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Овчинников М.Ю., Ролдугин Д.С., Пеньков В.И., Ткачев С.С., 

Маштаков Я.В. 

Скользящее управление для трехосной магнитной ориентации спутника 

Рассматривается малый спутник, оснащенный магнитной системой 

управления, обеспечивающей его трехосную ориентацию. Управление 

формируется на основе скользящего режима. Строится алгоритм, реализующий 

подпространство скользящего режима, что позволяет перевести спутник в 

требуемую ориентацию по реализуемой фазовой траектории. Конечная 

ориентация является асимптотически устойчивой. Таким образом, решается 

проблема отсутствия управляемости при использовании магнитной системы. 

Ключевые слова: магнитная система ориентации, трехосная ориентация, 

скользящее управление 

Michael Ovchinnikov, Dmitry Roldugin, Vladimir Penkov, Stepan Tkachev, 

Yaroslav Mashtakov  

Sliding mode control for three-axis magnetic attitude 

Satellite equipped with magnetic attitude control system is considered. Sliding 

mode control is used to ensure three-axis satellite attitude. Sliding manifold 

construction is discussed. This manifold is achievable at any time using only 

magnetic control system. Necessary attitude is asymptotically stable. This solves the 

underactuation problem. 

Key words: magnetic attitude control system, three-axis attitude, sliding mode 

control 
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Introduction 
Present work is devoted to a three-axis satellite attitude provided with 

magnetorquers only. Control torque direction is restricted in this case. It should be 

perpendicular to the geomagnetic induction vector. Common control construction 

techniques (for example, PD-controller) are unavailable. These techniques provide 

control torque which cannot be implemented by magnetorquers. This results in three 

major areas of magnetorquers implementation in satellite attitude stabilization. The 

most widespread magnetorquers task is damping of angular velocity. This task can be 

flawlessly resolved since necessary torque is perpendicular to the geomagnetic 

induction vector. After angular velocity is damped control is passed to other 

actuators. Another task is attitude stabilization of particular satellite configurations 

and attitude regimes. One-axis attitude of spin-stabilized satellite is the best example. 

Finally, magnetorquers may be used with other actuators. Complementing 

magnetorquers with one flywheel makes some specific attitude regimes available. 

These schemes of magnetorquers implementation are extensively used on large 

satellites. However they are unsuitable for small satellites, especially CubeSats. 

Thrusters are better not be used because of restricted fuel capacity. Reaction wheels 

are also bad choice because of high price and complexity. Available for small 

satellites wheels are also frequently unreliable or even more expensive. 

Magnetorquers have no drawbacks of other actuators. They are cheap, reliable, 

compact, lightweight and require negligible power and no fuel. Underactuation issue 

is a pay-off for these advantages. 

Increasing number of small satellites and CubeSats launches intensifies the 

demand on simple attitude stabilization system. This justifies current interest in three-

axis stabilization using magnetorquers only and vast number of works on this theme. 

Majority of these works follow one general scheme. First, some necessary control 

torque is constructed. Then only available (perpendicular to the geomagnetic 

induction vector) part is implemented. Some assumptions on control parameters [1] 

or satellite [2]-[3] allow this scheme to work. The underactuation issue remains 

unsolved and the control is not robust. Some deviations from theoretical control 

parameters or satellite parameters may lead to non-operational control. Implementing 

this scheme on real satellite with lots of disturbances and uncertainties is undesirable.  

Underactuation issue has one important trait for magnetorquers. Geomagnetic 

induction vector rotates in the inertial space. No  inaccessible direction in inertial or 

bound reference frames exists. Any inaccessible at a moment direction will become 

available, but after some time. This feature allows some accessible path to be 
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constructed. This path requires perpendicular to geomagnetic induction vector torque 

at each control step. Finally satellite acquires necessary attitude with necessary 

angular velocity. Sliding control [4] is used in this paper to obtain the above 

mentioned path. Sliding control was already proposed for attitude stabilization of 

satellites with magnetorquers only [5]. This scheme was also implemented for 

underactuated formation flying system [6] with inaccessible control direction in 

bound frame. Constant sliding manifold parameters limit the importance of these 

works. This paper focuses on acquiring variable manifold parameters. This allows the 

sliding manifold to change in such a way that satellite path may be achieved with 

magnetorquers only.  

1. Problem statement 

Following reference frames are used: 

inertial reference frame OaY1Y2Y3 where Оa is the Earth’s center, the OaY3 axis is 

directed along with the Earth’s axis, OaY1 lies in the Earth’s equatorial plane and is 

directed to the ascending node of the satellite’s orbit, the OaY2 axis is directed so the 

system is right-handed; 

orbital frame OX1X2X3 where О is satellite’s center of mass, the OaX3 axis is 

directed along the radius-vector, OaX2 is directed along the orbital plane normal, OaX1 

axis is directed so the system is right-handed (this axis is directed along the orbital 

velocity for the circular orbit); 

bound frame Ox1x2x3 , its axes are directed along the principal axes of inertia of 

the satellite. 

