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OBuyunHukoB M.IO., Poaayrun J1.C., IlenskoB B.A., Tkauesn C.C.,
MamrakoB 1.B.

CKOJII)BSIHICC YIIPaBJICHUC OJIA TpCXOCHOﬁ MarHUTHOM OPHUCHTAIUU CITYTHHKA

PaccmarpuBaercst Manbpli  CIIyTHUK, OCHAIICHHBIA MAarHUTHOW CHUCTEMOM
yOpaBjeHus, OOECIeUMBAIOIIEH €ero TPEeXOCHYI OpHEHTalluio. YTpaBJcHUE
(hopMHUpYETCST Ha OCHOBE CKOJIB3SAICTO pekuma. CTPOUTCS alTOPUTM, peaTu3yIOnn
MOJINPOCTPAHCTBO CKOJB3SAIIET0 PEKHMA, YTO MO3BOJIAET IEPEBECTH CIIYTHUK B
TpeOyeMyl0 OpHEHTAIMI0 10 peanu3dyemMoi (a3oBoil Tpaektopuu. KoHeuHas
OpUEHTalus SBISETCS aCUMNTOTUYECKH YycToilumBoil. Takum oOpa3om, pemraercs
npobJieMa OTCYTCTBUS YIPABISIEMOCTH MPU UCTIOIb30BAHUHU MArHUTHOW CUCTEMBI.

Kntouesvie cnoga: MarHWTHas CUCTEMA OPHEHTALlMU, TPEXOCHAs OpUEHTALMs,
CKOJIB3SI1IIEE YIIPABICHUE

Michael Ovchinnikov, Dmitry Roldugin, Vladimir Penkov, Stepan Tkachev,
Yaroslav Mashtakov

Sliding mode control for three-axis magnetic attitude

Satellite equipped with magnetic attitude control system is considered. Sliding
mode control is used to ensure three-axis satellite attitude. Sliding manifold
construction is discussed. This manifold is achievable at any time using only
magnetic control system. Necessary attitude is asymptotically stable. This solves the
underactuation problem.

Key words: magnetic attitude control system, three-axis attitude, sliding mode
control
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Introduction

Present work is devoted to a three-axis satellite attitude provided with
magnetorquers only. Control torque direction is restricted in this case. It should be
perpendicular to the geomagnetic induction vector. Common control construction
techniques (for example, PD-controller) are unavailable. These techniques provide
control torque which cannot be implemented by magnetorquers. This results in three
major areas of magnetorquers implementation in satellite attitude stabilization. The
most widespread magnetorquers task is damping of angular velocity. This task can be
flawlessly resolved since necessary torque is perpendicular to the geomagnetic
induction vector. After angular velocity is damped control is passed to other
actuators. Another task is attitude stabilization of particular satellite configurations
and attitude regimes. One-axis attitude of spin-stabilized satellite is the best example.
Finally, magnetorquers may be used with other actuators. Complementing
magnetorquers with one flywheel makes some specific attitude regimes available.
These schemes of magnetorquers implementation are extensively used on large
satellites. However they are unsuitable for small satellites, especially CubeSats.
Thrusters are better not be used because of restricted fuel capacity. Reaction wheels
are also bad choice because of high price and complexity. Available for small
satellites wheels are also frequently unreliable or even more expensive.
Magnetorquers have no drawbacks of other actuators. They are cheap, reliable,
compact, lightweight and require negligible power and no fuel. Underactuation issue
Is a pay-off for these advantages.

Increasing number of small satellites and CubeSats launches intensifies the
demand on simple attitude stabilization system. This justifies current interest in three-
axis stabilization using magnetorquers only and vast number of works on this theme.
Majority of these works follow one general scheme. First, some necessary control
torque is constructed. Then only available (perpendicular to the geomagnetic
induction vector) part is implemented. Some assumptions on control parameters [1]
or satellite [2]-[3] allow this scheme to work. The underactuation issue remains
unsolved and the control is not robust. Some deviations from theoretical control
parameters or satellite parameters may lead to non-operational control. Implementing
this scheme on real satellite with lots of disturbances and uncertainties is undesirable.

