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Овчинников М.Ю., Чан Х-Ч., Мирер С.А., Ткачев С.С., Ролдугин Д.С. 

Динамическая модель спутника с солнечной панелью в двухстепенном 

шарнире 

Рассматривается спутник, имеющий одну солнечную панель, 

закрепленную в управляемом шарнире. Мотор шарнира позволяет вращать 

панель вокруг двух направлений. Панель и спутник считаются твердыми 

телами. В работе получены уравнения движения такой системы. 

Ключевые слова: сложная структура, солнечная панель, двухстепенной 

подвес, динамические уравнения 
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Dynamical model of a satellite with 2DOF solar panel  

Satellite with 2DOF solar panel is considered. The panel hinge consists of a 

motor capable of panel attitude control. Satellite and solar panel are rigid bodies both. 

The work is aimed at the satellite-panel system attitude dynamical model 

construction. 
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Introduction 

Presence of a movable solar array attached to the satellite body with a 

controlled hinge leads to significant complication of the satellite dynamics. A 

mathematical model and corresponding software for numerical investigation of the 

satellite arbitrary movements are necessary. However one can estimate steady-state 

motion of the satellite at specified relative motion of the array using asymptotic 

analysis methods for a mathematical model of the satellite motion about its center of 

mass.  

A key point of the mathematical model formulation is introduction of the 

properties of the satellite elements which consists of the satellite bus (hereinafter 

referred to as bus) and the solar array (SA). The bus and array are connected with 

two-degree-of-freedom hinge and are affected by external forces and torques. The 

forces determine the satellite orbital motion and the torques applied to the bus and SA 

determine their angular motion. The SA mass is 7% of the bus mass, it measures less 

than 2.5 meters, the structure is rigid while the Formosat-7 satellite is considered as a 

prototype. It gives reason to consider the SA a rigid body for the dynamics analysis. 

Examination of the system consisting of the bus, SA and hinge helps to ascertain the 

main contribution of the articulated structure in comparison with the satellite 

approximation by a rigid body.  

The problem of a complex dynamical model is considered in detail both in 

theoretical papers and applied projects. Nevertheless, for the dynamics analysis of a 

specific satellite we should develop a model which would realize specified, 

analyzable geometric and dynamical topology of the system. So, one needs to derive 

the motion equations and introduce appropriate variables to describe the phase state 

of the satellite bus and SA, and necessary reference frames. 

1. Generic dynamical model 

There is a number of approaches applicable for the equations derivation. The 

paper [1] contains the basic methods of derivation of motion equations for a satellite 
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supplied with a solar array or other movable elements. In particular, there are some 

approaches (described in detail in [2; 3]) based on momentum and angular 

momentum variation laws, d'Alembert principle, Lagrange, Hamilton, Boltzmann-

Homel, Gibbs equations and using particular linear and angular velocities [1]. In 

papers [4; 5] a general approach for motion equations derivation, including those for 

flexible constructions, is presented. However, the application of these equations is 

limited by their unhandiness caused by large generality of the system under 

consideration. We use a method applying the basic dynamic equation (d’Alembert 

principle) for a system with ideal constraints 

  0m   


  r F r . 

Here r  is elementary displacement of  th particle, F  is the resultant of all active 

forces affecting this particle. It has the same advantage as Lagrange equations: the 

ideal constraints reactions are not present in the final motion equations. The 

coordinates which the motion equations are written for, can be easily interpreted.  

Dynamic equations should be supplemented by kinematic relations for 

parameters which specify the satellite attitude. Euler angles and directional cosines 

matrix are convenient for the analytical analysis, while quaternions are better suited 

for the numerical study. Let quaternion  0,q λ  specify the satellite position, then 

the kinematic relations take the form 

1

2
q Ωq,           (1.1) 

where 

  

  

  

  

  

  

  

  

  
  
 
  
 
    

Ω . 

Relationship of the matrix of directional cosines and the quaternions elements 

can be written as follows: 
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D .    (1.2) 

Kinematic equations (1.1) must be integrated together with the dynamic 

equations as the former ones include the angular velocity components and the latter 

ones contain the elements of the directional cosines matrix which can be calculated 

when using quaternions by means of (1.2). 

Determination of the satellite steady motion is also of special interest. At 

given relative motion of the SA it can be determined using asymptotic analysis 

methods for the mathematical model of the satellite motion about the center of mass. 

