 
 



5 
 

the radius-vector of the satellite center of mass with respect to center mass of the 
Earth; the axis 2OX  is alongwith the normal to the orbital plane, the axis 1OX  

comprise completed right-hand reference frame. 1 2 3Ox x x  is the satellite body-fixed 

reference frame (BRF);  ( 1, 2,3)kOx k   are the principal central axes of inertia of the 
satellite.  

The orientation of the satellite BRF with respect to ORF is determined by the 
angles  ,   and   (see Figure 1). 

 

Figure 1. Orbital and body-fixed reference frames relation 

The direction cosines of the axes kOx  in the orbital reference frame cos( , )ij i ja X x  

are written as 

,coscos
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(1)

Kinematic equations of the satellite attitude motion have the form  

0 21 0 21

0 22 0 22

0 23 0 23

( ) ,

( ) sin ,

( ) cos .

p a p a

q a q a

r a r a

   

    

    

    

    

    

 





(2)

In the equations (2) rqp ,,  are the projections of the satellite angular velocity in the 

axes kOx ; 0  is the angular velocity of the orbital motion of the satellite center of 
mass; The dot designates differentiation with respect to time. 

Dynamic equations of the satellite attitude motion have the form  
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ˆ ˆ .gr magn

d

dt
      




K
J J K M M     (3)

Here ˆ = diag(A,B,C)J  is the tensor of inertia of the satellite ( CBA ,,  are its 
principal central moments of inertia),   is satellite angular velocity vector and K is 
flywheels’ (internal i.e. with respect to BRF) angular momentum vector. The 
projections of the satellite internal angular momentum in the axes kOx are as follows 

1
1

n

j j j
j

h J  


  ,  2
1

n

j j j
j

h J  


  ,  3
1

n

j j j
i

h J  


    
 

where jJ  is an axial moment of inertia of a corresponding flywheel, and , ,j j j    

are flywheel spin-axis orientation angles with respect to BRF. Gravitational torque 
with respect to axes kOx  has the form 

31 31
2
0 32 32

33 33

ˆ3 .gr

a a

a a

a a


   
       
   
   

M J  

 

 
The control magnetic torque affecting the satellite is 

magn  M m B.  (4)

Here m  is a total dipole moment produced by the coils mounted on the satellite, B  
is the induction vector of the Earth magnetic field. 

2. Geomagnetic field model 

Following the Gauss theory 

mgrad U H  (5)

where H is the geomagnetic field intensity and mU  is its potential which can be 
written down in the form of decomposition on the spherical harmonious functions 

 
1

1 0

cos sin (cos ).


 

   
 

 
n n

m m me
n n n

n m

R
U R g m h m P

r
    (6)

Here , ,r    are satellite’s center of mass spherical coordinates, ,m m
n ng h  are given 

tabulated coefficients, (cos )m
nP   are the associated Legendre functions.  

 Notation: the term “magnetic field” is applied to two various vector fields 
designated as B  and H . In the International System of Units (SI) 0B H  where 

7 2
0 4 10 N A         is free space permeability. 

The first terms of the harmonious series (6) permit a simple physical 
interpretation. 
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2.1. Inclined dipole model 

First order terms (n=1) in series (6) constitute the potential of a dipole which is 
located in the center of the Earth and its dipole moment is equal to 

22 27.812 10m A m    . The dipole axis is tilted to the axis of the Earth rotation 

with angle 168.5o
m  . Vector H creates a conic surface in the Kenig reference 

frame with the origin in point O during its orbital motion. The first axis of the 
reference frame is collinear to the direction from the Earth center to the orbit 
ascending node and the third one is collinear to the spin axis of the Earth. 

This geomagnetic field interpretation named Inclined Dipole Model. 

2.2. Direct dipole model 

In theoretical study a simpler model of the geomagnetic field is used. Since the 
angle m  is insignificant and satellite’s orbital period, as a rule, is much shorter than 

period of the Earth spin rotation, assuming that 0m , obtain a Direct Dipole 
Model. In this case the projections of the geomagnetic field intensity in the axes of 
ORF are [12]: 

1 2 33 3 3
cos sin , cos , 2 sin sin   m m mH u i H i H u i

r r r

  
. (7)

Here r is orbit radius, i is orbit inclination and u is latitude argument. According to 
this model, the intensity vector varies both in size and direction and forms the conic 
surface which gets closed up for half of a satellites orbit. Value of the geomagnetic 
field intensity vector is as following 

2 2
3

1 3sin sinm i u
r


 H . 

