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 С.О. Карпенко, М.Ю. Овчинников, Д.С. Ролдугин, С.С. Ткачев 

Формирование и анализ алгоритма магнитной ориентации с использованием 

измерений углового датчика. Случаи солнечного датчика и магнитометра 

Рассматривается логика формирования алгоритма активного магнитного 

управления ориентацией спутника «Чибис-М», реализующего разворот его 

солнечных панелей на Солнце. При этом используются показания только 

солнечных датчиков. Уравнения движения интегрируются в квадратурах для 

осесимметричного аппарата при помощи методов асимптотического анализа. 

Для несимметричного спутника определяются устойчивые положения 

равновесия. 

Ключевые слова: активная магнитная система ориентации, алгоритм 

ориентации, осредненная модель магнитного поля Земли, солнечный датчик  
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Synthesis and analysis of geomagnetic control using attitude sensor data. Case of sun 

sensor and magnetometer use  

An active magnetic control synthesis for attitude guidance of «Chibis-M» 

microsatellite is considered. The only information required is the data from the sun 

sensor. Applicability of a control to achieve solar panels sun-pointing is studied. 

Equations of motions are analytically solved using averaging technique. The behavior 

of a system with respect to initial conditions and orbit parameters is studied.  

Key words: active magnetic control, control algorithm, averaged geomagnetic 

field model, sun attitude 
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Introduction 
Magnetic attitude control systems (MACS) are widely used for attitude control 

of satellites. They are especially attractive if a satellite has significant cost, mass or 

energy limitations. So, small satellites almost invariably have MACS. Small satellites 

often have fewer restrictions on attitude control system accuracy and time-response 

and MACS may be the only solution for low-power and low-cost spacecraft. MACS 

may be also used together with other actuators. The most common practice is initial 

angular velocity damping after the separation from the launch vehicle. This stage may 

be considered simply but it is necessary for other actuators, maybe with finer 

accuracy, to have spacecraft angular velocity below some critical value. 

Magnetometer is always used as attitude sensor when control is provided by 

MACS. So, failure of the magnetometer may end up in losing a satellite. In this case 

an algorithm implementing the data from another sensor for control synthesis is vital. 

In this paper a universal synthesis scheme is proposed. It is necessary to have an 

attitude sensor measuring a certain vector in the reference frame of a satellite which 

is also known in the inertial space via models. Magnetometer is one case of such a 

sensor, and corresponding algorithm called “-Bdot” is widely used for damping 

satellite’s angular velocity [1]. 

A general control scheme is similar to that of “-Bdot” is proposed in this paper. 

The algorithm implements the sun sensor as attitude sensor. Note that the direction to 

the Sun is assumed permanent since the time scale of the problems considered is 

about a day. 

1. Problem statement 

Here we introduce all necessary reference frames, equations of motion and 

corresponding variables, geomagnetic field model and general analysis method. 

Dealing with MACS one should have a geomagnetic field model. Let us 

describe the model used in this work. Geomagnetic induction vector in a given point 

in orbit is often approximated by the Gauss decomposition [2]. This model, however, 

cannot be used for analytical analysis. So, some simplifications are introduced. 
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Considering three front terms in the decomposition, one obtains the inclined dipole 

model. The geomagnetic field is one of the dipole tilted in angle of 168˚26’ to the 

Earth’s axis and positioned in its center. This model allows rather simple analytical 

representation but it is still too complicated to obtain the solution of equations of 

motion in the explicit form. Further simplification called the right dipole model is 

widely used in analytical and numerical analysis. In this case geomagnetic field is 

represented as one of the dipole placed in the center of Earth and directed antiparallel 

to its axis. Geomagnetic field induction vector moves almost uniformly on the near-

circular cone when satellite moves along the orbit. 