If determined, the steady motion can also be used for the model verification. Steady-

state motions and equilibrium positions of the system under consideration in 

gravitational field is studied in many papers. The ones of V. Sarychev [6–8] cover 

determination of the equilibrium positions of satellite–pendulum system at a circular 

orbit. There is a double pendulum considered in [6], satellite–asymmetric pendulum 

system in [7] and satellite and asymmetrical pendulum with an arbitrary inertia tensor 

in [8]. In all cases, under some additional conditions, all equilibrium positions are 

determined. 

The papers of M. Lavagna and A.E. Finzi [9; 10] cover the analysis of 

systems made up of three bodies bound by hinges. Equilibrium positions are 

determined for this configuration and their stability is examined. 

2. Assumptions, reference frames, equations of motion 

Consider rather general kinematic scheme of the satellite body connection 

with SA (Fig. 1.1) 
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Fig. 1.1. Geometry of two bodies bound by hinges  

 

The satellite (body with center of mass at point 1O ) and SA (body with center 

of mass at point 2O ) are bound by two weightless absolutely rigid rods connected 

together with hinges bodies  1,2,3iР i  , each with one degree of freedom. 

Superposing the hinges at one point one can implement a hinge connecting the 

satellite to a SA with two or three degrees of freedom. 

To derive motion equations we represent the mechanical system in a form of 

material particles set. For each particle the following equation 

m    r F R  

is satisfied where F  and R  are resultant factors of active (external) forces and 

reactions affecting the particle. The constraints imposed on the system are considered 

ideal. Then at any virtual displacement r  compatible with the constraints the 

following relation holds 

0 


 R r  

and we obtain general dynamics equation 

  0m   


  r F r . 



7 

Sum separately over particles of the first body  (1)

 , the second one  (2)

  

and connecting hinges  (3)

 . Taking into account zero mass of the connecting links, 

obtain 

   
(1) (2) (3) 0m m         

  

        r F r r F r F r .   (2.1) 

Introduce following notations: 

( )

О

i

im m  for the bodies masses ( 1,2i  ); 

( )

О

О

1 i

i

i

m
m

  r r  for radius-vectors of the bodies centers of mass ( 1,2i  ); 

1 1 1a O P , 1 1 2b PP , 2 2 3b P P , 2 3 2a PO ; 

ie  for unit vectors along the hinge axis iP  ( 1,2,3i  ); 

i  for virtual changes of the slewing angles in the hinge iP . 

Then virtual displacement of  the  th particle belonging to the first body 

(satellite) is written as follows 

 О1 1 О1      r r θ r r  

where 1θ  is the satellite virtual rotation. For virtual displacement of  th particle 

belonging to the second body (SA) obtain 

 

 

   

 

 

 

 

О1 1 1 1 1 1 1

1 1 1 2 2 2

1 1 1 2 2 3 3 2 О2

О1 1 1 1 2 2 О2

1 1 2 2 О2 1

2 2 2 О2 2

3 2 О2 3.













    

  

   

 







      

    

       

        

      

     

   

r r θ a θ e b

θ e e b

θ e e e a r r

r θ a b b a r r

e b b a r r

e b a r r

e a r r

 

Denote also 

( )i

i F F  as resultant vectors of external forces applied to the bodies ( 1,2i  ); 
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( )

О

i

i i   M r r F  as resultant torques of external forces about the center of 

mass of corresponding body ( 1,2i  ); 

   ( )

О О

i

i i im     K r r r r  as the bodies angular moments about the center of 

mass of corresponding body ( 1,2i  ); 

Substituting r  in (2.1) and taking into account that the connecting links are 

affected only by control torques in the hinges uiM  ( 1,2,3i  ), that is 

3
(3)

1
ui i

i

M 


 


 F r , 

obtain 

     
(1) (2)

О1 1 О1 О1m m      
 

           r F r θ r r r F r  

   
(2)

1 1 1 2 2 О2m   


           r F θ a b b a r r  

   

   

   

(2)

1 1 2 2 О2 1

(2)

2 2 2 О2 2

3
(2)

3 2 О2 3
1

0ui i
i

m

m

m M

   


   


   






 


        

        

        





 

r F e b b a r r

r F e b a r r

r F e a r r

 

and after transformation 

 

   

    

    

  

О1 О1 О2 О2 1 2 О1

1 2 1 2 1 1 2 2 О2 О2 2 1

2 2 1 2 2 О2 О2 2 1 1 1

2 2 2 2 О2 О2 2 2 2 2

2 2 2 О2 О2 2 3 3 3 0.

u

u

u

m m

m

m M

m M

m M











   

            

          

         

        

r r F F r

K K M M a b b a r F θ

K M b b a r F e

K M b a r F e

K M a r F e

  (2.2) 

