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C.0O. Kapnenko, M.IO. OBuunnukos, /.C. Poaayrun, C.C. TkaueB

cDOpMI/IpOBaHI/IC U aHaJIM3 aJlropuT™Ma MarHUTHOM OpUCHTAIHWN C HCIIOJIB30BAHHNCM
I/IBMCpeHI/Iﬁ YIJIOBOTI'O JaT4YHKa. CJ'Iy‘IaI/I COJIHCYHOI'O JAaTYUKAa U MAaIrHUTOMCTpPa

PaccmarpuBaercst sormka QoOpMUpOBaHHMS aaropuTMa aKTUBHOTO MArHUTHOTO
yIpaBJIeHUs] OpueHTanued cnyTHuka «Yubuc-My», peanusyromero pasBopoT €ro
coiHeuHbIX maHened Ha ComHue. [Ipy 3TOM HMCHONB3YIOTCS IMOKa3aHUS TOJIBKO
COJIHEYHBIX JTaTYMKOB. YPABHEHHUs NBWXKCHHS MHTEIPUPYIOTCS B KBajapaTypax Ui
OCECUMMETPHUYHOI'O arapara Mpy MOMOIIA METOJI0OB ACUMITOTUYECKOIO AaHAIU3A.
JUIsi HECHMMETPUYHOIO CIIyTHUKA ONPENEISAIOTCS  YCTOWYMBBIE — IOJIOKEHUS
paBHOBECHSI.

KiiroueBble cj10Ba: aKkTHBHAs MarHUTHas CUCTEMa OPUEHTAlUMU, aJTOPUTM
OpUEHTALIUU, OCPETHEHHAS MOJEJIb MAarHUTHOTO MOJISI 3€MJIU, COJTHEUHBIA JATYHK

S.0. Karpenko, M.Yu. Ovchinnikov, D.S. Roldugin, S.S. Tkachev

Synthesis and analysis of geomagnetic control using attitude sensor data. Case of sun
sensor and magnetometer use

An active magnetic control synthesis for attitude guidance of «Chibis-M»
microsatellite is considered. The only information required is the data from the sun
sensor. Applicability of a control to achieve solar panels sun-pointing is studied.
Equations of motions are analytically solved using averaging technigue. The behavior
of a system with respect to initial conditions and orbit parameters is studied.

Key words: active magnetic control, control algorithm, averaged geomagnetic
field model, sun attitude
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Introduction
Magnetic attitude control systems (MACS) are widely used for attitude control

of satellites. They are especially attractive if a satellite has significant cost, mass or
energy limitations. So, small satellites almost invariably have MACS. Small satellites
often have fewer restrictions on attitude control system accuracy and time-response
and MACS may be the only solution for low-power and low-cost spacecraft. MACS
may be also used together with other actuators. The most common practice is initial
angular velocity damping after the separation from the launch vehicle. This stage may
be considered simply but it is necessary for other actuators, maybe with finer
accuracy, to have spacecraft angular velocity below some critical value.

Magnetometer is always used as attitude sensor when control is provided by
MACS. So, failure of the magnetometer may end up in losing a satellite. In this case
an algorithm implementing the data from another sensor for control synthesis is vital.
In this paper a universal synthesis scheme is proposed. It is necessary to have an
attitude sensor measuring a certain vector in the reference frame of a satellite which
is also known in the inertial space via models. Magnetometer is one case of such a
sensor, and corresponding algorithm called “-Bdot” is widely used for damping
satellite’s angular velocity [1].

A general control scheme is similar to that of “-Bdot” is proposed in this paper.
The algorithm implements the sun sensor as attitude sensor. Note that the direction to
the Sun is assumed permanent since the time scale of the problems considered is

about a day.
1. Problem statement

Here we introduce all necessary reference frames, equations of motion and
corresponding variables, geomagnetic field model and general analysis method.

Dealing with MACS one should have a geomagnetic field model. Let us
describe the model used in this work. Geomagnetic induction vector in a given point
in orbit is often approximated by the Gauss decomposition [2]. This model, however,

cannot be used for analytical analysis. So, some simplifications are introduced.



