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A magnetic attitude control system, owing to absence of moving parts and
certain simplicity of realization, is common used in practice. Such kind of systems
require low power, are relatively lightweight and inexpensive. Due to these features
the active magnetic attitude control system is one of the most common attitude
control system implemented on board of small satellites. The serious limitation
during their realization is a control torque vector direction singularity. Control
systems with magnetic actuators combined with other active or passive control
elements, for example with a gravitational boom and/or with flywheels, are more
effective and more often are realized in practice. In the present work a dynamically
symmetrical satellite equipped by a pitch flywheel and active magnetic control
system is considered. The general approaches of magnetic control algorithm design
are considered. Realization of the proposed method is illustrated by some special
cases.

Key words: magnetic attitude control system, pitch flywheel, control algorithm
design

AKTHBHOE MArHUTHOE YyNpaBjieHHe [JAUHAMHYECKHM CHMMETPHYHBIM
CIIyTHHKOM, OCHALIEHHBIM TAHTa)KHBIM MaxoBHUKOM. A.A. [lertsapes, Xao-IlIu
Yanr, M.IO. OBunnHukoB. Ilpenpunatr UIIM wum. M.B. Kengeimmia PAH, Mocksa,
31 cTpanuna, 17 pucyHkoB, oubdauorpadus: 12 HaumeHOBaHUI.

MarHuTHblE CHUCTEMBl OPUEHTALMM KOHCTPYKTHMBHO TIIPOCTBI, MPOCTHI B
peanus3anuy, He MOTPEOSIOT 3HAYMTENIbHBIX YHEPreTUYECKUX PECYpPCOB CIyTHHKA,
UMEIOT MAJIyl0 Maccy M HeIoporu. biaromaps 3TOMYy MarHUTHBIE CHCTEMBI 4acTO
yCTaHABIMBAIOT Ha Majblx ammaparaXx. Ceppe3HbIM OrpaHUYEHHEM NPH  UX
peanu3anuu SABISETCA TOT (aKT, YTO YHPABISIOMIMNA MEXaHUYECKUN MarHUTHBIN
MOMEHT BCEra JIEKUT B IUIOCKOCTH IEPIEHAUKYIAPHOM BEKTOPY HANPSKEHHOCTH
reoMarsuTHoOro mnoss. CHhcTembl yIpaBiICHHs, B KOTOPBIX MAarHUTHBIE aKTHOATOPBI
COYETAIOTCA C JAPYITMMH AKTUBHBIMHA WM IMACCUBHBIMM CHCTEMAaMH, HAIpUMEp C
IPaBUTAIMOHHBIMU WJIH MaxXOBHYHBIMU CHCTEeMaMu, Oojee 3(p(GEeKTHBHBI W 4Yallle
BCEr0 peanu3yloTcsi Ha ImpakTuke. B pabore paccmarpuBaercs peaiu3anus
AKTUBHOI'O MAarHWTHOTO YIIPABJIEHUS JIWHAMUYECKH CHMMETPUYHBIM CITyTHHKOM,
OCHAILIEHHBIM TaHTAKHBIM MaxOBUKOM. PaccMmarpuBaroTcss oOmue mnoAXoabl K
OCTPOEHUIO YIIPABJICHUS M0JI00HON cucTeMol. Peanu3anus npeioxeHHOro MeTo1a
WUTFOCTPUPYETCS HA MIPUMEPE YACTHBIX CIIy4YaeB.

KiroueBble ci10Ba: akTHBHAS MAarHUTHAs CUCTEMa YINPABIEHUS, TAHTAKHBIN
MaxOBHK, pa3paboTKa anropuTMa yrnpaBlICHUS
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Introduction

Motion of the satellite equipped with a magnetic attitude control system
(MACS) is considered'. The satellite is actuated by a set of mutually perpendicular
magnetic coils. The concept is that interaction between the Earth’s magnetic field and
a magnetic dipole generated by the coils results in a mechanical torque used for
attitude control. Such kind of systems, owing to absence of moving parts and certain
simplicity of realization, are common used in practice for tumbling of a satellite,
flywheel unloading, disturbed motion damping and even to provide a unique three-
axis orientation. Magnetic control is attractive for small, low cost satellites in low
Earth orbits. Magnetic systems require low power, are relatively lightweight and
inexpensive.