As magnitudes О1r , 1θ , 1 , 2 , 3  are independent, relation (2.2) is 

true only when 
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О1 О1 О2 О2 1 2

1 2 1 2 1 1 2 2 О2 О2 2

2 2 1 2 2 О2 О2 2 1 1

2 2 2 2 О2 О2 2 2 2

2 2 2 О2 О2 2 3 3

0,

0,

0,

0,

0.

u

u

u

m m

m

m M

m M

m M

   

         

         

        

       

r r F F

K K M M a b b a r F

K M b b a r F e

K M b a r F e

K M a r F e

   (2.3) 

The obtained equations must be supplemented by kinematic relations 

   

 

 

     

О2 О1 1 1 2 2

О2 О1 1 1 1 1 1 1 1 1 1 2 2 2

1 1 1 2 2 3 3 2

О2 О1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 2 1

,

,

  

  

   

  

    

          

    

      

            

      

r r a b b a

r r ω a ω e b ω e e b

ω e e e a

r r ω a ω ω a

ω e ω e b ω e ω e b

ω e ω e e ω e 

   

 

 

   

1 1 2 2 2

1 1 1 2 2 1 1 1 2 2 2

1 1 1 1 1 1 2 2 1 1 1 2 2 3 3

1 1 1 2 2 3 3 2

1 1 1 2 2 3 3 1 1 1 2 2 3 3 2 ,

 

   

     

  

     

    

         

         

     

          

e b

ω e e ω e e b

ω e ω e e ω e e e

ω e e e a

ω e e e ω e e e a

 (2.4) 

where 1 1ω θ  is absolute angular velocity of the first body (the bus). 

It is more convenient to use the radius-vector of the system center of mass Оr  

instead of the radius-vector of the bus center of mass О1r . To do this use evident 

relation 

 О1 О2 О О1 О1 О2 О2m m m m  r r r . 

Then 

 

 

О2
О1 О 1 1 2 2

О1 О2

О1
О2 О 1 1 2 2

О1 О2

,

.

m

m m

m

m m

    


    


r r a b b a

r r a b b a

      (2.5) 

The first equation of (2.3) takes the form of 
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 О1 О2 О 1 2 0m m   r F F , 

where 

 

 
О О( ) ( ) ( )

33

О О

i i i

i fM m fM m
r


  




 
     

 
  

r r rr
F F

r r r
 

ОО

( ) О О o
оi32 3

О oОО

О О

1
.i r r

fM m fMm
r r

r r










   






r rr

r

r rr
 

Here as usually we take advantage of the fact that characteristic linear 

dimension of the system is much smaller than the distance between the system mass 

center and Earth center, that is О Оrr r . Consequently, forces 1F  and 2F  can be 

substituted by usual equations for gravitational forces attracting particle masses, 

3

r
F o

i G оi

o

m
r

 ,          (2.6) 

G fM   is the Earth gravitational parameter, f is the universal gravitational 

constant, M is the Earth mass. The first equation of (2.3) takes the final form 

О
О 3

О

0
r

r G
r

  .          (2.7) 

It results from this that the system center of mass moves in Keplerian orbit.  

If different perturbing factors such as non-spherical Earth gravitational field, 

the atmosphere resistance, Sun and Moon influence and solar radiation pressure are 

taken into account, equation (2.7) takes the form  

О
О pert3

О

,G
r

 
r

r F          (2.8) 

where pertF  is disturbing acceleration. The orbit of the system center of mass will not 

be Keplerian one. 

 For the satellite body angular momentum write 
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1 1 1K =Iω , 

therefore, 

1 1 1 1 1 1 K =Iω ω Iω  

where 1I  is the bus tensor of inertia. Similarly, for the second body of the system 

(SA) we get 

2 2 2 2 2 2K =I ω ω I ω  , 

where 

2 1 1 1 2 2 3 3     ω ω e e e  

is second body angular velocity, 2I  is the array inertia tensor. 

Equations (2.3) are given in a vector-matrix form. So, all the vectors there 

must be given in the same reference frame. However, it is not always convenient in 

practice. Further the following reference frames will be used: 

 CXYZ , Earth-centered inertial frame; 

 Oxyz , orbital frame with origin in the system center of mass; 

 1 1 1 1Ox y z , satellite-fixed reference frame (its axes are directed along the 

central principal axes of inertia of the bus); 

 2 2 2 2O x y z , array-fixed reference frame (its axes are directed along the 

central principal axes of inertia of SA); 

 i i i iP  ( 1,2,3i  ), the i th connecting link fixed reference frame (in this 

context consider the second body as the third connecting link).  

