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УДК 519.688
Корнеев Б. А., Левченко В. Д.

Эффективное численное моделирование задачи о взаимодействии
пузырька газа с ударной волной в трехмерной постановке с помощью
численного метода RKDG и DiamondTorre алгоритма реализации

Аннотация. В данной работе рассмотрен метод RKDG для решения трех-
мерных уравнений Эйлера газовой динамики. Используется эффективная
реализация численной схемы с помощью LRnLA алгоритма DiamondTor-
re. Рассматривается задача о взаимодействии пузырька с ударной волной в
трехмерной постановке. Рассмотрены два случая: разреженного пузырька и
плотного пузырька, соответствующие двум режимам — квазистационарно-
му режиму с возникновением долгоживущих вихревых колец и неустойчи-
вому режиму, при котором возникают нестабильные вихревые структуры.
Полученные данные находятся в согласии с известными результатами экс-
периментов и численных расчётов. Отмечается, что результаты вычислений
получены без использования дорогой суперкомпьютерной техники.

Ключевые слова: газовая динамика, RKDG метод, алгоритм Diamond-
Torre, вычисления на GPU, взаимодействие пузырька с ударной волной.

Korneev B. A., Levchenko V. D.

Effective numerical simulation of the gas bubble-shock interaction problem
using the RKDG numerical method and the DiamondTorre algorithm of the

implementation

Abstract. In this paper the RKDG method for solving three-dimensional Euler
equations of gas dynamics is considered. For the scheme the effective implemen-
tation algorithm called DiamondTorre is used. The problem of the interaction
of a spherical bubble with a shock wave is considered in the three-dimensional
setting. Two cases are considered: the first is the rarefied bubble and the second is
the dense bubble which corresponds to the two regimes, quasi-stationary regime
with the emergence of stable vortex rings and unstable regime, in which unstable
vortex structures appear. The obtained results are in agreement with the known
results of experiments and numerical simulations. It is noted that the calculation
results are obtained without the use of expensive supercomputer technologies.

Keywords: fluid dynamics, RKDG method, DiamondTorre algorithm, GPU
computing, bubble-shock interaction problem.
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1 Introduction
In this work the RKDGmethod (Runge-Kutta discontinuous Galerkin method)

for the numerical solution of non-stationary equations of fluid dynamics is consid-
ered [1]. RKDG method is the high-order, non-oscillating and explicit method.
It has some common features with the finite volume methods [2] and the finite
element Galerkin method [3]. For the numerical fluxes construction, the exact
or approximate Riemann solvers are used, which makes the RKDG closer to the
Godunov methods [4].

The aim of this work is numerical simulation in the three-dimensional case with
precise and detailed results. Moreover, encouraged by the progress of modern
computer performance, it is desired to implement the numerical scheme using
less number of computational units and obtaining more computational speed.
As the attempt to partly resolve these difficulties, the numerical implementation
algorithm called DiamondTorre is developed, which belongs to the family of
LRnLA algorithms. The research of their use in various fields of computational
physics like the numerical modeling of processes in the plasma physics [5] and
the wave propagation [6, 7] show that LRnLA have the increased calculation
speed, as well as the scalability and the parallel efficiency.

In this paper the application of the RKDG method and the LRnLA algorithms
to the problem of interaction between the shock wave and the bubble of gas with
the different density in the three-dimensional setting is investigated. This prob-
lem, which is thoroughly studied last years [8], is linked to the important tasks
such as the description of turbulent combustion in the jet engines, interaction
of fuel slurry with a shock wave of the piston in the internal combustion en-
gines, the non-surgical removal of kidney stones (lithotripsy), the research of
sonoluminescence, some problems in astrophysics and others. This problem is
being numerically simulated with the use of high-performance computing [8, 9].
The works are known, where the RKDG method is used [10] for that. In this
paper we introduce the RKDG method and the DiamondTorre algorithm to solve
this problem with satisfactory accuracy without using the luxurious supercom-
puter technologies.1

1This doesn’t mean that the authors alienate themselves from the supercomputers. The idea is
that nowadays we might use them for significantly more harsh problems.
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2 RKDG method

2.1 Governing equations
The system of Euler equations of fluid dynamics of the inviscid compressible

flow can be written as
∂U

∂t
+
∂Fj(U)

∂xj
= 0, (1)

where U = (ρ, ρui, E)T is the vector of conservative variables, E = ρ(ε+ 1
2uiui) is the

total energy, Fj(U) = (ρuj , ρuiuj + pδij , (E + p)uj)T are the convective or Eulerian
fluxes.