Satellite three-axis orientation by active MACS only is considered, for example
in [1-5]. However, realization of the control systems meets difficulties. The most
serious one is a control torque vector direction limitation. It can be generated only
perpendicular to the geomagnetic field vector induction.

Control systems with magnetic actuators combined with other active or passive
control elements, for example with a gravitational boom and/or with flywheels, are
more effective and more often are realized in practice [6-8]. However, there is a study
[4] where advantage of “pure” MACS for three-axis orientation with respect to an
orbital reference frame without the boom is shown.

In the present work a dynamically symmetrical satellite equipped by a pitch
flywheel and active magnetic control system is considered. Flywheel provides one-
axis satellite orientation as its angular momentum vector is collinear to the satellite’s
dynamic symmetry axis and perpendicular to Kepler’s orbit plane. The magnetic coils
provide three-axis orientation of the satellite.

The main idea of a considered magnetic control algorithm is a synthesis of two
control components. The first component orients a satellite providing the Lyapunov
stability of the attitude and the second one provides an asymptotical stability of
equilibria and carries out oscillation damping. Both components of control have the
same physical nature and are realized simultaneously by the same actuators. Here the
general approaches of magnetic control algorithm design are considered. Realization
of the proposed method is illustrated by some special cases.

1. Equations of motion

Consider the motion of a gyrostat-satellite subjected to gravitational and
magnetic control torques. The latter appears due to interaction between the Earth
magnetic field and a magnetic dipole moment generated by the coils. We introduce
two right-hand Cartesian coordinate frames with origin in the satellite center of mass

0. OX X, X, is the orbital reference frame (ORF). The axis OXj; is directed along

' The work is supported by the Russian Foundation for Basic Research (Grant
07-01-92001) and the National Scientific Council of Taiwan (Project RPO7E03).
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the radius-vector of the satellite center of mass with respect to center mass of the
Earth; the axis OX, is alongwith the normal to the orbital plane, the axis OX
comprise completed right-hand reference frame. Ox,x,x; is the satellite body-fixed
reference frame (BRF); Ox, (k=1,2,3) are the principal central axes of inertia of the
satellite.

The orientation of the satellite BRF with respect to ORF is determined by the
angles «, B and y (see Figure 1).

Figure 1. Orbital and body-fixed reference frames relation

The direction cosines of the axes Ox, in the orbital reference frame @, =cos(X,,x))
are written as

a,, =cosa cos f, a,, =—cos fsiny,

a, =sinasiny —cosasin fcosy, a, =-—sinacospf,

a, =sinacosy +cosasin fsiny, a,, =cosasiny +sinasin cosy, (1)
a,, =sin f3, a,; =Ccosa cosy —sinasin fsiny,

a,, =cos f3cosy,

Kinematic equations of the satellite attitude motion have the form
p=(a@+®)a, +7y=Dp+0ya,,
q:(d"‘a)o)azz+ﬂ5in7:a+a)oazza (2)
r=(a+my)ay + BCosy =7 +mya,.

In the equations (2) p, ¢, are the projections of the satellite angular velocity in the

axes Ox,; @, is the angular velocity of the orbital motion of the satellite center of

mass; The dot designates differentiation with respect to time.
Dynamic equations of the satellite attitude motion have the form



~

ja)+a)xja)+a)xK’+ﬁ=|\/l +M 3)
dt gr magn

Here J =diag(4,B,C) is the tensor of inertia of the satellite (A4, B,C are its

principal central moments of inertia), @ is satellite angular velocity vector and K'is
flywheels’ (internal i.e. with respect to BRF) angular momentum vector. The

projections of the satellite internal angular momentum in the axes Ox, are as follows
W= Ja,p;, =3 J B, h=3J70,
j=1 j=1 i=1

where J; is an axial moment of inertia of a corresponding flywheel, and ¢, , 5, ,7;
are flywheel spin-axis orientation angles with respect to BRF. Gravitational torque
with respect to axes Ox, has the form
as, as,
M, =3w;| a, [xJ| a, |.
as; as;

The control magnetic torque affecting the satellite is
Mmagn = mZ X B (4)

Here My is a total dipole moment produced by the coils mounted on the satellite, B
is the induction vector of the Earth magnetic field.