This model still does not allow us to obtain the solution of equations of motion 

in the explicit form. So, it is logical to make following simplification, modeling the 

field induction vector moving uniformly on the circular cone. We introduce inertial 

reference system OaY1Y2Y3, where Оa is the Earth’s center, OaY3 axis is directed along 

the Earth’s axis, OaY1 lies in the equatorial plane and is directed to the ascending 

node of the satellite’s orbit, OaY2 is directed so the system to be right-handed. If we 

now translate the field induction vector to the Earth’s center then the cone is tangent 

to the OaY3 axis and its axis lies in the OaY2Y3 plane. The cone half- angle is given by 

[3] 

 2 2

3sin2
tg

2 1 3sin 1 3sin

i

i i


  
       (1.1) 

where i  is the orbit inclination (Fig.1). Geomagnetic field intensity vector moves 

uniformly on the cone with double orbital velocity, 0 0 02 2t u       . Here 0  

is orbital velocity. Without loss of generality we assume 0 0  . 
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Fig. 1. Averaged geomagnetic field model 

This sometimes called averaged model is used in this paper. Though it does not 

allow us to take into account non-uniformity of geomagnetic induction vector 

movement (as right dipole model does) and its diurnal change (as inclined dipole 

model does) it still allows us to describe geomagnetic field with proper accuracy, 

providing the balance between the authenticity and simplicity of equations. Detailed 

comparison of the models may be found in [2]. Geomagnetic induction vector in 

OaZ1Z2Z3 frame takes form 

0

sin sin2

sin cos2

cos

Z

u

B u

 
 

 
 
  

B .         (1.2) 

Let us introduce all necessary reference frames. 

OaZ1Z2Z3 is the inertial frame resulted from the rotation of OaY1Y2Y3 around OaY1 

axis by angle  . 

OL1L2L3 is the frame associated with the angular momentum of a satellite. О is 

the satellite’s center of mass, OL3 axis is directed along the angular momentum 

vector, OL2 is perpendicular to OL3 and lies in the plane parallel to OaZ1Z2 and 

containing O, OL1 is directed so the system is right-handed. 

Ox1x2x3 is fixed reference frame, its axes coincide with principal axes of inertia 

of a satellite. 
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Reference frame’s mutual orientation will be described in terms of direct cosines 

matrices ,Q A  presented by their elements 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

L L L

Z q q q

Z q q q

Z q q q

 , 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

x x x

L a a a

L a a a

L a a a

. 

We introduce indices , ,Z L x  to represent vectors in reference systems OaZ1Z2Z3, 

OL1L2L3 and Ox1x2x3. For example, for the first component of torque we write 

1 1 1, ,Z L xM M M  respectively. 

We will use the osculating, or Beletsky-Chernousko, variables. These variables 

are , , , , ,L       where L  is the angular momentum magnitude, ,   represent its 

attitude with respect to the inertial space OaZ1Z2Z3 (Fig. 2). Mutual Ox1x2x3 and 

OL1L2L3 frames attitude is expressed via the Euler angles , ,   . This variables set 

was first introduced by Bulgakov [4] representing the gyro motion. Beletsky 

proposed to use these variables for the axisymmetrical satellite [5], while Chernousko 

used them for the three-axis satellite [6]. Unperturbed motion in , ,    angles was 

proposed by Wittaker [7], however evolutionary equations were not considered. 

Direct cosines matrix Q  takes form 

cos cos sin sin cos

cos sin cos sin sin

sin 0 cos

    

    

 

 
 


 
  

Q .      (1.3) 

Matrix A  has the form 

cos cos cos sin sin sin cos cos cos sin sin sin

cos sin cos sin cos sin sin cos cos cos sin cos

sin sin sin cos cos

           

           

    

   
 

    
 
 
 

A . (1.4) 
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Fig. 2. Angular momentum attitude in the inertial space 

Three-axis satellite with inertia tensor ( , , )x diag A B CJ  obey the following 

equations [8], 

3L

dL
M

dt
 , 1

1
L

d
M

dt L


 , 2

1

sin
L

d
M

dt L




 , 

 

 

2 1

2 2

1 2

1 1 1
sin sin cos cos sin ,

1 sin cos 1
cos cos sin ,

sin

L L

L L

d
L M M

dt A B L

d
L M M

dt C A B L


    

  
  



 
    

 

 
     

 

  (1.5) 

 
2 2

1 2

sin cos 1 1
cos ctg ctg sin ctgL L

d
L M M

dt A B L L

  
    

 
     

 
 

where 1 2 3, ,L L LM M M  are the angular momentum components in OL1L2L3 frame. 