Satellite attitude in inertial space is described using Euler equations and 

kinematic relations based on quaternions and direction cosines matrices. Satellite 

state vector comprises of angular velocity ω  and quaternion  0,qq  or direction 

cosines matrix A  and its components ija . Dynamical equations of the satellite with 

inertia tensor J  are written as 

.abs abs abs  Jω ω Jω M   

The torque consists of the control cntrl  M m B  and disturbing ones. For example 

gravitational and aerodynamic disturbing torques may be taken into account. In this 

case cntrl gr aer  M M M M . Gravitational torque will be accounted for in control, 

while aerodynamic one will remain unaccounted for. Dynamical equations are 

complemented with kinematic relations. Quaternion is used for numerical simulation, 

in this case 
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Direction cosine matrix is used for control construction. In this case 

A WA            (2) 

where 
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Satellite motion in orbital reference frame is described in the same manner. 

Matrix A  and quaternion  0,qq  represent satellite attitude with respect to the orbital 

frame, angular velocity is  

abs rel orb ω ω Aω  

where orbω  is orbital reference frame angular velocity in inertial space, relω  is 

satellite angular velocity relative to the orbital frame. Dynamical equations for 

relative angular velocity are 

rel rel rel  Jω ω Jω M 

where 

cntrl gr aer rel   M M M M M  

and  rel orb rel orb orb rel orb     M JWAω ω JAω Aω J ω Aω . 

The last expression is accounted for in the control in the same way as grM . We will 

use general equations of motion in inertial and orbital frames, 

,cntrl aer    Jω ω Jω M M M         (3) 

where ω  is relative or absolute angular velocity, M  is accordingly defined as 

gr rel M M M  or grM M . 

2. Control construction 

Sliding control is constructed in two steps. First sliding manifold  , , 0t x ω A  

is constructed in phase space. Satellite motion should satisfy this relation: the satellite 
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moves on the manifold. The manifold is constructed in such a way that necessary 

attitude is asymptotically stable. Second step is control torque construction. The 

torque should ensure motion on the sliding manifold. Common sliding manifold for 

satellite angular motion is  

  0  x ω ΛS A  

where Λ  is a positive-defined constant matrix, vector S characterizes deviation from 

necessary attitude. This vector S has is the same as the one used in PD-controller [1], 

23 32

31 13

12 21

a a

a a

a a

 
 

  
  

S .          (4) 

Position 0S  corresponds to diagonal direction cosines matrix. Sliding manifold 

equation and matrix Λ  are independent on time and satellite attitude and velocity. 

This restriction should be lifted if satellite moves in the geomagnetic field. Since the 

induction vector rotates sliding manifold should rotate also ensuring the necessary 

control torque to be perpendicular to the geomagnetic induction vector for each time 

and attitude. General sliding manifold equation is   

   , , , , 0t t  x ω S ω Λ ω S S        (5) 

where Λ  is a positive-defined variable matrix and   is a positive value (it could be a 

positive-defined matrix also). Satellite motion on the sliding manifold is represented 

by 0x . In this case attitude 0ω , A E is asymptotically stable (E  is a unity 

matrix). This could be proven with the following reasoning. It may be shown that 

04qS q. 

In this case (5) will be 

04 0q  x ω Λq .         (6) 

Using (1) we obtain 

q Qω            (7) 

where 
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Taking into account (6) equation (7) is rewritten as 
1

04 qq QΛq 

or 
1 2 1

0 04 4q q    q Λq q Λq. 
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Product of this equation by q will be 

2 1

04T Tq q q q Λq  

or 
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0
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Magnitude of the quaternion vector part decreases while moving along the 

sliding manifold. This means that motion of the satellite on the sliding manifold leads 

to the necessary attitude. Control torque construction problem is transformed. Instead 

of maintaining necessary attitude it should ensure motion on the sliding manifold. 

Sliding manifold should be chosen in such a way that control torque is perpendicular 

to the geomagnetic induction vector. 

3. Iterative sliding manifold construction 

Control should ensure motion on the sliding manifold according to the equation 
1x J Px            (8) 

where P  a is positive-defined matrix. Inertia tensor is introduced to simplify further 

reasoning. Taking into account (5) we rewrite (8) as 

      Jω Jω JΛS JΛS Pω PΛS . 

Scalar function   characterizes damping part in control. Matrix λ  allows different 

gains for each bound frame axis. This may be useful for satellite with particular 

dynamical configuration, for example long cylinder or flat disk. These cases are 

outside of frame of this paper. Matrix Λ  characterizes positional control part. Matrix 

P  represents the time-response of sliding manifold acquiring. S  is found using (4) 

and (2), 
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3 22 2 32 1 31 3 11
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a a a a
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S . 

Taking into account dynamical equations (3) we obtain 

              m B Jω ω Jω M ΛJS Λ JS PS Pω.   (9) 

Expression (9) governs magnetorquers dipole moment. Altering values of   and 

Λ  should allow the latter relation for each time and satellite attitude and velocity. 

Damping coefficient   will be considered constant and known. The main problem is 

to find matrix Λ  and its derivative. Iterative approach is considered below. 