2. Geomagnetic field model

Following the Gauss theory
H=-gradU, (5)

where H is the geomagnetic field intensity and U,, is its potential which can be
written down in the form of decomposition on the spherical harmonious functions

0 n+l
U= Ré(iej Z(g;" cosmA+h" sin mﬁ.)Rl’" (cos 0). (6)

m=0

Here r, 4,60 are satellite’s center of mass spherical coordinates, g, , /, are given

tabulated coefficients, P,"(cos &) are the associated Legendre functions.
Notation: the term “magnetic field” is applied to two various vector fields
designated as B and H . In the International System of Units (SI) B = g¢,H where

ty =47 x107 [N / Az} is free space permeability.

The first terms of the harmonious series (6) permit a simple physical
interpretation.



2.1. Inclined dipole model

First order terms (n=1) in series (6) constitute the potential of a dipole which is
located in the center of the Earth and its dipole moment is equal to

i, =7.812x10% A-m*. The dipole axis is tilted to the axis of the Earth rotation

with angle 0, =168.5°. Vector H creates a conic surface in the Kenig reference

frame with the origin in point O during its orbital motion. The first axis of the
reference frame is collinear to the direction from the Earth center to the orbit
ascending node and the third one is collinear to the spin axis of the Earth.

This geomagnetic field interpretation named Inclined Dipole Model.

2.2. Direct dipole model

In theoretical study a simpler model of the geomagnetic field is used. Since the
angle 0,, is insignificant and satellite’s orbital period, as a rule, is much shorter than

period of the Earth spin rotation, assuming that 6, =0, obtain a Direct Dipole

Model. In this case the projections of the geomagnetic field intensity in the axes of
OREF are [12]:

H, = ’u—’"cosusmz H, &cosz H, = 2ﬁsmusmz (7)

r r
Here ris orbit radius, i is orbit inclination and u 1s latitude argument. According to
this model, the intensity vector varies both in size and direction and forms the conic
surface which gets closed up for half of a satellites orbit. Value of the geomagnetic
field intensity vector is as following

|H|:”—§1\/1+3sin2isin2u.
r

2.3. Averaged geomagnetic field model

Simpler model of the geomagnetic field is described in [12]. Vector H rotation
velocity is considered constant and is equal to its average velocity along the orbit.
Vector H magnitude is considered to be constant too. The given model is called
averaged geomagnetic field model. According to this interpretation, the vector H
forms a direct circular cone. An angle between cone generator and orbit plane is
equal to the orbit inclination (see Figure 2). The vector H terminus (end point)
moves on the cone base with the constant angular velocity which is equal to double
satellite orbital speed.

The projections of the geomagnetic field intensity vector in the axes of ORF
are as follows

H, = ’u—’"cosusmz H, ﬁcosz H3=—ﬁs1nus1nz (8)

r P r
The vector H magnitude can be equal, in particular, to a simple mean from its
minimum and maximum values



|H|:ﬁ(1+\/W):const

3
2r
or to an integral mean for one revolution period

H| ='u—m3j.\/l+3sin2 isin® u du = const.
nr

Normal to the
 orbit plane

Qrbit inclination
v angle

Orbit plane

Figure 2. An averaged geomagnetic field model interpretation

3. Control low synthesis

The main idea of the considered magnetic control algorithm is a synthesis of
two control components. The first component defines the required satellite orientation
and provides its stability in Lyapunov’s sense and the second one provides an
asymptotical stability of equilibria and carries out oscillation damping. Both
components of control have the same physical nature and are accomplished
simultaneously by the same coils. So, we separate magnetic control torque (4) in two
parts. The first one is a “restoring” torque and the second one is a “damping” torque,

M =M +M m.xB+m, xB,

magn magn _r magn _d -
_ )
my =m_+m,.
The satellite equation of motion (3) can be considered as following
X=f(x)+g(x,u,1 (10)

where X is the satellite state vector, f{X)is a conservative autonomous term
responsible for existence of the equilibrium and its Lyapunov’s stability and
g( X, U, 1) is a damping magnetic control

g(xX,u,t)=m,xB

Restoring dipole moment M, can be considered as a constant for a short time.
Taking into account this assumption we write conservative terms as follows



~

!