Axisymmetrical satellite ( ( , , )x diag A A CJ ) equations of motion are 

3L

dL
M

dt
 , 1

1
L

d
M

dt L


 , 2

1

sin
L

d
M

dt L




 , 

 

 

2 1

1 2

1
cos sin ,

1 1 1
cos cos sin ,

sin

L L

L L

d
M M

dt L

d
L M M

dt C A L


 


  



 

 
    

 

    (1.6) 

 1 2

1 1
cos ctg ctg sin ctgL L

d L
M M

dt A L L


        . 
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Averaging technique is used for the transient motion analysis [9]. To do so we 

assume that the control torque is small. Angular momentum change during one orbit 

revolution and one revolution about the center of mass is small in comparison with 

the angular momentum itself. In this case small parameter   may be introduced and 

equations (1.5) take form 

     0, , , , , ,
d d

t t
dt dt

   
x y

X x y y x y Y x y ,      (1.7) 

where  , , ,u  y  are fast variables while  , ,l  x  are slow ones. Averaging 

method may be used for the slow variables evolution analysis. Unperturbed motion is 

regular precession for the axisymmetrical satellite. This case is studied here and (1.6) 

are of the form 

     0, , , , ,
d d

t t
dt dt

   
x y

X x y y x Y x y .      (1.8) 

Variable   becomes slow one. Averaging over the time is identical to the averaging 

over fast variables. So it is necessary to simply average equations for the slow 

variables over the fast ones. This leads to the accuracy of the order   on the time 

span of the order of 1/  . Using averaged geomagnetic field model and 

axisymmetrical satellite allows the evolutionary equations to be solved in 

quadratures. 

We need equations (1.6) in the dimensionless form.  We introduce the argument 

of latitude 0 0( )u t t   instead of time, where 0t  is some fixed moment; 

dimensionless angular momentum l  according to 0L L l  where 0L  is the initial 

angular momentum magnitude; and dimensionless control torque M . Equations (1.6) 

are rewritten in the form 
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3L

dl
lM

du
 , 1L

d
M

du


 , 2

sin
L

d
M

du

 


 , 

 

 

1 21

1 22

cos cos sin ,
sin

cos ctg ctg sin ctg ,

L L

L L

d
l M M

du

d
l M M

du

 
   




       

  

   

 

 2 1cos sinL L

d
M M

du


     

where 
2

0

0

kB

L
  , 0

1

0

1 1L

C A




 
  

 
, 0

2

0

L

A



 . 

Small control torque leads to   and 
i




 being small. Fast variables are ( , ,u  ) 

and slow ones are ( , , ,l    ). This allows us to move to new simplified equations 

3 1 2

2 1

, , ,
sin

cos sin

L L L

L L
u u

dl d d
l M M M

du du du

d
M M

du 

  
 




  

  

 

     (1.9) 

where x  corresponds to the value averaged over all fast variables (it is not 

necessary to average over   for the axisymmetrical satellite). These equations 

represent slow angular momentum motion in the inertial space and angle between the 

axis of symmetry and the angular momentum.  

2. Control construction 

Let us first consider the control synthesis of well-known “-Bdot” algorithm [1]. 

We write equations of motion in the form 

d

dt
  

ω
ω Jω M , 

In case of a satellite subjected to the gravity-gradient torque equations of 

motions admit the Jacobi first integral 

      2

0 3 3 0 2

1
, 3 , ,

2
J    ω Jω e Je e Jω  
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where 3 2,e e  are unit vectors of radius-vector and normal to the orbital plane in the 

fixed frame. 

If a satellite is also subjected to the magnetic torque  M m B  this expression 

will no longer be the first integral. Let 

 2

00.5 3V J C B    

be the Lyapunov function candidate. Its derivative according to the equations of 

motion is 

   
3

0 2 0 2

1

i i i

i

dV
d M

dt
 



     M Ω e . 

This can be expressed as 

 
dV

dt
 m B Ω           (2.1) 

where 0 2 Ω ω e  is relative satellite velocity. Expression (2.1) allows us to find 

the dipole moment  

k m Ω B  

providing asymptotical stability of orbital attitude, that is the attitude while two axes 

of fixed frame coincide with radius-vector and normal to the orbit respectively. Here 

k  is a positive coefficient. 