Matrix of rotation from inertial frame CXYZ  to orbital frame Oxyz  denotes 

by C; matrix of rotation from the orbital frame to frame 1 1 1 1Ox y z  denotes by 1A ; 

matrix of rotation from the orbital frame to frame 2 2 2 2O x y z  denotes by 2A ; matrix of 

rotation from frame 1 1 1 1Ox y z  to frame 1 1 1 1P  denotes by 1B ; similarly 2B  и 3B  

denote matrixes of rotation form frame 1 1 1 1P  to the one 2 2 2 2P   and from frame 

2 2 2 2P   to the one 3 3 3 3P  . Note that frame 3 3 3 3P   is fixed in the second body 
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(SA). However, it is convenient to introduce it separately from frame 2 2 2 2O x y z  where 

the body inertia tensor has a diagonal form and frame 3 3 3 3P   one of the axes of 

which is directed along the hinge axis 3P . Constant matrix of rotation from frame 

3 3 3 3P  to frame 2 2 2 2O x y z  denotes by D . Obviously  

2 3 2 1 1A DB B B A .          (2.9) 

Assume vectors , , , ,0 01 02 1 2F Fr r r  are specified in frame CXYZ ; vectors 

, , ,1 1 1 1ω M a e  are specified in frame 1 1 1 1Ox y z ; vectors 2 2,ω M  are specified in frame 

2 2 2 2O x y z ; vectors ,1 2b e  are specified in frame 1 1 1 1P ; vectors 2 3,b e  are specified in 

frame 2 2 2 2P  ; vector 2a  is specified in frame 3 3 3 3P  . Then equations (2.3) take the 

form 

О
О 3

О

0,
r

r G
r

    

   

   

1 1 1 1 1 1 1 2 3 2 2 2 2 2 2

1 1 1 1 2 2 1 2 3 2 1 О2 О2 2 0,

T T T T

T T T T T T m

       

      

Iω ω I ω M B B B D I ω ω I ω M

a B b B B b B B B a A C r F
  

   

 

1 2 3 2 2 2 2 2 2 1 1 1 2 2 1 2 3 2

1 О2 О2 2 1 1 0,

T T T T T T T T T T

um M

       

   

B B B D I ω ω I ω M B b B B b B B B a

A C r F e

 (2.10) 

   

 

1 2 3 2 2 2 2 2 2 1 2 2 1 2 3 2

1 О2 О2 2 1 2 2 0,

T T T T T T T T T

T

um M

      

   

B B B D I ω ω I ω M B B b B B B a

A C r F B e

  

 

 

1 2 3 2 2 2 2 2 2 1 2 3 2

1 О2 О2 2 1 2 3 3 0.

T T T T T T T

T T

um M

     

   

B B B D I ω ω I ω M B B B a

A C r F B B e
  

Note that expression О2 О2 2m r F  appearing in equations (2.10) can be 

rewritten in the form 

 О2 О2 2 О2 О2 О О2 О 2m m m    r F r r r F .      (2.11) 

Taking into account (2.7) and (2.8) we get 
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О
О2 О 2 О2 О 3

О

0Gm m
r


 

    
 

r
r F r . 

Finally taking into account (2.5) in expression (2.11), the latter takes the form 

   

     

  

   

О1 О2
О2 О2 2 О2 О2 О 1 1 1 1 1 1

О1 О2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 2 2 1 1 1 1 1 1 2 2 2

1 1 1 2 2 1 1 1 2 2 2

1 1

T Tm m
m m

m m

   

    

   

        


            

         

         

 

r F r r C A ω a ω ω a

ω e ω e b ω e ω e b

ω e e ω e ω e e b

ω e e ω e e b

ω e     

    
1 2 2 3 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 3 2

1 1 1 2 2 3 3 1 1 1 2 2 3 3 2 .

        

     

            

          

e e ω e ω e e ω e e e a

ω e e e ω e e e a

(2.12) 

Present expressions for the resultant torques of the external forces affecting 

the bus ( 1M ) and SA ( 2M ). Here disturbing torques are taken into account for both 

bus and SA and a control torque acting on a satellite. 

 3. Adaptation of the motion equations to a particular satellite 

configuration 

In this chapter equations system (2.10) is adapted for the configuration of 

satellite Formosat-7. So, one can specify vector parameters (the hinges sizes and their 

position), some matrix constants depending on construction and even reduce the 

equations system order. We also choose a method for determination of the bus, SA 

and hinges attitude which seems to be the most evident, the one using plane angles 

(however quaternion-based kinematics is used). Specify all the frames mentioned in 

the previous chapter. 