K
+M +m xB 11
dt gr r i| ( )

~

a):J'{—a)xJAa)—a)x K'—

For equations (11) and (2) the generalized integral of energy (the Jacobi integral)
J=T,-1T,+11

is as following in explicit form

1, _ _ 3
J:2(AP2 + B +C72)+§”02 [(4-C)a}, +(B-C)a, |+
1 A
+§w§[(B—A)a§1+(B—C)a§3]—a’ozhi“zf‘ (12)
i=1

3 3 3
- Bl Z m.a,; — Bz Z m.a,; — B3 Z m,a,; = const.

i=1 i=1 i=1
Here m,; are the projections of the restoring dipole moment M, on the axes of the

BREF.
The generalized energy integral (12) can be considered as the Lyapunov
function for equations (11) and we denote expression

W=11-T, (13)
as a changed potential energy and further we use it for search and stability analysis of
equilibrium orientations of the equations conservative part (11).

3.1. Equilibrium orientation existence and stability

The satellite relative equilibrium orientations with respect to ORF are
determined by stationary points of the function (13), i.e. by the solutions of the
following equations

a—W=0, w =0,é’W = 0.

oo, op oy
It is necessary to note that it is difficult to obtain full set of these equations’ solutions
(full set of possible satellite orientations) as a function of inertia and magnetic
parameters.

On the other hand, we can formulate this problem as following. Let us search
the restoring dipole moment of the magnetic coils which provides required
orientation of the satellite for given inertia parameters and given parameters of the
internal angular momentum. In some special (trivial) cases the required orientation
existence of the equations (11) can be determined by the solution of a matrix equation

AmxB=0
where A is a corresponding direction cosines matrix.

The satellite stationary motion is stable if stationary values of variables turn
function (13) into a minimum. If the function W does not accept the minimum value
in the stationary motion one can conclude instability of the stationary motion. To
analyze an extremum of the function (13) let us obtain its quadratic form. Denote

9




a:ao_"&: ﬂ:ﬂo—i_ﬁa 7/:7/0+77

where @, f3, 7 are small deviations from the satellite equilibrium & = &, = const ,

B =B, =const, y =y, =const. Then the energy integral takes the form

A172+Bq_2+C172+w0(A a’+ A+ A7 +24,,08 +

+24, ﬂ;/ +24,y a)+2 = const.

Here the symbol " designates the terms of the third and higher order with respect to

a, p. 7,

2
Aﬂﬂ:[(B A)—(B- C)Slnzj/o:|(1+3sil’120{0>0082ﬂ0—

— %(B —C)sin2aq,sin 3, sin 2y, + ha,, + ha,, + h,a,, +
1 . 1
5 — @y cosa, (m,, cosy, —m,;siny,) |+ E
1p
2

By[ m,a,, + @y sina,(m,, cosy, —m,;siny,) |,

2 2 - -
|:(a22 a23) (a3z — a3y ):| +hya,, + hay, +
3

l m.a,. +— B m_.a. +lB m.a..,
rllz ri 7210 ri " 3i

i) — 2

3

i=2 i=2

Mw

i=l1

(14)

Ay == (A=C)sin2a,5in 23, +3(B — C) (@, cos e, ~ T, sin ) @,

| _ . _ . _ .
- EBI (m, @, sine, +m,,a,, sina, +m @, siny, ) —

| Q. _
_EB( 1y, COS Qy + M, ,@,, COS Y, + M, ,ay, siny, ),

1

A, = —E(B—C)sinZ,BO sin2y, —3(B - C)(a,, cosy, —ay,siny, ) a,, —

: : _ l =_ :
— h, sin B, sin y,, — h,a@,, cos y, — EBICZ“ (m,,siny, +m,,cosy,)—

1 =

. 1= . _ _
_EB a21( m.,Smy, —m,; 00570) _533 Sin &, (mr2a23 _mr3a22)’
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A;/a = _3(8 - C)(6712‘733 + 67135732) -—B, (mr26733 —m,,a )+
+

1 = _ _
5B3 (mr2a13 —m.a, );
C_llj:ay(aoaﬂoa7/o)a hi:};/a)w Ei:Bi/a)g'