In case of high satellite velocity, that is 0  ω , we have Ω ω  and the 

control law may be expressed as 

k m ω B .           (2.2) 

It can be further transformed to the form 

d
k

dt
 

B
m .           (2.3) 

This can be justified by the relation 

Z x
x

d d

dt dt
  

B B
AQ ω B . 

In case of a high satellite rate velocity the expression in the left side may be neglected 

and (2.3) became obvious if one considers (2.2). 
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Let us study control law (2.2). It provides damping of the absolute angular 

velocity. Suppose we do not have samplings from the magnetometer but instead from 

any other sensor. In this case we cannot use any of the algorithms mentioned above 

since they include magnetic field direction. So, we need a control law for 

magnetorquers which implements the information about any other vector S  rather 

than about B . The notation S  is chosen because the case of sun sensor is of particular 

interest in this paper. 

 

Fig. 3. Control law synthesis 

We decompose ω  and B  into components along vector S  and perpendicular to 

it (Fig. 3) 

II ω ω ω , II B B B . 

So, the control law (2.2) takes form 

   .II IIk k    m ω B ω B  

Let us consider the term 

 IIk  m ω B  

only as the control law. In this case we get 

 coskB   m ω S . 

Since 0 ω S  this can be written as 

 coskB  m ω S .         (2.4) 
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In case we have magnetometer readings S B  and, therefore, 0  , the control 

law (2.4) takes form (2.2). The control (2.4) may be considered as a general law for 

the satellite’s rate velocity damping while readings available from a sensor providing 

any unit vector S  in the fixed reference frame. Angle   between S  and B  is 

computed using models, defining those vectors in the inertial space for any given 

point in the satellite’s orbit. It is not clear whether satellite’s velocity is damped to 

zero value or not. Following control analysis shows that the terminal velocity is not 

zeroed. Control law (2.4) provides another important feature. It allows the one-axis 

attitude in the inertial space. This may be useful for the onboard batteries charge. 

Instead of using main actuators – reaction wheels or thrusters – magnetorquers may 

be used. This results in lowering power or fuel consumption. 

3. Axisymmetrical satellite analysis 

3.1. Averaged equations 

Consider an axisymmetrical satellite and equations (1.9) for the slow variables 

evolution. To get these equations we need to average the control torque given by 

 2

0 coskB   M ω S B . 

This can be written in OL1L2L3 frame as 

 2 2

0 cos cosL L L L LkB      M ω S ω B . 

First we find iLM  averaged torque components. Note that ω  should be 

averaged by   only. Therefore 


ω  can be found independently. To do so we write 

the angular velocity in a form 1

x x x

ω J L . Angular momentum in the OL1L2L3 frame 

has simple form  0,0,
T

L LL  and T

x LL A L  in the bound frame. Specifically, 

 31 32 33, ,
T

x L a a aL . This leads to the angular velocity in the bound frame 

31 32 33

1 1 1
, ,

T

x L a a a
A A C

 
  

 
ω . Finally moving to the OL1L2L3 frame, 
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11 31 12 32 13 33

21 31 22 32 23 33

31 31 32 32 33 33

1 1 1

1 1 1

1 1 1

L x

a a a a a a
A A C

L a a a a a a
A A C

a a a a a a
A A C

 
  

 
    
 
 
   
 

ω Aω . 

Averaging angular velocity over fast angle leads to 

2 21 1
0, 0, cos sinL L

C A
 

 
  

 
ω . 

cos  may be expressed in a form 

1 1 2 2 3 3cos Z Z Z Z Z ZB S B S B S           (3.1) 

where iZS  ( 1,2,3i  ) are considered constant since ZS  is the Sun direction vector in 

the inertial space. Its movement is very slow in comparison with the satellite 

movement. ZB  and cos  depend on the fast variable u  and averaged torque may be 

written as 

1 3

2 3,

2 2 1 1

cos

cos

cos cos

L L u

L L Lu u

L L L Lu u

S B

l S B

S B S B




  

 

 
 

  
   

M     (3.2) 

where 2 2cos sin
C

A
    , 

2

0 0kB L

C
   is a small parameter. First we need 

expressions 

2

0

1

2
ij iZ jZB B B du




   ( , 1,2,3i j  ). 

After some mathematics using (1.2) we get 

2

11 22

1
sin

2
B B p    , 2

33 cosB q  , 12 23 13 0B B B   . 