Underactuation issue has one important trait for magnetorquers. Geomagnetic
induction vector rotates in the inertial space. No inaccessible direction in inertial or
bound reference frames exists. Any inaccessible at a moment direction will become
available, but after some time. This feature allows some accessible path to be
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constructed. This path requires perpendicular to geomagnetic induction vector torque
at each control step. Finally satellite acquires necessary attitude with necessary
angular velocity. Sliding control [4] is used in this paper to obtain the above
mentioned path. Sliding control was already proposed for attitude stabilization of
satellites with magnetorquers only [5]. This scheme was also implemented for
underactuated formation flying system [6] with inaccessible control direction in
bound frame. Constant sliding manifold parameters limit the importance of these
works. This paper focuses on acquiring variable manifold parameters. This allows the
sliding manifold to change in such a way that satellite path may be achieved with
magnetorquers only.

1. Problem statement

Following reference frames are used:

inertial reference frame O,Y1Y,Y3; where O, is the Earth’s center, the O,Y3 axis is
directed along with the Earth’s axis, O,Y: lies in the Earth’s equatorial plane and is
directed to the ascending node of the satellite’s orbit, the O,Y, axis is directed so the
system is right-handed;

orbital frame OX;1X;X3 where O is satellite’s center of mass, the O,X3 axis is
directed along the radius-vector, O,X; is directed along the orbital plane normal, O,X;
axis is directed so the system is right-handed (this axis is directed along the orbital
velocity for the circular orbit);

bound frame Oxix2Xs, its axes are directed along the principal axes of inertia of
the satellite.

Satellite attitude in inertial space is described using Euler equations and
kinematic relations based on quaternions and direction cosines matrices. Satellite

state vector comprises of angular velocity @ and quaternion (q,qo) or direction
cosines matrix A and its components a;. Dynamical equations of the satellite with
inertia tensor J are written as

Jo, +o, xJo, =M

The torque consists of the control M, =mxB and disturbing ones. For example
gravitational and aerodynamic disturbing torques may be taken into account. In this
case M=M,,, +M, +M,, . Gravitational torque will be accounted for in control,

while aerodynamic one will remain unaccounted for. Dynamical equations are
complemented with kinematic relations. Quaternion is used for numerical simulation,
in this case
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where q is the vector part of the quaternion, g, is the scalar part and

(0 o -0 o
-a, 0 o @,

Q= .

w, -o 0 o

@ —@, —04 0 ]
Direction cosine matrix is used for control construction. In this case
A=WA (2)
where
0 o -o

W=l-o, 0 @

@, - 0

Satellite motion in orbital reference frame is described in the same manner.
Matrix A and quaternion (q,qo) represent satellite attitude with respect to the orbital

frame, angular velocity is

(Dabs :O‘)rel +A0)0rb

where @, is orbital reference frame angular velocity in inertial space, ®,, is
satellite angular velocity relative to the orbital frame. Dynamical equations for
relative angular velocity are

Jo, +oyxJo, =M

rel rel

where
M = |\/Icntrl + I\/Igr + Maer + l\/Irel

and M, =-IWA®,_, —®
The last expression is accounted for in the control in the same way as M. We will

XJA®,, —A®,, xJ ((ore, + Acoorb) :

rel

use general equations of motion in inertial and orbital frames,
Jo+oxJo=M+M,_,, +M,_,, (3)
where ® is relative or absolute angular velocity, M is accordingly defined as
M=M, +M, or M=M,,.