It follows from the Lyapunov theorem that solution a =«,, B=8,, ¥ =7, is
stable if the quadratic form

A0+ Ay B2+ A 7 +24, a8 +24, f7+24 7 a
1s positive-definite, that is, the following inequalities

2
A, >0, AaaAﬂﬂ - Aaﬂ > (),
2 2 2
AaaAﬂﬂAW + 2AaﬂAﬂyAa7 - AaaAW - AﬁﬁAW - A;/;/Aaﬁ > ()

are valid. The choice of the coil restoring dipole moment components 7,; satisfying

(15)

the condition (15) provides stability of considered orientation.
3.2. Asymptotical stability of the equilibrium orientation

For the equations (11) the Lyapunov function exists. Taking into account
damping torque and considering completed equation of motion (10), the function
derivative has the form

.oV oV oV
V=—|X=|— X)+g(X,Ut)=|— X, U,t). 16
(AL PP 14 T "
Following the Lyapunov theorem the condition of the equilibrium orientation
asymptotical stability has the form V' <0. In our case the system state vector is

x=[pqgrapr]. (17)
The damping control torque is as following
g(x,u,)=[m,xB,0,0,0]. (18)

So, it is enough to consider just satellite relative motion kinetic energy as the
Lyapunov function candidate. In this case conditions (16)-(18) can be rewritten as

.oV oV oV
V:;p{md X B}J +%{md x B}z +§{md X B}s <0,

Rewrite it in a detailed form

11



3 3
B, Z m,a,, -B, Z mg;ds;
i=1 i=1

3 3

V=|Bq | B]Zmdia3i _B3Zmdiali <0. (19)
i=1 i=1

Cr

3 3
B, Z m,a, -B, Z M ;A
i=1 i=1

The choice of the coils damping dipole moment components 7, satisfying the
condition (19) provides stability of the considered orientation.

4. Some special cases of the magnetic control synthesis

As mentioned earlier, it is not so easy to solve a problem of the magnetic
control synthesis in general case. In this section some special cases which adopt the
analytical solution and confirm the perceptivity of the chosen approach will be
considered. Let us consider the following system configuration:

e the satellite is an axisymmetrical body (4=C);

e the flywheel spin axis coincides with the satellite dynamic symmetry axis,

thatis, i, =h, =0, h, #0;
e magnetic coils are collinear to the axes of BRF.
We consider the satellite motion in a polar orbit, that is, B, =0 assuming the

averaged geomagnetic field model (8). The system state vector is supposed to be
known at each moment of time.

It is well known that at a certain relationship between system parameters the
gyrostat-satellite has equilibrium orientation. At the equilibrium the flywheel angular
momentum is perpendicular to the orbit plane (see [9-11] where completed analysis
of available gyrostat equilibria is given). The satellite in axisymmetrical
configuration has one-parameter family of solutions. By other words, the flywheel
provides one-axis orientation of the satellite. Magnetic torque (9) will be considered
as a control torque to provide three-axis orientation of the satellite. We consider the
required orientation

a=a, =0, y=0 (20)

At the first stage we pay attention to the system with one degree of freedom,
namely, to the rotated planar disk equipped with the orthogonal magnetic coils
located in its plane. Vector B has the constant magnitude and rotates with constant
angular velocity in a plane parallel to the disk. Further a method of the magnetic
control synthesis providing asymptotical stability of the required orientation is
considered.

4.1. One-axis controlled rotation

Consider the rotation of the axisymmetrical disk subjected to magnetic control
torque which is resulted by interaction of the external magnetic field with a magnetic

12



dipole moment generated by the coils the disk mounted on. OX, X, X, is the inertial
reference frame (IRF) and Oxx,x; is the disk-body reference frame (DRF).
Ox, (k=1,2,3) are the principal central axes of inertia of the disk. Axes OX, and

Ox, coincide. External magnetic field vector B has the constant magnitude and
rotates in the disk plane with constant angular velocity. The equation of motion in
this case is

Jo=ms xB
where J is an axial moment of inertia of the disk and My is a dipole moment of the
disk. It is necessary to construct magnetic control (9) which provides an existence
and stability of required orientation o = a.