 

2.3. Averaged geomagnetic field model 

Simpler model of the geomagnetic field is described in [12]. Vector H rotation 
velocity is considered constant and is equal to its average velocity along the orbit. 
Vector H  magnitude is considered to be constant too. The given model is called 
averaged geomagnetic field model. According to this interpretation, the vector H  
forms a direct circular cone. An angle between cone generator and orbit plane is 
equal to the orbit inclination (see Figure 2). The vector H terminus (end point) 
moves on the cone base with the constant angular velocity which is equal to double 
satellite orbital speed. 

The projections of the geomagnetic field intensity vector in the axes of ORF 
are as follows 

1 2 33 3 3
cos sin , cos , sin sin   m m mH u i H i H u i

r r r

  
. (8)

The vector H magnitude can be equal, in particular, to a simple mean from its 
minimum and maximum values 
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 2
3

1 1 3sin
2

m i const
r


   H  

 

or to an integral mean for one revolution period 

2 2
3

0

1 3sin sin .  m i u du const
r




H  
 

 

Figure 2. An averaged geomagnetic field model interpretation 

3. Control low synthesis 

The main idea of the considered magnetic control algorithm is a synthesis of 
two control components. The first component defines the required satellite orientation 
and provides its stability in Lyapunov’s sense and the second one provides an 
asymptotical stability of equilibria and carries out oscillation damping. Both 
components of control have the same physical nature and are accomplished 
simultaneously by the same coils. So, we separate magnetic control torque (4) in two 
parts. The first one is a “restoring” torque and the second one is a “damping” torque, 

_ _

.

magn magn r magn d r d

r d

+ = ,



  M M M m B + m B

m = m + m
 (9) 

The satellite equation of motion (3) can be considered as following 
 = f( )+ g( , , t)x x x u  (10) 

where x  is the satellite state vector, f( )x is a conservative autonomous term 
responsible for existence of the equilibrium and its Lyapunov’s stability and 
g( , , t)x u  is a damping magnetic control 

dg( , , t)=x u m B .  

 Restoring dipole moment rm  can be considered as a constant for a short time. 
Taking into account this assumption we write conservative terms as follows 
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ˆ ˆ 
         

 


 gr r

d

dt
-1 K

J J K M m B    . (11)

For equations (11) and (2) the generalized integral of energy (the Jacobi integral) 
 2 0J = T T П   

is as following in explicit form 

     

   

2 2 2 2 2 2
0 31 32

3
2 2 2
0 21 23 0 2

1

3 3 3

1 1 2 2 3 3
1 1 1

31
2 2

1

2

.


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         

       

   



  

i i
i

ri i ri i ri i
i i i

J Ap Bq Cr A C a B C a

B A a B C a h a

B m a B m a B m a const



 
 

(12)

Here rim  are the projections of the restoring dipole moment rm  on the axes of the 
BRF. 

The generalized energy integral (12) can be considered as the Lyapunov 
function for equations (11) and we denote expression 

 0W = П T  (13)

as a changed potential energy and further we use it for search and stability analysis of 
equilibrium orientations of the equations conservative part (11). 

3.1. Equilibrium orientation existence and stability 

The satellite relative equilibrium orientations with respect to ORF are 
determined by stationary points of the function (13), i.e. by the solutions of the 
following equations 

W W W
= 0, = 0, = 0.

α β γ

∂ ∂ ∂
∂ ∂ ∂  

 

It is necessary to note that it is difficult to obtain full set of these equations’ solutions 
(full set of possible satellite orientations) as a function of inertia and magnetic 
parameters. 