Expressions in (3.2) can be written as 

3 1 13 2 23 3 33cosL Z Z ZB pS q pS q qS q    , 

2 1 12 2 22 3 32cosL Z Z ZB pS q pS q qS q    , 
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1 1 11 2 21 3 31cosL Z Z ZB pS q pS q qS q    . 

Finally averaged control torque components obey following relations, 

 1 1 1 13 2 23 3 33L j jZ Z Z ZM q S pS q pS q qS q   , 

 

 

2 2 1 13 2 23 3 33

3 2 1 12 2 22 3 32

,L j jZ Z Z Z

L j jZ Z Z Z

M q S pS q pS q qS q

M q S pS q pS q qS q





  

    




    (3.3) 

 1 1 11 2 21 3 31j jZ Z Z Zq S pS q pS q qS q   . 

We need new variable   instead of   in order to simplify averaged equations of 

motion. Furthermore this variable has clear meaning being the angle between S  and 

L , that is 

1 13 2 23 3 33cos Z Z ZS q S q S q    .        (3.4) 

This variable is introduced in (3.3) to get new equations of motion featuring 

variable  , instead of (1.9) featuring  . 3LM  can be expressed in a form 

 2 2

3 cos sinLM a b   . Here  

   12 1 22 2 32 3 3 32 11 1 21 2 31 3 3 31Z Z Z Z Z Z Z Za q S q S q S S q q S q S q S S q        

2 2

12 1 3 32 22 2 3 32 32 3 11 1 3 31 21 2 3 31 3 31( ) ( )Z Z Z Z Z Z Z Z Z Zq S S q q S S q q S q S S q q S S q S q      . 

Since 11 31 12 32 13 33 0q q q q q q    and 21 31 22 32 23 33 0q q q q q q    we get 

2 2

1 3 13 33 2 3 33 23 3 3 33( )Z Z Z Z Z Za S S q q S S q q S S q       

2

3 3 33 1 13 2 23 3 33( )Z Z Z Z ZS S q S q S q S q    . 

Taking into account (3.4) we finally get 

2

3 3 33( cos )Z Za S S q   . 

Same reasoning leads to 

2 2

1 1 13 2 2 23

1
( cos cos )

2
Z Z Z Zb S S q S S q     . 

3LM  may be now rewritten as 

2 2 2

3 1 1 13 2 2 23 3 3 33( cos cos ) ( cos )L Z Z Z Z Z ZM p S S q S S q q S S q          . 
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Since 2

1 13 2 23 3 33cos cos cos cosZ Z ZS q S q S q       it can be further simplified, 

2 2 2

3 3 3 33 3 3 33

2 2

3 3 33

(1 cos cos ) ( cos )

sin ( )( cos ).

L Z Z Z Z

Z Z

M p S S q q S S q

p q p S S q

    

   

       

   
 

To obtain evolutionary equation for   we consider the following expression, 

1 2 3sin (cos cos cos sin sin )Z Z Z

d d
S S S

du du

 
           

1 2 1 1 2 2sin ( sin cos ) (cos cos cos sin sin )Z Z L Z Z Z

d
S S M S S S

du


              

2 1 1 2 2( sin cos )L L L L LM M S M S           

  2 2

1 13 2 23 3 33 1 2Z Z Z L LpS q pS q qS q S S    . 

This leads to 

  2 2

1 13 2 23 3 33 1 2
sin

Z Z Z L L

d
pS q pS q qS q S S

du

 


     .    (3.5) 

Since 

 
1 13 2 23 3 33 3 33 3 33

3 33

(cos )

cos

Z Z Z Z Z

Z

pS q pS q qS q p S q qS q

p S q q p





     

  
   (3.6) 

and 

2 2 2 2 2

1 2 31 1 cos sinL L LS S S        ,       (3.7) 

(3.5) takes form 

  3sin cos cosZ

d
p S q p

du


       . 

Taking into account (3.6) we also get 

    11 1 21 2 31 3 3 33cosZ Z Z Z

d
q S q S q S p S q q p

du


      . 