We also should add the equation of state to make the internal energy, the
pressure and the density functionally depended like ε = ε(p, ρ).

This system is being solved in a three-dimensional domain Π ∈ R3 on a time
interval [0, T ] with the given initial and boundary conditions

U(x, 0) = U0(x), x ∈ Π, U(x, t) = UΓ(x, t), x ∈ ∂Π, t ∈ [0, T ]. (2)

2.2 DG space discretization
The domain Π is divided into N non-overlapping elements or cells Sp, p =

1, . . . , N ,
⋃N
p=1 Sp = Π, Sp ∩ Sq = ∅, p 6= q. We will construct the approximate

solution Uh for every Sp in form of the expansion

Uh(x, t) = un(t)ϕn(x) (3)

of the basis functions Vp = {ϕn(xi)}kn=1. The coefficient un(t) = [u1n(t), . . . , u5n(t)]T is
only time-dependent.

After inserting (3) into (1), we force the residual to be orthogonal to all basis
functions. Therefore, after applying the divergence theorem, we get such an
equality for the variables un(t) in every Sp, n = 1, . . . , k, p = 1, . . . , N :

u̇n

∫
Sp
ϕnϕmdV +

∫
∂Sp

hj(Uh(xint),Uh(xext))ϕmnjdΣ−
∫
Sp

Fj(Uh)
∂ϕm
∂xj

dV = 0, (4)

The values Fj(Uh) at x ∈ ∂Sp are redefined by the numerical flux hj(·, ·), which
depends on the variables according to the current cell side points xint and the
neighboring ones xext, and can be the exact or approximate Riemann solver [1].
The numerical flux used in this work is the HLLC flux [11].

Integrals in (4) are approximated with the quadrature rules. Therefore such
an explicit system of the ordinary differential equations can be obtained
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u̇ = Lu, (5)
u(0) = u0.

2.3 Time integration and limiting
The system (5) is solved by the TVD Runge-Kutta scheme [12]. On every

stage the special limiter is applied.

1. u0 = ΛP (u0)

2. ∀n = 0, . . . ,M − 1:

• u(0) = un,

• ∀i = 1, . . . , K + 1 : u(i) = Λ
{∑i−1

l=0 αilu
(l) + βil∆t

nL(u(l))
}
,

• un+1 = uK+1.

P is the projection operator of the initial conditions on the discrete space. Coef-
ficients αil, βil should provide the approximation order k+1 and satisfy the TVD
condition [12]. The time step ∆tn is taken from the CFL condition [1].

Λ is the slope limiter, which manages to suppress the spurious oscillations near
the discontinuities. The result of the work of the limiter depends on the values
in the current cell and adjacent ones.

In this work the piecewise linear basis, the 2 order Runge-Kutta scheme and
the minmod limiter [1] is used, so the scheme has the second order of accuracy
in smooth regions.

3 The algorithm of implementation
For the effective GPU implementation algorithm of the numerical method

the modified version of the DiamondTorre algorithm is used. In [13] it was
previously applied to the PIC numerical method for the numerical simulation of
Vlasov-Maxwell equations of plasma.

The DiamondTorre is of the family of locally recursive non-locally asynchronous
algorithms (LRnLA). The LRnLA are applicable to the explicit numerical schemes,
in particular, the RKDG method [14].

The DiamondTorre algorithm is adopted to the heterogeneous computer archi-
tecture and capable to solve the tasks with the numerical domain larger than the
amount of GPU memory with high ratio of calculation speed to the theoretically
possible. CUDA as the programming tool for GPGPU coding is used.
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With the solver based on the RKDG method and the DiamondTorre algorithm
the detailed numerical simulation and analysis of some actual three-dimensional
problems can be performed, which is discussed further.

3.1 Limitations of the numerical experiments
The calculations in this work are performed using the PC having GTX Titan

GPU and 32GB of CPU memory (DDR3). The maximum size of the numerical
domain possible to deal with is less than 4 · 108 cells, which is limited by the
memory (80B is needed for one cell). The reached calculation speed is less than
4.5 · 107 cells per second. Most of the simulations are made using the grid of
512× 512× 1024 cells or smaller.