On the other hand, we can formulate this problem as following. Let us search 
the restoring dipole moment of the magnetic coils which provides required 
orientation of the satellite for given inertia parameters and given parameters of the 
internal angular momentum. In some special (trivial) cases the required orientation 
existence of the equations (11) can be determined by the solution of a matrix equation 

ˆ = 0Am B   

where Â  is a corresponding direction cosines matrix. 
The satellite stationary motion is stable if stationary values of variables turn 

function (13) into a minimum. If the function W does not accept the minimum value 
in the stationary motion one can conclude instability of the stationary motion. To 
analyze an extremum of the function (13) let us obtain its quadratic form. Denote 
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0 0 0, ,               

where  ,  ,   are small deviations from the satellite equilibrium 0 const   , 

0 const   , 0 const   . Then the energy integral takes the form 




2 2 2 2 2 2 2
0
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2
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Here the symbol *  designates the terms of the third and higher order with respect to 
,  ,     , 
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     

 

12 33 13 32 1 2 33 3 32

3 2 13 3 12

1
3

2
1

;
2

r r
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A B C a a a a B m a m a

B m a m a

       
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  2
0 0 0 0 0, , , , .ij ij i i i ia a h h B B        

 
It follows from the Lyapunov theorem that solution 0  , 0  , 0   is 

stable if the quadratic form 
  AAAAAA 222222    

is positive-definite, that is, the following inequalities 
2

2 2 2

A > 0, A A - A > 0,

A A A + 2A A A - A A - A A - A A > 0

   

           
 (15)

are valid. The choice of the coil restoring dipole moment components rim  satisfying 
the condition (15) provides stability of considered orientation. 

3.2. Asymptotical stability of the equilibrium orientation 

For the equations (11) the Lyapunov function exists. Taking into account 
damping torque and considering completed equation of motion (10), the function 
derivative has the form 

                    
 

V V V
V = = f( )+ g( , , t) g( , , t).x x x u x u

x x x
 (16)

Following the Lyapunov theorem the condition of the equilibrium orientation 
asymptotical stability has the form V < 0. In our case the system state vector is 

 , ,= p, q, r,  x . (17)

The damping control torque is as following 

 dg( , , t)= ,0,0,0x u m B . (18)

So, it is enough to consider just satellite relative motion kinetic energy as the 
Lyapunov function candidate. In this case conditions (16)-(18) can be rewritten as 

      0
  

   
  


d d d1 2 3

V V V
V = + +

p q r
m B m B m B . 

Rewrite it in a detailed form 
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0.

 
 
  
      

      
  
 

 

 

 



3 3

3 di 2i 2 di 3i
i=1 i=1

3 3

1 di 3i 3 di 1i
i=1 i=1

3 3

2 di 1i 1 di 2i
i=1 i=1

B m a -B m a

Ap

V = Bq B m a -B m a

Cr

B m a -B m a

 
(19)

The choice of the coils damping dipole moment components dim  satisfying the 
condition (19) provides stability of the considered orientation. 

4. Some special cases of the magnetic control synthesis 

As mentioned earlier, it is not so easy to solve a problem of the magnetic 
control synthesis in general case. In this section some special cases which adopt the 
analytical solution and confirm the perceptivity of the chosen approach will be 
considered. Let us consider the following system configuration: 

 the satellite is an axisymmetrical body (А=С); 
 the flywheel spin axis coincides with the satellite dynamic symmetry axis, 

that is, 1 3 20, 0  h h h ; 

 magnetic coils are collinear to the axes of BRF. 
We consider the satellite motion in a polar orbit, that is, 2 0B   assuming the 
averaged geomagnetic field model (8). The system state vector is supposed to be 
known at each moment of time. 
 It is well known that at a certain relationship between system parameters the 
gyrostat-satellite has equilibrium orientation. At the equilibrium the flywheel angular 
momentum is perpendicular to the orbit plane (see [9-11] where completed analysis 
of available gyrostat equilibria is given). The satellite in axisymmetrical 
configuration has one-parameter family of solutions. By other words, the flywheel 
provides one-axis orientation of the satellite. Magnetic torque (9) will be considered 
as a control torque to provide three-axis orientation of the satellite. We consider the 
required orientation 

0,0,0    (20)
At the first stage we pay attention to the system with one degree of freedom, 

namely, to the rotated planar disk equipped with the orthogonal magnetic coils 
located in its plane. Vector B  has the constant magnitude and rotates with constant 
angular velocity in a plane parallel to the disk. Further a method of the magnetic 
control synthesis providing asymptotical stability of the required orientation is 
considered. 

4.1. One-axis controlled rotation 

Consider the rotation of the axisymmetrical disk subjected to magnetic control 
torque which is resulted by interaction of the external magnetic field with a magnetic 
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dipole moment generated by the coils the disk mounted on. 1 2 3OX X X  is the inertial 

reference frame (IRF) and 1 2 3Ox x x  is the disk-body reference frame (DRF). 