To simplify this expression we implement the following, 

 2

11 1 21 2 31 3 11 31 1 21 31 2 31 3

31

1
Z Z Z Z Z Zq S q S q S q q S q q S q S

q
       

    2 2

13 1 23 2 33 3 12 32 1 22 32 2 31 33 3

31

1
Z Z Z Z Z Zq S q S q S q q S q q S q q S

q
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  2 3
33 3 32

13

1 cos cos
cos 1

sin
Z

Z

S
q S q

q

 





     . 

Finally angular momentum evolution is expressed using equations 

 3
3

cos cos
cos cos

sin

Z
Z

d S
p S q p

du

  
  




     , 

 3sin cos cosZ

d
p S q p

du


         ,      (3.8) 

2 2

3 3sin ( )( cos cos )Z Z

dl
l p q p S S

du
          . 

We need one more equation for  , so expression 

2 1cos sinL LM M   

should be found. Consider its first term 

   2 2cos cosL L L LM l g lS       ω B  

where    2 2 2

3 3cos 1 Z Zg S p S q     , 1 2sin cosL L       

1 1 1
sin cos

2
L

C A
 

 
  

 
 and 

1
sin cos

2
    , 1 /C A   . Next, 

   2 12 1 22 2 32 3 2cos cosL L L Z Z Z LB q S q S q S p pS           ω B , 

since 32 0q  . Therefore 

  2

2 2cosL LM l g l pS        

Для второго слагаемого аналогично имеем 

   1 1 11 1 21 2 31 3 31 3sin ( )L L Z Z Z ZM l g l S pq S pq S pq S q p q S              

   1 1 31 3( )L L Zl g l S pS q p q S         . 

Equation for   right part takes the form 

     2 2

2 1 31 3 12 L L Z LM l g l p S S l q p q S S            . 

Since 32 0q  , 

31 1 31 1 32 2 3 33 3 3 cos cosL L L Z L Zq S q S q S S q S S        . 

This leads to the final equation, 
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      2 2 2

3 3 3 32 1 sin cos cosZ Z Z Z

d
S p S q p q p S S

du


          

 
. (3.9) 

Merging (3.8) and (3.9) we get evolutionary equations 

  2 23
3

cos cos
cos cos cos sin

sin

Z
Z

d S C
p S q p

du A

  
    



  
      

 
, 

  2 2

3

2 2 2 2

3 3

sin cos cos cos sin ,

sin ( )( cos cos ) cos sin ,

Z

Z Z

d C
p S q p

du A

dl C
l p q p S S

du A


     

     

 
       

 

 
        

 

 (3.10) 

      2 2 2

3 3 3 3

1
2 1 sin cos cos sin cos

2
Z Z Z Z

d
S p S q p q p S S

du


            

 
. 

These equation can be now analyzed. 

3.2. Averaged equations first integral 

Equations (3.10) allow full set of autonomous first integrals. We divide first 

equation by the second, 

3cos cos

sin sin

Zd S

d

  

  


  . 

This leads to 

1 3cos sin cos ZI S     

and the first integral 

1 3sin cos cos ZI S    .        (3.11) 

Next first integral is related to the angular momentum l . We introduce new 

variable 

  3cos cosZp q p S     . 

Next, 

 3sin sinZ

d d d
p S q p

du du du

  
       

 2

3 3sin (cos cos )Z Zp S S q p          
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  2 2

3 3

1
sin ( cos cos )Z Z

dl
p q p S S

l du
          , 

therefore 

1
0

d dl

du l du


  , 

 
2 2

3cos cosZ

I I
l

p S q p  
 

 
.   

First integral may be expressed as 

 2 3cos cosZI l p S q p    .       (3.12) 

We need one more first integral that introduces relation between   and  . To do 

so we rewrite the last equation in (3.10) taking into account (3.11). Knowing the 

cos  expression this equation is of the form 

    2 2 2 2

3 1 3 3

1
2 2 sin cos sin sin sin cos

2
Z Z Z

d
p S q p p q p I S S

du


             

 
, 

which leads to 

 2

1 2

1
2 sin sin cos sin cos

2

d
A A

du


        

 
    (3.13) 

where   2

1 3ZA p q p S   ,  2 1 3ZA I S q p  . Note that 1 0A  . Analogous 

substitution of cos  in the second equation in (3.10) leads to 

   2 2

3 1 3sin cos sin cos cos sinZ Z

d C
p S q p I S

du A


      

 
        

 
 

and 

  2 2

1 2sin cos sin cos sin
d C

A A
du A


     

 
    

 
.    (3.14) 

Dividing (3.14) by (3.13) we get 

 
 

2 2
2

1 2

1 2

cos sin2 sin sin cos
2

sin cos sin sin cos

C
A A

Ad d
A A

   
 

     

 
 


, 

and first integral 
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1 2

3 2

4 cos sin1 cos 2
ln ln ln sin ln cos

1 cos 1 cos

A A C
I

A

 
 

 

  
      

. 