Considering three front terms in the decomposition, one obtains the inclined dipole
model. The geomagnetic field is one of the dipole tilted in angle of 168°26° to the
Earth’s axis and positioned in its center. This model allows rather simple analytical
representation but it is still too complicated to obtain the solution of equations of
motion in the explicit form. Further simplification called the right dipole model is
widely used in analytical and numerical analysis. In this case geomagnetic field is
represented as one of the dipole placed in the center of Earth and directed antiparallel
to its axis. Geomagnetic field induction vector moves almost uniformly on the near-
circular cone when satellite moves along the orbit.

This model still does not allow us to obtain the solution of equations of motion
in the explicit form. So, it is logical to make following simplification, modeling the
field induction vector moving uniformly on the circular cone. We introduce inertial
reference system O,Y.Y,Y3, where O, is the Earth’s center, O,Y; axis is directed along
the Earth’s axis, O,Y; lies in the equatorial plane and is directed to the ascending
node of the satellite’s orbit, O,Y, is directed so the system to be right-handed. If we
now translate the field induction vector to the Earth’s center then the cone is tangent

to the O,Y; axis and its axis lies in the O,Y,Y; plane. The cone half- angle is given by

[3]

tgO= 3sin 2i

2(1—3sin2 i + 1+ 3sin’ i)

where i is the orbit inclination (Fig.1). Geomagnetic field intensity vector moves

(1.1)

uniformly on the cone with double orbital velocity, y =2ayt + ¥, =2u+ x,. Here o,

is orbital velocity. Without loss of generality we assume y, =0.
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Fig. 1. Averaged geomagnetic field model

This sometimes called averaged model is used in this paper. Though it does not
allow us to take into account non-uniformity of geomagnetic induction vector
movement (as right dipole model does) and its diurnal change (as inclined dipole
model does) it still allows us to describe geomagnetic field with proper accuracy,
providing the balance between the authenticity and simplicity of equations. Detailed
comparison of the models may be found in [2]. Geomagnetic induction vector in
0,212,735 frame takes form

sin®sin 2u
B, =B,| sin®cos2u |. (1.2)
cos®

Let us introduce all necessary reference frames.

0,717,735 is the inertial frame resulted from the rotation of O,Y;Y,Y; around O,Y;
axis by angle ©.

OL;L,L; is the frame associated with the angular momentum of a satellite. O is
the satellite’s center of mass, OL; axis is directed along the angular momentum
vector, OL, is perpendicular to OL; and lies in the plane parallel to O,Z;Z, and
containing O, OL, is directed so the system is right-handed.

OxyXoX3 Is fixed reference frame, its axes coincide with principal axes of inertia

of a satellite.



Reference frame’s mutual orientation will be described in terms of direct cosines

matrices Q, A presented by their elements

Ll L2 LS Xl X2 X3
Zl qll q12 q13 Li a11 a12 a13
ZZ q21 q22 q23 L2 a'21 a22 a23

Zy Oy Op O L, a; a, a

We introduce indices Z,L,Xx to represent vectors in reference systems O,Z,7Z,7Z,,
OL,L,Ls and Oxixox3. For example, for the first component of torque we write
M,,,M,, ,M,, respectively.

We will use the osculating, or Beletsky-Chernousko, variables. These variables
are L,p,o0,0,i7,0 where L is the angular momentum magnitude, p,o represent its
attitude with respect to the inertial space O,Z,Z,Z; (Fig. 2). Mutual Ox;X,x; and
OL;L,L; frames attitude is expressed via the Euler angles ¢,w,8. This variables set
was first introduced by Bulgakov [4] representing the gyro motion. Beletsky
proposed to use these variables for the axisymmetrical satellite [5], while Chernousko
used them for the three-axis satellite [6]. Unperturbed motion in ¢,y,8 angles was
proposed by Wittaker [7], however evolutionary equations were not considered.
Direct cosines matrix Q takes form

COSpCOSo  —Sino  Sin pCoso
Q=| cospsinc coso Ssinpsino |. (1.3)