Inertial frame CXYZ  has the origin in Earth center, its first axis is directed to 

the vernal equinox point, the third one is directed along Earth spin axis, the second 

supplements the frame to the right-hand one. 

Orbital frame Oxyz  has the origin in the system center of mass, its third axis 

is directed along the normal to the orbit plane, the second one is directed along the 

satellite radius-vector, the first one supplements the frame to the right-hand one.  
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To define the matrix of transition between the inertial and orbital frames, 

introduce intermediate frame 1 1 1CX YZ . Its origin is situated in the Earth center, the 

first axis is directed to the orbit pericenter, the third one is directed along the normal 

to the orbit plane, the second one supplements the frame to the right-hand one. The 

matrix of transition from the auxiliary frame to the inertial one has the form 

1

cos cos sin sin cos cos sin sin cos cos sin sin
sin cos cos sin cos sin sin cos cos cos cos sin

sin sin cos sin cos

i i i
i i i

i i i

   
   

 

        
          
 
 

D  

where   is the ascending node longitude,   is the argument of pericenter, i  is the 

orbit inclination. Consider these parameters known from the satellite orbital motion 

(the first equation (2.10)). The matrix of transition from the auxiliary frame to the 

orbital one has the form  

2

cos sin 0

sin cos 0

0 0 1

u u

u u

 
 

  
 
 

D  

where u  is the argument of latitude. Then the matrix of transition from the inertial 

frame to the orbital one has the form 

2 1

ТC D D . 

Specify the matrix of transition from the inertial frame to the one 1 1 1 1Ox y z  

using plane angles , ,    with rotations sequence 2-3-1, 

cos cos sin sin cos

cos sin cos sin sin cos cos sin sin cos cos sin

cos sin sin sin cos cos sin sin sin sin cos cos

    

           

           

 
 

    
     

A . (3.1) 

This choice of the transition matrix will be used later, so in these cases we 

will write  , ,  A . 

Tensor of inertia of the satellite bus, point of the hinge fastening and torques 

applied to the satellite are specified in the frame 1 1 1 1Ox y z . The velocity is to be 

determined, the torque is considered known, point of the hinge fastening is specified 

by vector 
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 1 0.0094, 0.4489, 0.1268  a  m,        (3.2) 

inertia tensor 

1

38.57 0 0

0 29.05 0

0 0 33.96

 
 

  
 
 

I    kg·m2.     

Choose 1 1 1 1P  axes (Fig. 3.1) so that the spin axis will be 1 1P , as according 

to (3.2) the hinge is positioned practically along the second axis. The matrix of 

transition between frames 1 1 1 1Ox y z  and 1 1 1 1P  depends on the hinge position in the 

satellite bus and its rotation through angle 1 . Assume that in initial position ( 1 0  ) 

the orientation of the first hinge in the satellite bus is determined by plane angles 

1 1 1, ,    which are known from the satellite design. Then the transition matrix is 

determined by expression  1 1 1 1 1, ,   B  similarly to (3.1). It allows to write the 

vector of axis of the first hinge rotation in the frame 1 1 1 1Ox y z ,  1 1 0,1,0
ТТe B , vector 

1e  is constant in the frame 1 1 1 1Ox y z . 

 

Fig.3.1. Particular satellite configuration 
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Fig.3.2. Frames of the Bus and SA Fig.3.3. Frames of the SA and yoke 

 

As the SA has two degrees of freedom, one of the hinges in model (2.10) 

should be frozen. Let it be the second hinge and the frame 2 2 2 2P   fixed to it 

coincides with 1 1 1 1P , the hinge rotation angle 2 , its rotation velocity 2 , applied 

control torque 2uM  are zero (Fig.3.2-3.3). Transition matrix 2B  is a unit one. The 

matrix of transition from the frame 2 2 2 2P   (and, therefore, from the frame 1 1 1 1P ) 

to 3 3 3 3P   is determined by rotation about the third hinge axis. Assume that the first 

hinge ensures rotation about the second axis and the third one ensures rotation about 

the first axis. Then the transition matrix is determined by expression  3 30,0,B . In 

this case for the vector of the third hinge rotation direction we get  

 3 3 1,0,0
ТТe B . 