 ( 1, 2,3)kOx k   are the principal central axes of inertia of the disk. Axes 1OX  and 

1Ox  coincide. External magnetic field vector B  has the constant magnitude and 
rotates in the disk plane with constant angular velocity. The equation of motion in 
this case is 
         J   m B   

where J  is an axial moment of inertia of the disk and m  is a dipole moment of the 
disk. It is necessary to construct magnetic control (9) which provides an existence 
and stability of required orientation α = α0. 
 First of all, let us consider the equilibria existence problem. Assuming the 
restoring dipole moment for a short time is a constant value, we write disk potential 
energy as 

               1 1 3 3 1 0 3 0      r r r r rП , B m cos m sin B m sin m cos   m B . 

The condition of existence of equilibria α = α0 has the form 

             
0

1 1 0 3 0 3 1 0 3 0 0



    

 r r r r
П

B m sin m cos B m cos m sin
 

   
 . 

Introducing following relationships  

          
1 1 0 3 0

3 1 0 3 0

,

,

 

 

D B sin B cos

D B cos B sin

 
  . (21)

we rewrite the condition of stability existence 
          1 1 3 3r rm D m D . (22)
Conditions of stability of required equilibria α = α0  is a positiveness of the second 
order of potential energy function 

             
0

2

1 1 0 3 0 3 1 0 3 02
0




    

 r r r r
П

B m cos m sin B m sin m cos
 

   
  

which can be rewritten in the form 
          1 3 1 1 0 r rm D m D . (23)
Thus, the conditions (22) and (23) determine values of the restoring dipole moment 
components which provide the Lyapunov stability of the required equilibria α = α0. It 
is obvious that it is necessary to add these conditions to conditions of a physical 
reliability of the moment created 
          ri rm m . (24)

Here rm  is the maximum value of the dipole moment of the coil. 
In Figure 3 and in the Table 1 the scheme of a choice of the dipole moments 

satisfying to conditions (22) - (24) is resulted. 
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Ошибка! Закладка не определена.

 

Figure 3. An algorithm of restoring dipole moment determination 

 
                  Table 1. Restoring dipole components determination 

1 30, 0 D D  1 30, 0 D D  

1 3D D  1 3D D  1 3D D  1 3D D  

3 r rm m  1 r rm m  3 r rm m  1  r rm m  

1 30, 0 D D  1 30, 0 D D  

1 3D D  1 3D D  1 3D D  1 3D D  

3  r rm m  1  r rm m  3  r rm m  1 r rm m  

 
The disk kinetic energy can be considered as a Lyapunov function, i.e. 

21

2
V J . Its first derivative in accordance with (16) is as following 

 

   
2

1 1 3 3 1 3 .


  


      


d

d d

V
V

J m B sin B cos m B cos B sin


    

m B
 

Asymptotical stability condition 0V   is satisfied if the expressions 

          
 
 

1 1 3

3 1 3

,d d

d d

m m sign J B sin B cos

m m sign J B cos B sin

  

  

     
    

 (25)

1rm  

3rm  

rm  

rm  

1 3 3 1 r rm D m D  

 
1 1 3 3

1 3




r rm D m D

D D
 

 
1 1 3 3

1 3




r rm D m D

D D
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are valid. It is a reason to choose current value of the magnitude of the damping 
magnetic moment of each coil to be proportional to the value of current angular 
velocity of the body, that is, 

          d dm k  . 

The latter equality is actually equivalent to the requirement of the magnetic torque 
dm B  proportionality to a current disk angular velocity (called viscous damping) 

and can be obtained from condition 2V   . 

4.1.1 Results of numerical study 

In this section some results of numerical simulation of the disk motion affected 
by the control dipole moments (22), (23) and (25) are presented for the following 
values of the satellite parameters 2kg m0.1875J  , 

7 140 4 10 /( ), 0.01
B

B N Am s     


, 21A mrm   . The initial conditions are 
010 , 0init init   . The required disk orientation is 0

0 30 . In Figures 4 and 5 
the synthesized restoring and damping coil dipole moments are presented. Behavior 

of the system state vector affected by the control torque magn r d    M m m B  is 

shown in Figure 6. 