—sinp 0 CoS o

Matrix A has the form

COS@COSY —CosAsin@siny  —sin@Ccosy —cosdcospsiny — sindsiny
A=| cospsiny +cosdsingcosy  —singsiny +cosécospcosy  —sindcosy |. - (1.4)

sindsing sinécosg cosd
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Fig. 2. Angular momentum attitude in the inertial space
Three-axis satellite with inertia tensor J =diag(A, B,C) obey the following
equations [8],

d_y, dp Ly do_ 1

dt Y dt L™ dt Lsinp

MZL’

de N 1 1) 1 -
— =Lsingsingcosp| ——— |+—(M, cosy — M, siny ),
at ® (P(A Bj L( 2L 4 1L W)

d—¢:Lcose 1 sinp cos’e L1
dt C A B Lsiné

(1.5)

(M, cosy + M, siny),

Hy, 2
Z_"t”: L[sw;\go + COSB (pj—%MlL cosyxctg@—%MZL(ctgp+siny/ctge)

where M, ,M,, ,M,, are the angular momentum components in OL,L,L; frame.

Axisymmetrical satellite (J, =diag(A, A,C)) equations of motion are

dL dp 1 do 1

—— =My, —— =Ny, =My,

dt dt L dt Lsinp

do 1 .

E:E(MZLCOSV/—MlLsmt//),

; - . (1.6)
o :

T —LcosO| =—-= |+ M,, cosy + M, siny ),

dt (c Aj Lsing (M Cosy Mz siny)

%—th=%—%|V|1LCOSWCtge—%MZL(CtgPJFSin‘//Ctg@)-



Averaging technique is used for the transient motion analysis [9]. To do so we
assume that the control torque is small. Angular momentum change during one orbit
revolution and one revolution about the center of mass is small in comparison with
the angular momentum itself. In this case small parameter ¢ may be introduced and
equations (1.5) take form

dx

E_gx(x,y,t),d—y Yo(XY)+eY(X,y,1), (1.7)

dt
where y =(¢,y,u,0) are fast variables while x=(l, p,c) are slow ones. Averaging

method may be used for the slow variables evolution analysis. Unperturbed motion is
regular precession for the axisymmetrical satellite. This case is studied here and (1.6)

are of the form

%:EX(X,y,t),%=y0(X)+8Y(X,y,t)- (1.8)

Variable & becomes slow one. Averaging over the time is identical to the averaging
over fast variables. So it is necessary to simply average equations for the slow
variables over the fast ones. This leads to the accuracy of the order & on the time
span of the order of 1/¢. Using averaged geomagnetic field model and
axisymmetrical satellite allows the evolutionary equations to be solved in
quadratures.

We need equations (1.6) in the dimensionless form. We introduce the argument

of latitude u=wm,(t—t,) instead of time, where t, is some fixed moment;

dimensionless angular momentum | according to L=L, where L, is the initial

angular momentum magnitude; and dimensionless control torque M . Equations (1.6)

are rewritten in the form



ﬂ:glme)L’d_p:ngle_o-: -8 MZL’

du du du sinp

do £ (vr —
E—ﬂ1|0036’+w(M1Lcosz//+MZLsmz,u),

dy vi — .
mzﬂzl—8M1LCOSI//Ctge—€M2L(Ctgp+3|nl/lctg0),
d_QZS(MZLCOSl//—MlLSinl//)

du

2
where g:ki’nlzi(l_ij’ nzzi_
L, o, \C A Aw,

Small control torque leads to & and ‘£ being small. Fast variables are (¢o,y,u)
7,

and slow ones are (1, p,o,8). This allows us to move to new simplified equations

d o\ dp g d —
o= Ma), L= (M), d—jzsirfp(MZL},

o),

where (x) corresponds to the value averaged over all fast variables (it is not

(1.9)

necessary to average over ¢ for the axisymmetrical satellite). These equations
represent slow angular momentum motion in the inertial space and angle between the
axis of symmetry and the angular momentum.

2. Control construction

Let us first consider the control synthesis of well-known “-Bdot” algorithm [1].

We write equations of motion in the form

d—m+co><Jm:M,
dt

In case of a satellite subjected to the gravity-gradient torque equations of

motions admit the Jacobi first integral

J= %((m,Jm) +3w; (€5, Je;) — (eZ,Jco))
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where e,,e, are unit vectors of radius-vector and normal to the orbital plane in the

fixed frame.