Transition matrix D  between the frame linked with the third part of the 

system and the one fixed to the SA is determined from the array design and hinges 

and is a function of three constant angles. As it is more convenient to prescribe the 

orientation of the hinge in the frame linked with SA and not vice versa, 

 2 2 2, ,Т   D D . Matrix 2A  is determined from relation (2.9). In frame 2 2 2 2O x y z  

the tensor of inertia of the array is specified 
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2

5.549 0 0

0 1.757 0

0 0 7.304

 
 

  
 
 

I  kg·m2. 

Vector of the point of the hinge fastening into the SA 2a  can be written in the 

frame 3 3 3 3P   as  2 0,1.175,0 a  m. It prescribes the method of choice of the frame 

3 3 3 3P   and the vector of fastening in the frame 2 2 2 2O x y z  2 2
a Da . 

The connecting links are short so that 1 2 b b 0.  

Thereby, all the constant vectors appearing in (2.10), (2.12) are determined. 

These are ie , ia  and ib  as well as the transition matrices expressed either by constant 

angles, or by the motion parameters (the angles of the satellite orientation and the 

hinges rotation, the orbit position in the inertial space). The satellite bus and array 

masses entering into (2.12) equal to 1Om =249 kg and 2Om =17.52 kg respectively.  

Angular velocity of the array rotation velocity is determined by expression 

2 1 1 1 3 3   ω ω e e .         (3.3) 

Its derivative 

 2 1 1 1 3 3 1 1 1 1 1 1 3 3           ω ω e e ω e ω e e .    (3.4) 

Introduce variables i  as the hinges rotation velocities i  and write (3.3) and 

(3.4) in the frame 2 2 2 2O x y z , 

 2 3 1 1 1 1 1 3 3

T   ω DB B ω e B e        (3.5) 

  2 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 3 3

T T           ω DB B ω e B e ω e ω e B e .  (3.6) 

Introduce denotations  

   2 2 1 3 1 1 1 1 1 1 3 3, , T        w w ω e B e ,     (3.7) 

 2 1 1 1 1 3 3 1 1 1 1 1 1 1 3 3

T T           w ω e B e ω e ω e B e .   (3.8) 

Taking into account the recorded vectors, transition matrix and expressions 

for the second body angular velocity (3.5) and its derivative (3.6) rewrite motion 

equations (2.10), 
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О
О 3

О

0,
r

r G
r

    

   

 

  

  

1 1 1 1 1 1 2 2 2 2 2 1 3 2

1 1 3 2 1

2 2 2 2 2 1 3 2 1 3 2 1 1 1

2 2 2 2 2 1 3 2 1 3 2 1 1 3 3

0,

0,

0,

T T T

T T

T T T T T

u

T T T T T T

u

M

M

       

   

       

       

Iω ω I ω M J w w J w B B D M

a B B Da A Cc

J w w J w B B D M B B Da A Cc e

J w w J w B B D M B B Da A Cc B e

  (3.9) 

where 

  О1 О2
1 1 1 1 1 1 2 1 3 2 2 2 1 3 2

О1 О2

T T T T T Tm m

m m
            

c C A ω a ω ω a w B B Da w w B B Da , 

2 1 3 2 3 1

T T TJ B B D I DB B . 

The second body angular velocity is specified by expression (3.7), its 

derivative is determined by (3.8). Equations (3.9) are supplemented by kinematic 

relations for the satellite (1.1) and for the hinges having the form of 

i i  .           (3.10) 

Equations (3.9), (3.10) and any kinematic relations for the satellite are the full 

set of equations for determination of the satellite orientation angles through necessary 

parameters, its velocities 1 1 1, ,x y z   , the hinges rotation angles 1 3,   and their 

rotation velocities 1 3,  . 

To integrate numerically we need to solve equation (3.9) for higher order 

derivatives (ω , 1 , 3 ). Introduce notations 

1 1 1 1 1  f ω Iω M , 

2 2 2 2 1 3 2 2 3

T T T   f w J w B B D M J f  

 3 1 1 1 1 1 1 1 3 3

T      f ω e ω e B e , 

   4 3 2 1 1 1 2 2 2       f f α ω ω a w w α , 

О1 О2

О1 О2

m m
m

m m



. 
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Here 1f , 2f , 
3f , 4f  are functions not containing higher order derivatives, 

2 1 3 2

T T α B B Da  is vector 2a  written in the bus-fixed reference frame. Substituting the 

introduces notations in equations (3.9), we get 

      

   

   

1 1 1 2 1 1 1 1 3 3 2 1 2 1

2 1 1 1 1 3 3 2 2 1 1 1

2 1 1 1 1 3 3 2 2 1 1 3 3

0,

0,

0,

T

T

u

T T

u

M

M

 

 

 

        

       


       


Iω f J ω e B e f a α ACc

J ω e B e f α ACc e

J ω e B e f α ACc B e

  (3.11) 

where 

   1 1 1 1 1 1 2 2 2 2 2

T Tm         c C A ω a ω ω a w α w w α ,   (3.12) 

and expression (3.8) takes the form 

2 1 1 1 1 3 3 3

T    w ω e B e f . 