Figure 4. Restoring dipole moments Figure 5. Damping dipole moments 
 

Remark 1 
In case of the restoring dipole moment in equilibrium orientation has an opposite 

direction with respect to the external magnetic field vector (restoring dipole moment 
components have an opposite sign as it is shown in Figure 4) another stable 
equilibrium orientation 0 0     exists. It obviously follows from conditions of 
existence and stability of the required orientation resulted above. In Figures 7- 9 this 
situation is presented. 
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Figure 6. System state vector behavior (required orientation is 0 ) 

 

Figure 7. Restoring dipole moments Figure 8. Damping dipole moments 

Remark 2 
If just one component of the restoring dipole moment ( 1rm  or 3rm ) has the 

opposite sign then the disk spins "permanently". It is necessary to carry out additional 
analytical research of this motion type and establish the relationship between restoring 
and damping magnetic torques (between corresponding dipole moments). In Figures 
10-12 the permanent disk rotation under constructed control is illustrated in case 1rm  

has opposite sign and in Figures 13-15 the same situation is considered if 3rm  has 
opposite sign. 
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Figure 9. System state vector behavior (required orientation is 0   ) 

Figure 10. Restoring dipole moments Figure 11. Damping dipole moments 
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Figure 12. System state vector behavior ( 1rm  has opposite sign) 

Remark 3 
The additional analysis of the synthesized magnetic dipole moments rm  and 

dm  (from the point of view of their interrelationship and with current angular 
velocity) is necessary for control algorithm optimization at various chosen functional. 
 

Figure 13. Restoring dipole moments Figure 14. Damping dipole moments 
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Figure 15. System state vector behavior ( 3rm  has opposite sign) 

4.2. Motion of a dynamically symmetrical satellite 

Now let us consider the satellite motion using task simplification introduced in 
section 4. The equation of motion (11) in this case takes the form  

   
   
   

   
   

2
0 32 33 2

3 1 21 3 23 2 1 31 3 33

1 1 31 3 33 3 1 11 3 13

2
0 31 32 2

2 1 11 3 13 1 1 21 3 23

3

0,

0,

3

0;

     

    

    

     

    







r r

r r

r r

Ap A B qr A B a a h r

m B a B a m B a B a

Bq m B a B a m B a B a

Ar B A pq B A a a h p

m B a B a m B a B a




 

(26)

and the generalized energy integral (12) is written as follows 

    

 

2 2 2 2 2
0 32

3 3
2 2
0 22 0 2 22 1 1 3 3

1 1

31
2 2

1

2 ri i ri i
i i

J A p r Bq B A a

A B a h a B m a B m a const



 
 

     

      
. 

4.2.1 The conditions of required orientation existence 

The conditions of required orientation (20) existence have the simplest form 
and can be obtained using matrix equation 

ˆ
r = 0Am B   

where Â  is a corresponding direction cosines matrix 
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0 0

0 0

0
ˆ 0 1 0 .

0

cos sin

sin cos

 

 
A =  

 

The equations defining conditions of equilibrium existence have the form 
 

   
 

2 2 1 0 3 0

1 3 0 1 0 3 1 0 3 0

2 1 0 3 0 2

0;

0;

0.

  

   

  

3 r r r

r r r r

r r 1 r

B m B m sin m cos

B m cos m sin B m cos m sin

B m cos m sin B m

 

   

 
 

 

Assuming a polar orbit, these equations can be resulted in 

1 1 0 3 0
2

3 1 0 3 0

; 0.r
r

r

m B cos B sin
m

m B sin B cos

 
 


 

  (27)

Taking into account the introduced expressions (21), the conditions (27) can be 
rewritten in the form (22). Thus, an existence of the required orientation (20) is 
provided with a determination of corresponding values of the restoring dipole 
magnetic moments of the coils rim  satisfying the conditions (27). 

4.2.2 Stability conditions of required orientation 

Factors of the square-law form of the changed potential energy (14) are as 
follows 

   

    

    

1 1 0 3 0 3 1 0 3 0

2
0 2 1 1 0 3 0

2
0 2 3 1 0 3 0

1 1
cos sin sin cos ,

2 2
1

1 3sin cos sin ,
2
1

1 3cos sin cos ,
2

r r

r

r

A m B B m B B

A B A h m B B

A B A h m B B







   

  

  

   

     

     

 

 0 3 1 0 3 0

0,

3 1
( )sin 2 cos sin ,

2 2
0

r

A

A B A m B B

A







  



   



 

(28)

and the conditions of its positive definiteness (15) take a form of following 
inequalities 

   
       

1 3 2 1

2
0 2 1 3

2 2
0 2 1 3 0 2 3 1

0,

1 3sin 0,

1 1
1 3sin 1 3cos

2 2

r r

r

r r

m D m D

B A h m D

B A h m D B A h m D



 

 

    

                 

 

0 3 3

3 1
( )sin 2 0.