Matrix Λ  derivative is written as 
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   1k k

t

 




Λ Λ
Λ  

where t  is control implementation step. Suppose we know satellite attitude, angular 

velocity and geomagnetic induction vector for 1k   step and previous matrix  kΛ . 

Our purpose is to find  1k Λ . Substituting approximation into (9) we obtain 

      1t t k                m B Jω ω Jω M Λ JS PS Pω Λ JS ΛJS . (10) 

Here all indices except in  1k Λ  are omitted. 

Introduce notations 

     t           a Jω ω Jω M Λ JS PS Pω ΛJS , 

b JS, 

t d B 

and rewrite (10) as 

 1k   a Λ b m d .         (11) 

Set new reference frame using basis vectors 

1 
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, 3
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d b
e

d b
, 2 3 1 e e e . 

Transition matrix from bound frame to the new one is  1 2 3D e e e . Scalar product 

of (11) and d is 

  1k  Λ b d ad. 

Taking into account  1,0,0
T

dd  and  1 2, ,0
T

b bb  we get 

   11 1 12 2 11 1k b k b a     .       (12) 

Matrix  1k Λ  construction is performed in a few steps. First   11 1 0k    should 

be chosen. For example,    11 111k k   . This allows using (12) to find 

 12 1k   and  21 1k  , 

      12 21 1 11 1 21 1 1k k a k b b        . 

 22 1k   should satisfy 

     2

11 22 121 1 1 0k k k       .       (13) 

For example  
 
 

2

12
22 0

11

1
1

1

k
k

k

 
   

 
, 0  is some constant value. It characterizes 

overall positional control part. However if  22 k  satisfies (13) previous step value 
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may be used. Finally    33 331k k   . Matrix  1k Λ  is then transformed to the 

bound frame. Expression (11) is used to find control torque and dipole moment. First 

step values may be set as     01k k  Λ Λ E. 

This reasoning cannot be used in the vicinity of necessary attitude since 1b  and 

2b  are close to zero. To mitigate this problem element  12 1k   is constructed 

according to 

 
 1 11 1

12

2 2

1
1

a k b
k

b b

 
  


 

where 2b  is small positive constant. This artificial error leads to slight discrepancy 

between control torque direction and possible plane perpendicular to the geomagnetic 

induction vector. Control torque is projected on this plane to construct dipole 

moment.   

This section provided iterative approach to sliding manifold construction. The 

procedure involves simple calculations using end formulae. However this approach 

results in some errors in comparison with theoretical representation of matrix 

 , ,tΛ ω S . This, in turn, leads to errors in satellite stabilization. 

4. Numerical examples 

Control implementation involves choosing coefficient or function  , 

approximate positional control contribution 0  and matrix P . These values depend 

on expected magnetorquers dipole moment value and relation between damping and 

positional control parts. Fig. 1 brings numerical simulations result for “Chibis-M”. 

This is a typical microsatellite with a mass of several tens kilo. Its inertia tensor is 

 1.0255,1.5393,1.8172diagJ  kgm2. Control parameters are 4

0 10  , 

2 0.001b  , 0.07  , 310P E, maximum dipole moment is 3.2 Am2, control step 

0.1t   s, circular orbit altitude 400 km, inclination 60 degrees, geomagnetic field is 

modelled by tilted dipole. Gravitational torque is taken into account in control 

construction, aerodynamic torque is a disturbing one.  
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Fig. 1. Microsatellite inertial attitude 

 

Iterative approach to sliding manifold restricts microsatellite attitude accuracy to 

15-20 degrees with 0.1 s control step. Nanosatellites can be controlled with greater 

accuracy. Fig. 2 brings numerical simulation for “TabletSat-Aurora” with inertia 

tensor  0.52,0.58,0.705diagJ  kgm2. Control parameters are 45 10 P E, 

0.15  , step 1t   s. Other parameters are the same. Dipole moment of 

magnetorquers is bounded by 1 Am2. Accuracy is better than 5 degrees.  

Finally CubeSat with inertia tensor  0.09,0.011,0.007diagJ  kgm2 and 

control parameters 510P E, 0.1  , 1t   s and magnetorquers producing no 

more than 0.1 Am2 is again stabilized with accuracy of few degrees (Fig. 3). 
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Fig. 2. Nanosatellite inertial attitude 

 

 
Fig. 3. CubeSat inertial attitude 
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Fig. 4. Brings CubeSat stabilization in orbital reference frame.  

 
Fig. 4. Cubesat orbital attitude 

 

Attitude accuracy is better than one degree. This is due to gravitational torque 

being close to zero in necessary attitude (this position is not stable in gravitational 

field however).  

Conclusion 

Sliding control for three-axis magnetic attitude is considered. Control system 

consists of magnetorquers only. Sliding manifold is constructed with varying 

parameters. This allows constructing accessible angular motion path leading the 

satellite to the necessary attitude. Control torque employing this path is perpendicular 

to geomagnetic induction vector for each time and path point. Iterative approach for 

varying sliding manifold construction is proposed. CubeSat attitude accuracy is few 

degrees in inertial space and less than one degree in orbital frame. 
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