If a satellite is also subjected to the magnetic torque M =mxB this expression
will no longer be the first integral. Let
V =J -0.507(3C - B)

be the Lyapunov function candidate. Its derivative according to the equations of

motion is

av

E:;(Qi — @y, )M, =M (Q - e, ).

This can be expressed as

z—Y:m(BxQ) (2.1)

where Q= —aoye, is relative satellite velocity. Expression (2.1) allows us to find
the dipole moment

m=kQxB

providing asymptotical stability of orbital attitude, that is the attitude while two axes
of fixed frame coincide with radius-vector and normal to the orbit respectively. Here
k is a positive coefficient.

In case of high satellite velocity, that is @, <<|w|, we have Q~o and the

control law may be expressed as

m=koxB. (2.2)

It can be further transformed to the form

K9
dt

This can be justified by the relation

AQdBZ =@+mxBx.
dt  dt

In case of a high satellite rate velocity the expression in the left side may be neglected

m = (2.3)

and (2.3) became obvious if one considers (2.2).
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Let us study control law (2.2). It provides damping of the absolute angular
velocity. Suppose we do not have samplings from the magnetometer but instead from
any other sensor. In this case we cannot use any of the algorithms mentioned above
since they include magnetic field direction. So, we need a control law for
magnetorquers which implements the information about any other vector S rather
than about B. The notation S is chosen because the case of sun sensor is of particular

interest in this paper.

Fig. 3. Control law synthesis

We decompose o and B into components along vector S and perpendicular to
it (Fig. 3)
o=0 +0,, B=B, +B,.
So, the control law (2.2) takes form
m=k(w, xB, )+k(w, xB,).
Let us consider the term
m=k(o, xB,)
only as the control law. In this case we get
m=kBcosa(w, x8).
Since o, xS =0 this can be written as

m=kBcosa(wxS). (2.4)
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In case we have magnetometer readings S =B and, therefore, « =0, the control
law (2.4) takes form (2.2). The control (2.4) may be considered as a general law for
the satellite’s rate velocity damping while readings available from a sensor providing
any unit vector S in the fixed reference frame. Angle « between S and B is
computed using models, defining those vectors in the inertial space for any given
point in the satellite’s orbit. It is not clear whether satellite’s velocity is damped to
zero value or not. Following control analysis shows that the terminal velocity is not
zeroed. Control law (2.4) provides another important feature. It allows the one-axis
attitude in the inertial space. This may be useful for the onboard batteries charge.
Instead of using main actuators — reaction wheels or thrusters — magnetorquers may

be used. This results in lowering power or fuel consumption.
3. Axisymmetrical satellite analysis

3.1. Averaged equations
Consider an axisymmetrical satellite and equations (1.9) for the slow variables

evolution. To get these equations we need to average the control torque given by
M =kB; cosa(®xS)xB.
This can be written in OL;L,L; frame as
M, =kB] | —cos’ aw, +8S, (v B, )cosa |.

First we find (MiL> averaged torque components. Note that o should be
averaged by yw only. Therefore <(’)>w can be found independently. To do so we write
the angular velocity in a form o, :J‘XlLX . Angular momentum in the OL,L,L; frame

has simple form L, :(O,O,L)T and L =A"L, in the bound frame. Specifically,

L, =L(ay,a,,a,) . This leads to the angular velocity in the bound frame

.
0, = L(% agl,%aez,éassJ . Finally moving to the OL;L,L; frame,
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1 1
8,8, + 838,

1
_a11a31 + A C

A

1 1 1
o =Ao, =L Ka21a31 +Kazzaez +Ea23a33 '

1 1 1

K Ay + K A5p83, + E Ag3833
Averaging angular velocity over fast angle leads to

(o) =L[0,0, L cos? 0+ Lsin?o .
v C A

cosa may be expressed in a form

cosa=B,S,, +B,,S,, +B,,S,, (3.1)

where S, (i=1,2,3) are considered constant since S, is the Sun direction vector in

the inertial space. Its movement is very slow in comparison with the satellite

movement. B, and cosa depend on the fast variable u and averaged torque may be

written as
S, (B, _cos a>
),

(M), =¢lo S, (B, cosa
—S,, (B, cosa) —S, (B, cosa),

(3.2)

— : kBJL, . :
where a):00320+93|n29, E= (O:LO iIs a small parameter. First we need

expressions
IB.Z 2du (i, j=1,2,3).