rel

2. Control construction

Sliding control is constructed in two steps. First sliding manifold x(m,A,t)zo
Is constructed in phase space. Satellite motion should satisfy this relation: the satellite
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moves on the manifold. The manifold is constructed in such a way that necessary
attitude is asymptotically stable. Second step is control torque construction. The
torque should ensure motion on the sliding manifold. Common sliding manifold for
satellite angular motion is
X=0)+AS(A):0
where A is a positive-defined constant matrix, vector S characterizes deviation from
necessary attitude. This vector S has is the same as the one used in PD-controller [1],
Ay — A
S=| ay—ay |- (4)
&y — 8y
Position S=0 corresponds to diagonal direction cosines matrix. Sliding manifold
equation and matrix A are independent on time and satellite attitude and velocity.
This restriction should be lifted if satellite moves in the geomagnetic field. Since the
induction vector rotates sliding manifold should rotate also ensuring the necessary
control torque to be perpendicular to the geomagnetic induction vector for each time
and attitude. General sliding manifold equation is
x=A(®,S,t)o+A(0,S,t)S=0 (5)
where A is a positive-defined variable matrix and A is a positive value (it could be a
positive-defined matrix also). Satellite motion on the sliding manifold is represented
by x=0. In this case attitude ®w=0, A=E is asymptotically stable (E is a unity
matrix). This could be proven with the following reasoning. It may be shown that

S=40,0.
In this case (5) will be
X=Amw+4q,Aq=0. (6)
Using (1) we obtain
q=Qo (7)
where
0 4 0

Q=0E+| G 0 —q|

% G 0
Taking into account (6) equation (7) is rewritten as
q=-41"0,QAq
or

q=—41"Aq—41'qqx Aq.



Product of this equation by q will be
q'q=-4%A"q Aq

or

%%( Tq)=—4/1‘1q§qTAq£O.

Magnitude of the quaternion vector part decreases while moving along the
sliding manifold. This means that motion of the satellite on the sliding manifold leads
to the necessary attitude. Control torque construction problem is transformed. Instead
of maintaining necessary attitude it should ensure motion on the sliding manifold.
Sliding manifold should be chosen in such a way that control torque is perpendicular
to the geomagnetic induction vector.

3. Iterative sliding manifold construction

Control should ensure motion on the sliding manifold according to the equation
X =-J'Px (8)
where P a is positive-defined matrix. Inertia tensor is introduced to simplify further
reasoning. Taking into account (5) we rewrite (8) as
Ao+ AJd+IJAS +JAS =—APw —PAS .
Scalar function A characterizes damping part in control. Matrix A allows different
gains for each bound frame axis. This may be useful for satellite with particular
dynamical configuration, for example long cylinder or flat disk. These cases are
outside of frame of this paper. Matrix A characterizes positional control part. Matrix
P represents the time-response of sliding manifold acquiring. S is found using (4)
and (2),

—Wa53 + 8z — 38, + Wy
S=| W@y — W3y — BBy + D3y

038 — 383 — W8y + A,
Taking into account dynamical equations (3) we obtain
ImxB=-1Jo+A(oxJo—-M)-AJS—A(JS+PS)- Po. 9)

Expression (9) governs magnetorquers dipole moment. Altering values of A and
A should allow the latter relation for each time and satellite attitude and velocity.
Damping coefficient A will be considered constant and known. The main problem is

to find matrix A and its derivative. lterative approach is considered below.
Matrix A derivative is written as



A _Ak+1)-A®K)
At

where At is control implementation step. Suppose we know satellite attitude, angular

velocity and geomagnetic induction vector for k+1 step and previous matrix A(k).

Our purpose is to find A(k +1). Substituting approximation into (9) we obtain
JAMxB=(~AJo+ A@xJo-M)-A(JS+PS)- Po)at- A(k+1)JS+AJS.  (10)
Here all indices except in A(k +1) are omitted.

Introduce notations
a=(-AJo+A(wxJo—M)-A(JS+PS)— 1Po At + AJS,

b=-JS,
d=/4AtB
and rewrite (10) as
a+A(k+1)b=mxd. (11)
Set new reference frame using basis vectors
e :E e :@ e, =e,xe
1 |d|’ 3 ‘dxb" 2 3 1*

Transition matrix from bound frame to the new one is D=|e, e, e,]. Scalar product
of (11) and d is

(A(k+1)b)d=-ad.