2 2 rB A m D      
 (29)
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Let us notice that the first inequality in (29) together with the equilibrium 
existence condition (27) are completely equivalent to the corresponding conditions 
obtained by consideration of the one-axis rotation problem. 

4.2.3 Asymptotical stability of required orientation 

The asymptotical stability condition (19) can be rewritten in the form  

  0
3

di 3 2i 1 3i 3 1i 1 2i
i=1

V m ApB a + Bq B a - B a - rB a    . 

The damping magnetic moments of the coils providing negativity of the Lyapunov 
function derivative, for example, can be chosen as 

     di d 3 2i 1 3i 3 1i 1 2im m sign ApB a + Bq B a - B a - rB a . (30)

It is a simplest way of damping dipole moments definition. However, it is 
inconvenient to apply the derived approach into practice and it is necessary to search 
for other approaches to the expression (30) analysis. The choice of the damping 
magnetic moments of the coils which creates the mechanical torque proportional to 
relative angular velocity in this case is rather difficult (maybe it is even impossible). 

4.2.4 Results of numerical integration. 

In this section the results of numerical simulation of the satellite motion 
affected by the control dipole moments (27), (28) and (30) are presented for the 
following values of parameters 

 

 

2 2
0

7
0B

2 2
r d 2 0

A 0.0938 kg m ;B 0.1875 kg m ; 0.0017 rad sec ;

N
B 40 4 10 , 2 rad sec ;

Аm

4
m 1 A m , m 0.05 A m ;h B

3



         
 

      
 

         




. 

Satellite initial orientation is defined by 
î î î10 , 7 , 4      . 

Satellite required orientation is defined by 
î î î30 , 0 , 0      . 

 It is necessary to note the numerical solution of the inequalities (29) shows that 
last two inequalities at considered values of the system parameters are valid at any 
time. Thus, the method for determination of the restoring dipole moments is 
equivalent to the method obtained at the consideration of one-axis rotation motion 
(see Figure  3 and Table 1). 
 In Figure 16 the direction cosine 11a  (the cosine of the angle between the first 

axes of orbital and body-fixed reference frames) and the direction cosine 22a  (angle 
between the second axes) are shown. In Figure 17 the satellite absolute angular 
velocity components are presented. One can see that the constructed control provides 
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the required orientation. However, fast oscillations of the velocity components are 
observed. First of all, it is involved with imperfect determination of the damping 
dipole moment. The special attention will be paid to this problem solution within next 
study. 

 

Figure 16. Required orientation providing 

 

Figure 17. Angular velocity damping 
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Conclusion 

In the present paper the dynamically symmetrical satellite equipped by the 
pitch flywheel and active magnetic control system was considered. 

Magnetic control algorithm is based on the idea of synthesis of two control 
components. The first component provides the required satellite orientation and its 
Lyapunov stability. The second one provides an asymptotical stability. Both 
components of control have the same physical nature and are realized simultaneously 
by the same actuators. 

The general approaches for magnetic control algorithm construction were 
considered. The conditions of the required orientation existence and stability are 
obtained. Some algorithms defining the coils dipole moments which provide 
asymptotical stability of the required equilibria are proposed. 

Realization of the developed method is illustrated by some special cases. The 
pitch flywheel provides one-axis orientation of the dynamically symmetrical satellite, 
namely, provides a direction of an axis of dynamical symmetry along with the normal 
to the orbit plane. Active magnetic control in this case is used for the satellite 
unequivocal orientation in the orbit plane and for damping of small fluctuations in a 
vicinity of the required orientation. For this reason at the first stage of this work the 
one-axis rotation problem was considered. Rotation of dynamically symmetrical disk 
with respect to the fixed axis is investigated. The disk is equipped by the magnetic 
coils which dipole moment interacts with an external magnetic field developing the 
control torque. The vector of intensity of the geomagnetic field has the constant 
magnitude and rotates in a disk plane with a constant angular velocity. Based on the 
Lyapunov stability theory the magnetic control algorithm providing the asymptotical 
stability of the disk required orientation has been synthesized for the considered 
simplified problem. It is shown, that the similar control law can be used to provide a 
permanent rotation of the disk. 