After some mathematics using (1.2) we get

B,=B, :%sinze): p, B,=cos’®=q, B, =B,,=B,=0.
Expressions in (3.2) can be written as

(B, coSa) = PS,, s + PS,, 05 + 0S5, 05,

(B,, cOScr) = PS,, Gy, + PS,, Uy, + 0S5, 0,
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<BlL COSa> = PS;; Gy + PS;705 + 055,05 -
Finally averaged control torque components obey following relations,

<M1L> = gg)ijlsjz ( PS; 01z + PS,,0,5 + q832q33)’

<M2L> = 8g)ij'28jz ( PS03 + PS,7055 + qu3q33)’ (3.3)
<M3L> = _‘%quj'zsjz ( PSy; G, + PS,,0,, + qS3ZQ32)_
_55)2%18]2 ( PS;; Gy + PS,, 0, + q832q31) .

We need new variable y instead of o in order to simplify averaged equations of

motion. Furthermore this variable has clear meaning being the angle between S and
L, that is

COSy = S,,013 + S, U5 + S3705- (3.4)
This variable is introduced in (3.3) to get new equations of motion featuring

variable y, instead of (1.9) featuring o. <M3L> can be expressed in a form
(M,,) =£0(acos’ ®+bsin’®). Here

a=(0,,57 +05,S,, + 03,55, ) Ss70s + (01817 +UpS,7 + U5 Ss7 ) S5z 0y =

= 0,,5,755, 05 + 055,7 a7 0sp + (03,557 )° + Gy S SayUay + UpiSyy Sar Gy + (Ssy0sy)

Since q,0,; + 0,05, + 030:; =0 and 0,,0,, + 0,,0,, + 0,,0,; =0 We get
a=-S5,5,,01:0s — S,7S:,0s:0s + S5, — (Ss,0)° =

= 5322 —S37033 (Slz Oz + 5,702 + S, q33) :
Taking into account (3.4) we finally get

a=(S;, —S;,05C087).

Same reasoning leads to

1
b= E(Slzz —S,;0,3C0Sy + Szzz —S,7,0,3C087) .
(M, ) may be now rewritten as

<M3L> = gg)p(slzz —S5,,03COSy + Szzz —S,,0,,C0Sy) + ggﬂ(se,zz —S53,055C0S ).



15

Since S,,0,,C0Sy +S,,0,,COS ¥ +S,,0,, COS ¥ = cos” y it can be further simplified,
_<M3L> = ‘9E’p(1_ 8322 + 54,03, COS y — cos’ y)+ g(_()q(8322 —S3,053C0Sy) =
= swpsin’y + co(q - p)(SSZZ —S3,053€0S 7).

To obtain evolutionary equation for y we consider the following expression,

dy

—d—sin y =(cos pcoscS,, +cos psinosS,, —S,, sin p)(;—p +
u u

+sin p(-sino'S,, +cos aSZZ)?j—j =&(M,, )(cos pcosa$S,, +¢os psina$S,, —S,, sin p) +

+&(M,, )(=sino +cosa) =(M,)S, +&(M,,)S, =

= gg)( PSiz 05 + PSy, 05 + qS3zq33)(812L + SZZL) :
This leads to

d £
d—g =gy (Pt * Pl + 05,0 ) (S2 + 52, ) (3.5)

Since

PS;; G5 + PSy7 025 + 0S5, 055 = P(COS Y — S;,053) + 0S5, Uy =
= pCoSy +S,,05,(q—p)

and

SZ +S2 =1-S. =1-cos®*y =sin’y, (3.7)

(3.6)

(3.5) takes form

dy —
a:—ga)SIn 7( pcosy + S, COSp(q— p))

Taking into account (3.6) we also get

d _
d_lj = gw(qnslz +0S,; +05S;; )( pCcosy + SSZq33(q - p))

To simplify this expression we implement the following,

1
0117 + 05557 + 03153, = q_<Q11q31812 +003:5,, + q321S3z ) =

31

1
= _((q13812 + %3822 + %3532 ) o q12q32812 o qzzqszszz + (Q321 + q323 )Ssz ) =

31
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- qilg(_qas COSy + s, (1— q§2)) = COS}/(;ci)rs]/;_ Sz :

Finally angular momentum evolution is expressed using equations

dp :85005,00057—832

[ pcosy +S,, cosp(q—p)],

du sin p

dy — .

m:—gcosnny[p0037/+832 cosp(q-p)], (3.8)
di

i —eal| psin® y +(q - p)(Si, — S, COs pcosy) |.