Taking into account d =(d,,0,0)" and b=(l,b,,0)" we get

Ay (k+1)b + A, (k+1)b, =—3,. (12)
Matrix A(k +1) construction is performed in a few steps. First A,,(k+1)>0 should
be chosen. For example, A, (k+1)=A, (k). This allows using (12) to find
A, (k+1) and A, (k+1),

A (k+1)= Ay (K+1)=(—a — Ay (k+1)b ) /b, .

A,,(k+1) should satisfy
All(

k+1)A, (k+1)— AL (k+1)>0. (13)
2
For example A,, (k +1) =A, +M, A, is some constant value. It characterizes
Ay (k+1)

overall positional control part. However if Azz(k) satisfies (13) previous step value
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may be used. Finally Ay (k+1)=A4; (k). Matrix A(k +1) is then transformed to the

bound frame. Expression (11) is used to find control torque and dipole moment. First
step values may be setas A(k+1)=A(k)=A,E.

This reasoning cannot be used in the vicinity of necessary attitude since b, and
b, are close to zero. To mitigate this problem element Alz(k +1) Is constructed
according to

Alz(k+1)=—a1+A“(k +1)b

b, +Jb,
where oD, is small positive constant. This artificial error leads to slight discrepancy
between control torque direction and possible plane perpendicular to the geomagnetic
induction vector. Control torque is projected on this plane to construct dipole
moment.

This section provided iterative approach to sliding manifold construction. The
procedure involves simple calculations using end formulae. However this approach
results in some errors in comparison with theoretical representation of matrix
A(®,S,t). This, in turn, leads to errors in satellite stabilization.

4. Numerical examples

Control implementation involves choosing coefficient or function A,
approximate positional control contribution A, and matrix P. These values depend
on expected magnetorquers dipole moment value and relation between damping and

positional control parts. Fig. 1 brings numerical simulations result for “Chibis-M”.
This is a typical microsatellite with a mass of several tens kilo. Its inertia tensor is

J=diag(1.0255,1.53931.8172) kg:-m%. Control parameters are A,=10"

oh, =0.001, 1=0.07, P=10"E, maximum dipole moment is 3.2 Am?, control step

At=0.1 s, circular orbit altitude 400 km, inclination 60 degrees, geomagnetic field is
modelled by tilted dipole. Gravitational torque is taken into account in control
construction, aerodynamic torque is a disturbing one.
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Fig. 1. Microsatellite inertial attitude

Iterative approach to sliding manifold restricts microsatellite attitude accuracy to
15-20 degrees with 0.1 s control step. Nanosatellites can be controlled with greater
accuracy. Fig. 2 brings numerical simulation for “TabletSat-Aurora” with inertia

tensor J=diag(0.52,0.58,0.705) kg:m2 Control parameters are P=5-10"E,
A=0.15, step At=1 s. Other parameters are the same. Dipole moment of
magnetorquers is bounded by 1 Am?. Accuracy is better than 5 degrees.

Finally CubeSat with inertia tensor J=diag(0.09,0.01L0.007) kg-m? and

control parameters P=10"E, 1=0.1, At=1 s and magnetorquers producing no
more than 0.1 Am? is again stabilized with accuracy of few degrees (Fig. 3).
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Fig. 2. Nanosatellite inertial attitude
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Fig. 4. Brings CubeSat stabilization in orbital reference frame.
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Fig. 4. Cubesat orbital attitude

Attitude accuracy is better than one degree. This is due to gravitational torque
being close to zero in necessary attitude (this position is not stable in gravitational
field however).

Conclusion

Sliding control for three-axis magnetic attitude is considered. Control system
consists of magnetorquers only. Sliding manifold is constructed with varying
parameters. This allows constructing accessible angular motion path leading the
satellite to the necessary attitude. Control torque employing this path is perpendicular
to geomagnetic induction vector for each time and path point. Iterative approach for
varying sliding manifold construction is proposed. CubeSat attitude accuracy is few
degrees in inertial space and less than one degree in orbital frame.
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