Then (3.12) subject to notation 4f  is written in the form 

    1 1 1 2 1 1 1 3 3 2 4

T T Tm        c C A ω a α e B e α f .     (3.13) 

Write (3.11) subject to (3.13) 

    
      

  

    

  

   

1 1 1 2 1 1 1 1 3 3 2

1 2 1 1 2 1 1 1 3 3 2 4

2 1 1 1 1 3 3 2

2 1 1 2 1 1 1 3 3 2 4 1 1

2 1 1 1 1 3 3 2

2 1 1 2 1 1 1 3 3

0,

0,

T

T

T

T

u

T

T

m

m M

m

 

 

 

 

 

 

     

         

   


         


   


      

Iω f J ω e B e f

a α ω a α e B e α f

J ω e B e f

α ω a α e B e α f e

J ω e B e f

α ω a α e B e 2 4 1 3 3 0.T

uM  


α f B e

 

Introduce the triple vector product matrix as follows: 

  ( , )  a y b K a b y  

where 
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2 2 3 3 2 1 3 1

1 2 1 1 3 3 3 2

1 3 2 3 1 1 2 2

( , )

a b a b a b a b

ab ab a b a b

ab a b ab a b

   
 

    
    

K a b . 

In this case equations (3.11) will be rewritten in the form 

   

   
1 2 1 2 1 2 1 2 1 2 2 1 1

2 1 2 2 1 3 3 1 2 1 2 4

( , ) ( , )

( , ) ,T

m m

m m





       

       

I J K a α a α ω J K a α α e

J K a α α B e f f a α f

     

         

2

2 2 1 2 1 1 1 2 1 1 2 1

2

1 2 1 3 1 1 3 2 1 2 1 3 2 3 1 2 2 4 1

( , ) , ,

, , , , , ,

T

T T T

u

m m

m m M m



 

    

      

J K α a α e ω e J e e α

e J B e e B e e α B e α f α f e

 

          

    

2

2 2 1 2 1 3 1 2 1 1 3 1 1 3 2 1 2 1 3 2 1

2

1 3 2 1 3 1 3 2 3 3 2 2 4 1 3

( , ) , , , , ,

, , ,

T T T T T

T T T T

u

m m m

m M m

 



    

      

J K α a α B e ω J e B e e B e e α B e α

B e J B e B e α f α f B e

where   1 1 2 2 3 3, ab a b a b  a b  denotes scalar product of two vectors. Take into 

account that the hinges are mutually orthogonal 

   

   
1 2 1 2 1 2 1 2 1 2 2 1 1

2 1 2 2 1 3 3 1 2 1 2 4

( , ) ( , )

( , ) ,T

m m

m m





       

       

I J K a α a α ω J K a α α e

J K a α α B e f f a α f

     

       

2

2 2 1 2 1 1 1 2 1 1 2 1

1 2 1 3 1 2 1 3 2 3 1 2 2 4 1

( , ) , ,

, , , , ,

T

T T

u

m m

m M m





    

     

J K α a α e ω e J e e α

e J B e e α B e α f α f e

  (3.14) 

        

    

2 2 1 2 1 3 1 2 1 1 3 1 2 1 3 2 1

2

1 3 2 1 3 1 3 2 3 3 2 2 4 1 3

( , ) , , , ,

, , .

T T T T

T T T T

u

m m

m M m





   

      

J K α a α B e ω J e B e e α B e α

B e J B e B e α f α f B e

 

Solving equations (3.14) for higher order derivatives, obtain 

 
 

 

1 1 2 1 2 4

1

1 1 2 2 4 1

3 3 2 2 4 1 3

,

,

u

T

u

m

M m

M m







      
  

     
         

ω f f a α f

S f α f e

f α f B e

.      (3.15) 

Here matrix S has the form 
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1 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 3

2

1 2 2 1 2 1 2 1 1 2 1 2 1 3 1 2 1 3 2

2

3 1 2 2 1 2 2 1 1 3 1 2 1 3 2 1 3 2 1 3 1 3 2

( , ) ( , ) ( , )

( , ) , , , ,

( , ) , , , ,

T

T T T

T T T T T T

m m m

m m m

m m m

         
      
 
       

I J K a α a α J K a α α e J K a α α B e

S e J K α a α e J e e α e J B e e α B e α

e B J K α a α J e B e e α B e α B e J B e B e α 

Equations (3.15) supplemented by kinematic relations form a closed set of the 

equations of motion about the center of mass. 