First of all, let us consider the equilibria existence problem. Assuming the
restoring dipole moment for a short time is a constant value, we write disk potential
energy as

e (mr, B) =-B, (mrlcosa + mr3sina) — B, (—mrlsinao + mr3cosa0) ,

The condition of existence of equilibria o = o has the form

oll

— = B, (mrlsinao —m,;Cosa, ) + B; (mrlcosao +m,;Sing ) =0
oa a=q

0
Introducing following relationships

: : (21)
D; = Bcosa, — Bysina,
we rewrite the condition of stability existence
my Dy =m,;Ds. (22)
Conditions of stability of required equilibria a = a, is a positiveness of the second
order of potential energy function

011
Ll B
a=a,

which can be rewritten in the form

m.D;+m, D, >0. (23)
Thus, the conditions (22) and (23) determine values of the restoring dipole moment
components which provide the Lyapunov stability of the required equilibria a = ay. It
is obvious that it is necessary to add these conditions to conditions of a physical
reliability of the moment created

m. <. (24)

Here m, is the maximum value of the dipole moment of the coil.

= B, (m,coscty +m,ssinay ) — By (mrlsmao —m,scosay ) >0

In Figure 3 and in the Table 1 the scheme of a choice of the dipole moments
satisfying to conditions (22) - (24) is resulted.

13
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m Dy =m,;Ds

(D, = Dy)
MI’IDI = mr3D3
(D, < Dy)
’;rl
Dy =-m,;D,

Figure 3. An algorithm of restoring dipole moment determination

Table 1. Restoring dipole components determination
D, >0, Dy>0 D, >0, Dy<0

D, > D, D, < D, |D1|2|D3| |D1|<|D3|

m.y =m, m. =m m.y =m, m,, =—m,

D, <0, D;<0 D, <0, D;>0
Dy2|D| | Dy <|Ds| | |Dy]z|Dy] | |Dy|<|Dy

m,.y =—m, m., =—-m, | ms=-—m, m, =m,

The disk kinetic energy can be considered as a Lyapunov function, i.e.

1

5 2
V= EJ @ Tts first derivative in accordance with (16) is as following

= Jo| my, (~Bsina - Bycosa )+ ms ( Bicosa — Bysina) |.

Asymptotical stability condition V <0 is satisfied if the expressions

my, = —in Sign [Jw(—BlSina - B3cosa)] ,
25
Mgy = —M,Sign [Ja)(Blcosa — B3Sina)] (25)

14



are valid. It is a reason to choose current value of the magnitude of the damping
magnetic moment of each coil to be proportional to the value of current angular
velocity of the body, that is,

The latter equality is actually equivalent to the requirement of the magnetic torque
m, x B proportionality to a current disk angular velocity (called viscous damping)

and can be obtained from condition V = —@? .

4.1.1 Results of numerical study

In this section some results of numerical simulation of the disk motion affected
by the control dipole moments (22), (23) and (25) are presented for the following

values of the satellite parameters J =0.1875kg-m?,
‘E‘ =40x 47 x107 N /(Am), ;=0.01s"  m, =1A-m’. The initial conditions are

a,,=10°, ¢, =0. The required disk orientation is ¢, =30". In Figures 4 and 5
the synthesized restoring and damping coil dipole moments are presented. Behavior
of the system state vector affected by the control torque M., = [mr + md] xB is
shown in Figure 6.
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Figure 4. Restoring dipole moments Figure 5. Damping dipole moments

Remark 1
In case of the restoring dipole moment in equilibrium orientation has an opposite
direction with respect to the external magnetic field vector (restoring dipole moment
components have an opposite sign as it is shown in Figure 4) another stable
equilibrium orientation @, =&, —7 exists. It obviously follows from conditions of
existence and stability of the required orientation resulted above. In Figures 7- 9 this
situation is presented.
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Figure 6. System state vector behavior (required orientation is &)
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Figure 7. Restoring dipole moments Figure 8. Damping dipole moments