The complete set of autonomous first integrals of equations (3.10) is found. 

3.3. Equilibrium position and stability analysis 

Satellite’s symmetry axis equilibrium positions are of the utmost interest in this 

paper. Equations (3.10) may be rewritten omitting equations for l , 

  2 2

1 2sin cos sin cos sin
d C

A A
du A


     

 
    

 
, 

 2

1 2

1
2 sin sin cos sin cos

2

d
A A

du


        

 
,    (3.15) 

  2 23
1 2

cos cos
cos sin cos sin

sin

Zd S C
A A

du A

  
    



  
   

 
. 

Equilibrium positions are 

1. sin 0  , 0   or / 2  , 3cos 0ZS   . 

2. 1 2cos sin 0A A   , 0   or / 2  . 

Consider the second case and linearize equations (3.15) in the vicinity of 

1
0

2

atan
A

A


 
  

 
. Since 

     1 0 2 0 1 0 2 0cos sin sin cosA A A A           , 

 0 0sin sin    , 

we get  

2 2

1 2
0 0

2

sin cos
d A A

du A


   


  . 

Note that 1 0A   and  2 0 0sign sign sin cosA    . This means that the position 

1
0

2

atan
A

A


 
  

 
 is unstable ( 0  ). 

Linearized equations for the sin 0   equilibrium vicinity are 
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2 2

1 cos sin
d C

A
du A


   

 
   

 
, 

1 sin cos
d

A
du


   ,         (3.16) 

2 23
1

cos
cos sin

sin

Zd S C
A

du A

 
  



  
  

 
. 

First equation in (3.16) brings two possibilities for equilibrium position. These 

positions are the same for the   angle ( 0   or   ) and   angle 

( 3cos 0ZS   ). Depending on the inertia tensor of the satellite either 0   (if  

0  , that is C A ) or / 2   (if C A ) is stable. In case the angular momentum 

vector coincides with the Sun direction vector ( 0  ) the angle between the angular 

momentum and the averaged geomagnetic model cone axis is equal to the angle 

between this axis and the Sun direction. This is emphasized by 3cos 0ZS   . 

First integral (3.12) allows the terminal angular momentum magnitude estimate, 

 

 
0 3 0

2

3

cos cosZ

term

Z

p S q p
l

p S q p

  


 
.       (3.17) 

Algorithm (2.4) doesn’t lead to the asymptotic angular velocity damping. 

However it provides inertial attitude stability. Stability conditions differ for the non-

symmetrical satellite. 

4. Non-axisymmetrical satellite stability analysis 

Consider slightly non-symmetrical satellite in order to assess the stability 

conditions for the arbitrary satellite. We introduce small parameter 

1
B A

C



 . 

Small parameters   and   product can be neglected in comparison with  . 

Averaging over u  and   leads to 
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  2 2

1 2sin cos sin cos sin
d C

A A
du A


     

 
    

 
,  

  2 23
1 2

2 2 2

1 2

cos cos
cos sin cos sin ,

sin

sin cos sin cos sin ,

Zd S C
A A

du A

dl C
l A A

du A

  
    



     

  
   

 

 
      

 

  (4.1) 

 20
1 22

0

1
sin sin cos 2 sin sin cos sin cos

2

d L C
A A

du A


         


    
 

, 

 20 0
3 22

0 0

cos cos cos cos sinZ L

d L L C
l S q p S

du A


        

 
    . 

Three first equations in (4.1) are identical to the equations for the 

axisymmetrical satellite. Two last equations introduce parameter  .  ,  , l  

equilibrium values hold, and we need to find equilibrium values for   and  . Fourth 

equations in (4.1) leads to the one of the conditions 

 20
1 22

0

sin 0,

1
sin cos 2 sin sin cos cos 0.