We need one more equation for &, so expression
(M, cosy)—(M,, siny)
should be found. Consider its first term

(M, cosy) =elug(®)+elS, ((w, B, )cosa)
where g(@)= <0032 a> = (1— Sz ) p+S5,d, (@, siny)=—(m, cosy)=

:L1 i1 sindcosé and y:l/lsiné?cose, A=1-C/ A. Next,
2\C A 2

(o, B_)cosar)=—p(B, cosa)=—(0,S,; +0yS,; +UsSs; ) P=—PS,,
since g,, =0. Therefore

(M, cosy ) =elug(©)—elupS;,

I[J'IH BTOPOro CJiaracMoro aHaJJoruiio uMcCM

(M, siny)=—elug(©)+ el S, (PALS,, + PAxS,; + PUySs, + (0 — P)UySs, ) =
=—elug(©)+eluS, (pS, +(a— P)dssS;, ) -

Equation for @ right part takes the form

(M,) =219 (©)—elup(Sj +S], ) - el p1(d— P)0e;S:, Sy, -

Since q,, =0,

O3S, =035, +03,S,, =S;;, —0335;, =S;, —COS pCOSY .

This leads to the final equation,
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j_f:gﬂ[z((l_sazz) p+8§zq)_ IOSin27/+(q— p)S3Z (COS}/COS,O—Ssz )J (3.9)

Merging (3.8) and (3.9) we get evolutionary equations

dp  cospcosy-S,, ( . C ., j
= CoSy +S,, COS — cos“ @+ —sin“ 4 |,
du 3 sin p |:p VT 93z p(q p):' A

dy ) 25, C 2
m:—(93|n7/[pc037/+83z cos p(q - p)](cos 0 +sin 0),

(3.10)

di : C .

ﬁ:—gl[psm27~r (a-p)(SZ, -S,, cos,ocosﬂ}(coszéwZsmzﬁ),
d_ezlgﬂ[Z((l—Sz )p+S; q)— psin®y +(q - p)S,, (cosycosp—S )Jsin@cose.
du 2 3z 3z 3z 3z

These equation can be now analyzed.

3.2. Averaged equations first integral

Equations (3.10) allow full set of autonomous first integrals. We divide first
equation by the second,

dp  cospcosy -3,

dy sin psiny

This leads to
cosp=1,Siny +cosyS,,

and the first integral

|, siny =cos p—cosyS,, . (3.11)
Next first integral is related to the angular momentum |. We introduce new

variable

S=pcosy+(q—p)S,;, cosp.

Next,

do dp

. d :
—:—psmyd—Z—ng sinp(q-p)

du du B

= &5 psin’ y —&8S,, (cos pcosy —S,,)(q—p) =
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[ 1dl
=£5( psin®y +(q - p)(Si; — Sy, cos,ocow))z_giﬁ,

therefore
d_5 + 5%2 —
du | du

I

1= 12 !,

0] :‘pcos;/+83z(q— p)cosp|’

0,

First integral may be expressed as
|, =I|pcosy +S,, (q— p)cos o (3.12)
We need one more first integral that introduces relation between 6 and y. To do

so we rewrite the last equation in (3.10) taking into account (3.11). Knowing the

cos p expression this equation is of the form

3—3:% /1[2p+28,§z(q —p)- psin®y +(q- p)(1,S;, cosysiny - S, sinzy)]sin 6cosd,
which leads to

d—ezlgﬂ{Ai(Z—sinzyﬁ Azsin;/cos;/]sinecose (3.13)
du 2

where A =p+(q-p)S;,, A =1S,,(q—p). Note that A >0. Analogous

substitution of cos p in the second equation in (3.10) leads to

97 _ _gsin ;/[pc057/+83Z (q-p)(lsiny +S,, cos;/)](cosﬂ%%sinzej

u
and
97 _ _ssin i 29+ Esin?o 3.14
P y[Acosy + Aysiny]| cos +sin®g . (3.14)
Dividing (3.14) by (3.13) we get

. . 2 C..