Remark 2
If just one component of the restoring dipole moment (7, or m,;) has the

opposite sign then the disk spins "permanently". It is necessary to carry out additional
analytical research of this motion type and establish the relationship between restoring

and damping magnetic torques (between corresponding dipole moments). In Figures
10-12 the permanent disk rotation under constructed control is illustrated in case m,,

has opposite sign and in Figures 13-15 the same situation is considered if #2,; has

opposite sign.
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Figure 9. System state vector behavior (required orientation is &, — 7 )
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Figure 10. Restoring dipole moments Figure 11. Damping dipole moments
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Figure 12. System state vector behavior (72,; has opposite sign)

Remark 3

The additional analysis of the synthesized magnetic dipole moments M, and
M, (from the point of view of their interrelationship and with current angular
velocity) is necessary for control algorithm optimization at various chosen functional.
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Figure 13. Restoring dipole moments Figure 14. Damping dipole moments
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Figure 15. System state vector behavior (7,5 has opposite sign)

4.2. Motion of a dynamically symmetrical satellite

Now let us consider the satellite motion using task simplification introduced in
section 4. The equation of motion (11) in this case takes the form

Ap+(A-B)qr-3a; (A-B)ayay —hyr +
+m,5 (Byay + Byayy ) —m,y ( Biay; + Byazy ) =0,
B +m,, (Byas, + Byayy) —m, (Biay, + Byay3 ) =0, (26)
Ar+(B—-A) pg—3a; (B-A)ayas, +hyp+
+m, (Biay, + Byays ) —m, ( Biay, + Byayy ) =0
and the generalized energy integral (12) is written as follows
1 o _ o\ 3
J= 2(A(p2 +r2)+Bq2)+§a)02 (B—A)a;, +
3 3 .
+ % w, (A—B)a;, - w,hya,, — B, Zm”.all. - B3Zm”.a3,. = const
i=1 =)

4.2.1 The conditions of required orientation existence

The conditions of required orientation (20) existence have the simplest form
and can be obtained using matrix equation

Am . xB=0
where A is a corresponding direction cosines matrix
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cosay 0 sina
A= 0 1 0
—sina, 0 cosa,
The-equations defining conditions of equilibrium existence have the form
Bsm, ., + B, (mrlsinao - mr3cosa0) =0;
B, (mr3cosa0 —m, Sing, ) —B; (mrlcosao +m,;Sing, ) =0;
B, (m, cosay +m,ssincy ) — B;m,, =0.

Assuming a polar orbit, these equations can be resulted in

m B,cosa, — B;xsina,
r1 _ b1 0 3 0 cm,, =0. 27)

m.;  Bisinay + Bycosa
Taking into account the introduced expressions (21), the conditions (27) can be

rewritten in the form (22). Thus, an existence of the required orientation (20) is
provided with a determination of corresponding values of the restoring dipole

magnetic moments of the coils m,; satisfying the conditions (27).

4.2.2 Stability conditions of required orientation

Factors of the square-law form of the changed potential energy (14) are as
follows

A, =5, (B, cosa, — B, sinozo)+%mr3 (B sina, + B, cosq ),
Ay :(B—A)(1+3sin2 a0)+h2+%mrl(§1 cosa, — B, sinao),
1 = . =
A, :(B—A)(1+3cos2 050)+h2 +Emr3(B1 sina, + B, cosao), (28)
4, =0,

: 1 o 2 o
A, = %(B—A) sin2a, —Emr3 (B1 cos o, — B; sin ao),
4,=0

and the conditions of its positive definiteness (15) take a form of following
inequalities
m_ D, +m_,D, >0,

(B—A)(1+3sin2 050)+h2 +m, D, >0,
{(B—A)(1+3sin2 a0)+h2 +%mr153}[(B—A)(l+3cos2 a0)+h2 +%mr351}—

_ E(B _ A)sin2a, —%mﬂli} > 0. (29)
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Let us notice that the first inequality in (29) together with the equilibrium
existence condition (27) are completely equivalent to the corresponding conditions
obtained by consideration of the one-axis rotation problem.