2

L C
A A

A



       





     
 

   (4.2) 

Fifth equation leads to the one of the conditions 

 20 0
3 22

0 0

cos sin 0,

cos 0.

Z L

L L C
l S q p S

A
     

 




   




     (4.3) 

Equilibrium position is determined by one of the relations in (4.2) and one relation 

from (4.3). 

First note that if sin 0   angle   becomes fast and no equilibrium for this 

variable can be studied for the evolutionary equations. Fourth equation in (4.1) may 

be averaged over   leading to the second equation in (3.15). Therefore if position 

sin 0   is asymptotically stable (C A ) previous chapter results are still valid for 

the slightly non-symmetrical satellite. 
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If cos 0   (from (4.3)) then (4.2) leads to sin cos 0   . This equilibrium 

position is new for the non-symmetrical satellite. Fourth and fifth equations in (4.1) 

are linearized in the vicinity of the equilibrium cos 0  , sin 0   (other variables 

equilibrium values are the same as in the previous chapter). We consider values 

2
  , 0   since 3

2
   and    results are completely analogous. We 

introduce new variable 
2

    and take into account that 2LS  is of the order of   

or less according to (3.7). Linearized equations are 

0
12

0

1

2

d L C
A

du A


  


   , 

0 0

2

0 0

d L L C
l

du A


  

 
  . 

Considered equilibrium is asymptotically stable if 0 ( )B A    and not stable 

otherwise. If 0 ( )B A    asymptotically stable equilibrium positions are 
2

  , 

2
   and 3

2
  , 3

2
  . 

Maximum moment of inertia axis coincides with the angular momentum vector 

of the satellite in any case. This goes for the case sin 0   also. 

5. Numerical analysis 

Numerical analysis of the satellite motion is present here. The satellite motion is 

governed by the magnetorquers implementing control law (2.4), gravitational external 

torque is taken into account also. Inertia tensor is of the “Chibis-M” microsatellite, 

1.0255 0.0014 0.0724

0.0014 1.5393 0.0019

0.0724 0.0019 1.8172

 
 


 
  

J   кг·м
2
. 

Equilibrium position sin 0   is stable for this dynamical configuration. The 

satellite moves along the circular orbit with attitude of about 350 km (orbital velocity 

0 =10
-3

, close to the orbit of the International Space Station); right dipole moment 



23 

 

model is used to represent the geomagnetic field; maximum dipole moment of each 

magnetorquer is 3.2 А·m
2
. We assume that satellite attitude is known. Necessary 

attitude in the inertial space is given by the vector  5,3,1S . Fig. 4 brings 

simulation results, that is angular velocity components and the angle between the 

third satellite axis and the necessary inertia position. 

 

Fig. 4. Numerical analysis results 

Equilibrium position sin =0 is achieved. The satellite is terminally spun about 

the S  direction. Angular momentum is about 0.08 kg·m
2
/s. It is in good accordance 

with analytical results. This value should be about  0.07 kg·m
2
/s according to (3.17). 

We introduce sun sensors readings error of 1° and sample rate 1 Hz. Magnetorquers 

sample rate is 5 Hz. Each second allows one sensor readings operation and five 

control operations. Magnetorquers implement only dipole moments  ±3.2 А·m
2
, 0. 

The torque is constructed on the basis of (2.4) and reduced to the unit vector. If 

magnetorquer value exceeds 0.5 (or less than -0.5) the torque is implemented by this 

coil. 
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Fig. 5. Numerical analysis with sensors and magnetorquers parameters taken into 

account 

Fig. 5 bring the same time-response of the algorithm but reduced accuracy that 

is about 8 degrees. 

Conclusion 

New magnetic control scheme is proposed. Magnetorquers utilize Sun sensors 

readings only, magnetometer is not used or is unavailable. The control constructed 

allows the satellite to be damped to the certain rotation value and one-axis inertial 

space attitude. Evolutionary equations of motion for the axisymmetrical satellite are 

obtained, full set of autonomous first integrals is present. These integrals bring 

terminal spinning value. Equilibrium positions are found that bring inertial attitude. 

Slightly non-symmetrical satellite evolutionary equations are obtained also, stable 

equilibrium positions depending on the inertia tensor are shown. 
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