A(2-sin*y)+ Asinycosy C0s™ 0+ sin" 0

siny (A cosy + A,siny) = Asin@cosd !

and first integral



19

I3:Inl_cosy—In4(A1COSy+Azzsmy)—E{In\sine\—gln\coseq.
1+cosy (1+COS]/) A A

The complete set of autonomous first integrals of equations (3.10) is found.
3.3. Equilibrium position and stability analysis
Satellite’s symmetry axis equilibrium positions are of the utmost interest in this

paper. Equations (3.10) may be rewritten omitting equations for |,

M:_gsiny[Aicosy+Azsiny](cosze+gsin29j,
du A
de_l - 2 - -
E_5(9){,6.1(2—5|n y)+ Aysinycosy |singcoso, (3.15)
dp  cospcosy-S,, : ( . C ., j
=g cosy+ Asiny|l cos®@+—sin“ @ |.
du sin p [Acosy+Asiny] A

Equilibrium positions are
1.siny=0,0=00r8=xn/2,cosp-S,, =0.
2. Acosy+Asiny=0,0=0o0r0=r/2.

Consider the second case and linearize equations (3.15) in the vicinity of

7, = atan (—%) Since

Acos(y+y,)+ Asin(y+y,)=(-Asiny, + A, cosy,),
sin(y +y,)=siny,,

we get

2 2
%:—gsin o cos;/oua).

Note that A >0 and signAzz—sign(sin;/Ocos;/O). This means that the position

¥, =atan (—%} is unstable (> 0).

Linearized equations for the siny =0 equilibrium vicinity are
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dy _ —gAly(cos2 0+ %sin2 49) ,

du

3—‘9:5/1A&sin9c039, (3.16)
u

dp _ gAl—COS’? Sy (cos2 <9+Esin2 9) .

du sinp A

First equation in (3.16) brings two possibilities for equilibrium position. These
positions are the same for the » angle (=0 or y=x) and p angle
(cosp—S,, =0). Depending on the inertia tensor of the satellite either =0 (if
A<0,thatis C>A)or 8=x/2 (if C < A) is stable. In case the angular momentum
vector coincides with the Sun direction vector (» =0) the angle between the angular
momentum and the averaged geomagnetic model cone axis is equal to the angle
between this axis and the Sun direction. This is emphasized by cosp—-S,, =0.

First integral (3.12) allows the terminal angular momentum magnitude estimate,

_|pcosy, +S,; (- p)cos g
o p+S%(a-p)

Algorithm (2.4) doesn’t lead to the asymptotic angular velocity damping.

. (3.17)

However it provides inertial attitude stability. Stability conditions differ for the non-

symmetrical satellite.
4. Non-axisymmetrical satellite stability analysis
Consider slightly non-symmetrical satellite in order to assess the stability

conditions for the arbitrary satellite. We introduce small parameter

:B_A<L

n

Small parameters  and & product can be neglected in comparison with .

Averaging over u and y leads to
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2_7 =—gsiny[Acosy + A,sin ;/](cos2 0 +%sin2 49),
u

dp  cospcosy-S,, : ( . C ., j
=g cosy + A sIn cos“ @ +—sin- @ |,
du sin p [Al 7+ A 7/] A

(4.1)

dl ) ) C .

— =—¢l| Asin?7 — A cosysin c0526?+—sm26’j,

1, = e[ Asin®y - A cosy y]( 5

d¢ L, C . ) 1 - i )
—=—"_—_—_psIn@sSINnpCcosp +—¢&A 2—SIn + A sinycosy [SIn@cosd,
w2 PLOSP+ 2 & [A( y)+Asiny 7]

do_L 4 cosé?+i%77cos2 @cos8 —&S,,A(q— p)cosdsin pS,, .