The developed methods of magnetic control synthesis were applied to more 
complex problem. Motion of dynamically symmetrical gyrostat-satellite under the 
action of gravitational and control magnetic torques was considered. Magnetic 
control was used to provide three-axis satellite orientation with respect to ORF or, 
that is more exact, to provide the unequivocal required orientation in orbit plane. The 
satellite motion was considered in a polar circular orbit in the averaged geomagnetic 
field. The obtained results of numerical simulation of the satellite motion affected by 
the synthesized control showed availability of the considered approach. 

Here are the directions of further research: 
 the determination of an optimal relationship between the restoring and the 

damping magnetic torques and establishing of their explicit dependence for a 
current satellite angular velocity. 

 the development of the proposed control algorithm in more difficult cases 
(non-polar orbit; direct dipole model of the geomagnetic field); 

 the analysis of an algorithm efficiency at piecewise continuous control. 
 



24 
 

References 

1. Wang, P. and Shtessel, Y.B., "Satellite Attitude Control Using Only Magnetic 
Torquers", Proceedings of the AIAA Guidance, Navigation and Control Conf., Aug. 
1998, Boston, pp. 1490-1498. 
2. Wishniewski R., Blanke M., “Fully Magnetic Attitude Control for Spacecraft 
Subject to Gravity Gradient”, Automatica 35 (1999) 1201-1214. 
3. Psiaki M.L., Magnetic Torquer Attitude Control via Asymptotic Periodic Linear 
Quadratic Regulation, Journal of Guidance, Control, and Dynamics, V.24, N 2, 2001, 
pp. 386-394. 
4. Bushenkov V.A., Ovchinnikov M.Yu., Smirnov G.V., Attitude Stabilization of a 
Satellite by Magnetic Coils, Acta Astronautica, 2002, V.50, Issue 12, pp.721-728. 
5. Lovera M., Astolfi A., “Global Magnetic Attitude Control of Inertially Pointing 
Spacecraft”, Journal of guidance, control, and dynamics, V.28, N 5, September–
October 2005. 
6. Martel, F., Pal, P.K., and Psiaki, M.L., "Active Magnetic Control System for 
Gravity Gradient Stabilized Spacecraft", Proceedings of the 2nd Annual AIAA/USU 
Conf. on Small Satellites, Sept. 1988, Logan, Utah, pp. unnumbered. 
7. Shaviv G., Shachar M., TechSAT-1 – an Earth-Pointing, 3-Axis Stabilized 
Microsatellite, Paper IAA 94-IAA.11.2.767 at the 45th Congress of the International 
Astronautical Federation, Jerusalem, Israel, Oct.1994, 10p. 
8. Karmanov G., Shiryaev A., The TechSAT-1 attitude estimation by telemetry 
processing, Proceedings of the 39th Israel Annual Conference on Aerospace 
Sciences, Israel, Feb. 1999, pp.411-415. 
9. Sarychev, V.A. and Mirer, S.A., “Relative Equilibria of a Gyrostat Satellite with 
Internal Angular Momentum along a Principal Axis”, Acta Astronautica, 2001, V. 49, 
N 11, pp. 641–644. 
10. Sarychev, V.A., Mirer, S.A., and Degtyarev, A.A., “The Dynamics of a Satellite-
Gyrostat with a Single Nonzero component of the Vector of Gyrostatic Moment”, 
Kosm.Issled., 2005, V. 43, N 4, pp. 283–294. 
11. Sarychev, V.A., Mirer, S.A., and Degtyarev, A.A., “Dynamics of a Gyrostat 
Satellite with the Vector of Gyrostatic Moment in the Principal Plane of Inertia”, 
Kosm. Issled., 2008, V.46, N 1, pp. 61–74. 
12. Yanovsky B.M., Terrestrial Magnetism. Leningrad State University Publ., 1978, 
592 p. (in Russian) 


	Untitled.pdf
	prep2009_47
	Untitled.pdf
	prep_47