4.2.3 Asymptotical stability of required orientation
The asymptotical stability condition (19) can be rewritten in the form
3
V=2 m,| ApBa, +Bq(Ba; - Bya,)-7B,a, |<0
i=1

The damping magnetic moments of the coils providing negativity of the Lyapunov
function derivative, for example, can be chosen as
My, = —Mm,Sign [AﬁBsazi + Bq—(Bzasi -Bsa,, ) - 781“211 : (30)

It is a simplest way of damping dipole moments definition. However, it is
inconvenient to apply the derived approach into practice and it is necessary to search
for other approaches to the expression (30) analysis. The choice of the damping
magnetic moments of the coils which creates the mechanical torque proportional to
relative angular velocity in this case is rather difficult (maybe it is even impossible).

4.2.4 Results of numerical integration.

In this section the results of numerical simulation of the satellite motion
affected by the control dipole moments (27), (28) and (30) are presented for the
following values of parameters

A =0.0938 [kgmzj;B =0.1875 [kgmz];(oo =0.0017 [rad/sec];

\B\ —40x4nx107 {%} ®, =20, [rad/sec];

m, =1/ Am’|, @, =005 Am® |;h, :%Bo)o

Satellite initial orientation is defined by

a=10", B=7, y=4".

Satellite required orientation is defined by

a=30", B=0", y=0".

It is necessary to note the numerical solution of the inequalities (29) shows that
last two inequalities at considered values of the system parameters are valid at any
time. Thus, the method for determination of the restoring dipole moments is
equivalent to the method obtained at the consideration of one-axis rotation motion
(see Figure 3 and Table 1).

In Figure 16 the direction cosine @, (the cosine of the angle between the first

axes of orbital and body-fixed reference frames) and the direction cosine a,, (angle
between the second axes) are shown. In Figure 17 the satellite absolute angular
velocity components are presented. One can see that the constructed control provides
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the required orientation. However, fast oscillations of the velocity components are
observed. First of all, it is involved with imperfect determination of the damping
dipole moment. The special attention will be paid to this problem solution within next

study.
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Figure 16. Required orientation providing
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Figure 17. Angular velocity damping
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Conclusion

In the present paper the dynamically symmetrical satellite equipped by the
pitch flywheel and active magnetic control system was considered.

Magnetic control algorithm is based on the idea of synthesis of two control
components. The first component provides the required satellite orientation and its
Lyapunov stability. The second one provides an asymptotical stability. Both
components of control have the same physical nature and are realized simultaneously
by the same actuators.

The general approaches for magnetic control algorithm construction were
considered. The conditions of the required orientation existence and stability are
obtained. Some algorithms defining the coils dipole moments which provide
asymptotical stability of the required equilibria are proposed.

Realization of the developed method is illustrated by some special cases. The
pitch flywheel provides one-axis orientation of the dynamically symmetrical satellite,
namely, provides a direction of an axis of dynamical symmetry along with the normal
to the orbit plane. Active magnetic control in this case is used for the satellite
unequivocal orientation in the orbit plane and for damping of small fluctuations in a
vicinity of the required orientation. For this reason at the first stage of this work the
one-axis rotation problem was considered. Rotation of dynamically symmetrical disk
with respect to the fixed axis is investigated. The disk is equipped by the magnetic
coils which dipole moment interacts with an external magnetic field developing the
control torque. The vector of intensity of the geomagnetic field has the constant
magnitude and rotates in a disk plane with a constant angular velocity. Based on the
Lyapunov stability theory the magnetic control algorithm providing the asymptotical
stability of the disk required orientation has been synthesized for the considered
simplified problem. It is shown, that the similar control law can be used to provide a
permanent rotation of the disk.

The developed methods of magnetic control synthesis were applied to more
complex problem. Motion of dynamically symmetrical gyrostat-satellite under the
action of gravitational and control magnetic torques was considered. Magnetic
control was used to provide three-axis satellite orientation with respect to ORF or,
that is more exact, to provide the unequivocal required orientation in orbit plane. The
satellite motion was considered in a polar circular orbit in the averaged geomagnetic
field. The obtained results of numerical simulation of the satellite motion affected by
the synthesized control showed availability of the considered approach.

Here are the directions of further research:

e the determination of an optimal relationship between the restoring and the
damping magnetic torques and establishing of their explicit dependence for a
current satellite angular velocity.

e the development of the proposed control algorithm in more difficult cases
(non-polar orbit; direct dipole model of the geomagnetic field);

e the analysis of an algorithm efficiency at piecewise continuous control.
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