du @, @,

Three first equations in (4.1) are identical to the equations for the
axisymmetrical satellite. Two last equations introduce parameter n. 7, p, |
equilibrium values hold, and we need to find equilibrium values for 6 and ¢. Fourth

equations in (4.1) leads to the one of the conditions

sind =0,
L, C . 1 . : (4.2)
——nSin@cosp +—¢el 2—-sin“y )+ A,sinycosy |cosé =0.
o e TSNecosp S A 7)+ Aysinycosy |
Fifth equation leads to the one of the conditions
L. LC . .
— AU +=—ncos“p—eS,,A(q— p)sin pS,, =0,
@, @, T (G- p)sins,, (4.3)

cosé =0.
Equilibrium position is determined by one of the relations in (4.2) and one relation

from (4.3).
First note that if sin@=0 angle ¢ becomes fast and no equilibrium for this
variable can be studied for the evolutionary equations. Fourth equation in (4.1) may
be averaged over ¢ leading to the second equation in (3.15). Therefore if position

sind =0 is asymptotically stable (C > A) previous chapter results are still valid for
the slightly non-symmetrical satellite.
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If cosd=0 (from (4.3)) then (4.2) leads to sinpcosep=0. This equilibrium
position is new for the non-symmetrical satellite. Fourth and fifth equations in (4.1)
are linearized in the vicinity of the equilibrium cos@ =0, sinp =0 (other variables

equilibrium values are the same as in the previous chapter). We consider values

Hz%, @ =0 since 9:3% and @ =7 results are completely analogous. We

introduce new variable g = % — @ and take into account that S,, is of the order of y

or less according to (3.7). Linearized equations are

g L, C 1
0 po—ZgAAL,
du o, 2T 2" AP

do_ L, LG
9 _Lypi bt s
du o, g a)OAZU'B

Considered equilibrium is asymptotically stable if »>0(B>A) and not stable

otherwise. If 7<0 (B < A) asymptotically stable equilibrium positions are 49:”2 :

go:% and 0=3%, (p:3%.

Maximum moment of inertia axis coincides with the angular momentum vector

of the satellite in any case. This goes for the case sin@ =0 also.
5. Numerical analysis

Numerical analysis of the satellite motion is present here. The satellite motion is
governed by the magnetorquers implementing control law (2.4), gravitational external
torque is taken into account also. Inertia tensor is of the “Chibis-M” microsatellite,

1.0255 0.0014 -0.0724
J=| 0.0014 1.5393 0.0019 | kr-m°.

—0.0724 0.0019 1.8172

Equilibrium position sin@ =0 is stable for this dynamical configuration. The
satellite moves along the circular orbit with attitude of about 350 km (orbital velocity

®,=107, close to the orbit of the International Space Station); right dipole moment
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model is used to represent the geomagnetic field; maximum dipole moment of each

magnetorquer is 3.2 A-m’. We assume that satellite attitude is known. Necessary

attitude in the inertial space is given by the vector S=(5,31). Fig. 4 brings

simulation results, that is angular velocity components and the angle between the

third satellite axis and the necessary inertia position.
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Fig. 4. Numerical analysis results

Equilibrium position sin@=0 is achieved. The satellite is terminally spun about
the S direction. Angular momentum is about 0.08 kg-m?/s. It is in good accordance
with analytical results. This value should be about 0.07 kg-m?/s according to (3.17).
We introduce sun sensors readings error of 1° and sample rate 1 Hz. Magnetorquers
sample rate is 5 Hz. Each second allows one sensor readings operation and five
control operations. Magnetorquers implement only dipole moments +3.2 A-m? 0.
The torque is constructed on the basis of (2.4) and reduced to the unit vector. If
magnetorquer value exceeds 0.5 (or less than -0.5) the torque is implemented by this

coil.
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Fig. 5. Numerical analysis with sensors and magnetorquers parameters taken into

Fig. 5 bring the same time-response of the algorithm but reduced accuracy that
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is about 8 degrees.

Conclusion

New magnetic control scheme is proposed. Magnetorquers utilize Sun sensors
readings only, magnetometer is not used or is unavailable. The control constructed
allows the satellite to be damped to the certain rotation value and one-axis inertial
space attitude. Evolutionary equations of motion for the axisymmetrical satellite are
obtained, full set of autonomous first integrals is present. These integrals bring
terminal spinning value. Equilibrium positions are found that bring inertial attitude.

Slightly non-symmetrical satellite evolutionary equations are obtained also, stable

account
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equilibrium positions depending on the inertia tensor are shown.
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