Right terms (3.15) depend on the system parameters, the satellite orientation, 

its angular velocity 1ω , angles and angular velocity in the hinges ( 1 , 3 , 1 , 3 ), 

total torque of the external forces affecting the satellite and array 1M  and 2M , as 

well as torques in the hinges axes 1uM  and 3uM . 

These equations, however, may be slightly simplified. 

4. Equations adaptation for numerical methods 

It can be seen from equations (3.15) that numerical procedure demands 

inverse of 5x5 matrix. This section considers simplification of the equations (3.15). 

Introduce notations 

1 2 1 2 1 2( , )m    J I J K a α a α        (4.1) 

 1 1 2 1 2 4m    c f f a α f ,        (4.2) 

 2 1 2 2 4 1,uc M m   f α f e , 

 3 3 2 2 4 1 3, T

uc M m   f α f B e , 

2 1 2 2( , )m  N J K a α α .        (4.3) 

Note that 

 2 2 1 2 2 2 1 2 2 1 2 2( , ) ( , ) ( , )
T T Tm m m        J K α a α J K α a α J K a α α N . 

In this case equations (3.15) take a form 

1 1 1 1 3 3 1,
T   Jω Le LB e c  

    
     

2

1 1 1 2 1 1 2 1

1 2 1 3 1 2 1 3 2 3 2

, ,

, , , ,T T

m

m c





   

  

Ne ω e J e e α

e J B e e α B e α
  (4.4) 
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1 3 1 2 1 1 3 1 2 1 3 2 1

2

1 3 2 1 3 1 3 2 3 3

, , , ,

, .

T T T

T T T

m

m c





  

   

NB e ω J e B e e α B e α

B e J B e B e α
 

From the first equation of (4.4) 

 1

1 1 1 1 1 3 3 .T   ω J c Ne NB e  

Substitute it to the second and third equations of (4.4) 

   
        

21

1 2 1 1 2 1

1 1

1 2 1 3 1 2 1 3 2 3 2 1 1

,

, , , , ,

T

T T T

m

m c







 

   

    

e J N J N e e α

e J N J N B e e α B e α Le J c
 

      
     

2
1

1 2 1 3 1 2 1 3 2 1

21 1

1 3 2 1 3 1 3 2 3 3 1 3 1

, , ,

, , .

T T T

T T T T T

m

m c







 

  

     

e J N J N B e e α B e α

B e J N J N B e B e α LB e J c

 

Denote 

        

        

21 1

1 2 1 1 2 1 2 1 3 1 2 1 3 2

1 21 1

1 2 1 3 1 2 1 3 2 1 3 2 1 3 1 3 2

, , , ,

, , , ,

T T T T

T T T T T T T

m m

m m

 

 

     
 
      
 

e J N J N e e α e J N J N B e e α B e α
S

e J N J N B e e α B e α B e J N J N B e B e α
. (4.5) 

In this case 

 

 

1

2 1 11 1

1 1
3 3 1 3 1

,

,

T

T T

c

c











  
  
    

e N J c
S

B e N J c
       (4.6) 

and 

 
 

 

1

2 1 11 1

1 1 1 1 3 1 1

3 1 3 1

,

,

T

T

T T

c

c



 



  
   
    

e N J c
ω J c Ne NB e S

B e N J c
,     (4.7) 

where  1 1 3

TNe NB e  is 3x2 matrix. 

So (4.6) and (4.7) is the solution of (4.4). It is the same as (3.15). However, in 

this case we should find the inverse of the 3x3 matrix and 2x2 instead of inversing 

the 5x5 matrix in the (3.15). This is considered as a huge benefit in terms of 

computational complexity. 
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The equations (4.6) and (4.7) are complemented by the kinematic equations 

1 1

2 2

,

,

1

2

 

 





q Ωq

           (4.8) 

where  

  

  

  

  

  

  

  

  

  
  
 
  
 
    

Ω . 

The set of (4.6)-(4.8) is the full set of equations that describes the behavior of 

the system. 

 

Conclusion 

Variables describing the satellite with a rigid solar array are chosen. The 

reference frames are introduced and the mathematical model for the satellite with 

2DOF solar panel is developed. Equations are resolved with respect to the higher-

order derivatives. The equation adaptation for numerical methods is performed. 
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