4 Bubble-shock interaction problem solution

4.1 Problem statement
The computational domain is a box filled with an ideal gas at rest with density

ρ = ρ0 and pressure p = p0, the speed of sound there is equal to a0. Inside this
parallelepiped the spherical region of radius R = R0 is defined, with the center at
the point (x0, y0, z0), where the pressure is equal to the external, and the density
differs from the density of the ambient gas (pB = p0, ρB 6= ρ0). On the left, at
the coordinate x = xL, there is a plane shock wave. Its front moves from left to
right with the speed of v∗ > a0, behind the shock wave the unknown quantities
are determined using the Rankine-Hugoniot conditions. Parameters of the shock
waves are given by the Mach number M = v∗/a0, the density of the bubble is
characterized by the Atwood number At = (ρB − ρ0) /(ρB + ρ0) .

Due to the symmetry, to reduce the size of the computational domain, the task
is set to the quarter, as shown at figure 1, planes xy and yz have the symmetry
boundary condition, other planes have the boundary condition of the free flow.

4.2 Mesh-sensitive effects research
The numerical solution, as it proved in [8], has the mesh-sensitive features. To

search for it and to define the proper parameters of the mesh to be used further,
the following numerical experiment is set.

The same task is solved using the mesh with the width of 64, 128, 256 and 512

cells. Results are compared with each other at the same specified time moment.
At figures 2(a) —2(d) the part of the numerical solution in the diametrical cross-
section of the bubble is shown at the same fixed time moment. It is easy to see
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Figure 1: The computational domain at the initial time

(a) (b) (c) (d)

Figure 2: The dependence of the solution on the mesh. The mesh width (a) is
64 cells, (b) is 128 cells, (c) is 256 cells, (d) is 512 cells

that the mesh shredding leads to the display of new slight details of the solution,
especially near the vortices.

Further the numerical experiments are held using the width of the grid equal
to 256 or 512.

4.3 The case of a rarefied gas in a bubble
The figures show the results of modeling the interaction of helium bubble in

air (At = −0.757) with a shock with Mach M = 3. In the papers [8] and [9] the
similar setting is considered. The mesh used is 256× 256× 1024 cells.

On the top half of each figure the vorticity is shown and density is shown on the
bottom one in the diametrical cross-section. Scales for vorticity and density are
at the top and bottom, respectively. At the initial stage of interaction, reflected
at figure 3(a), the shock wave penetrates into the cavity, deforming the surface
of the bubble, while the reflected rarefaction wave occurs. During the further
evolution of the process, it could seen at figure 3(b) that the initial perpendicular
wave, the wave-precursor and the Mach stem are connected to the so-called triple
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(a) (b) (c)

(d) (e) (f)

Figure 3: At = −0.757, M = 3; vorticity (top) and density (bottom) at the different
time moments: (a) t̃ = 0.23, (b) t̃ = 0.45, (c) t̃ = 1.36, (d) t̃ = 1.78, (e) t̃ = 2.23, (f)
t̃ = 2.67

point. After passing through the bubble, wave initiates the formation of the
cylindrical-ring vortex structure, moving behind the shock wave, which mainly
consists of low-density gas. The following process is shown at figures 3(c) — 3(f).

4.4 The case of a dense gas in a bubble
The series of drawings 4(a) – 4(k) show the results of modeling the interaction

of the bubble with freon R12 (At = 0.613) in the air with a shock with Mach
M = 5. In the paper [8] this statement is also considered. On the top half of
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

(j) (k)

Figure 4: At = 0.613, M = 5; vorticity (top) and density (bottom) at the different
time moments: (a) t̃ = 0.15, (b) t̃ = 0.3, (c) t̃ = 0.45, (d) t̃ = 0.6, (e) t̃ = 0.75, (f)
t̃ = 0.9, (g) t̃ = 1.05, (h) t̃ = 2.1, (i) t̃ = 3.6, (j) t̃ = 4.65, (k) t̃ = 7.2
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each figure the vorticity is shown and density is shown on the bottom one in
the diametrical cross-section. Scales for vorticity and density are at the top and
bottom, respectively. The mesh size is 256× 256× 1024 cells.

It should be noted that in this statement the process develops in the different
way from the Air-He case. The profile of the shock wave becomes concave and
focused while passing through the bubble. The bubble becomes deformed and
pressured. In addition, the development of the unstable vortex structures behind
the shock and exhausting from the bubble is obtained.

5 Concluding remarks
In this work the problem of bubble-shock interaction in fully three-dimensional

statement is considered. Using the RKDG method, which is an explicit and high-
order numerical method, and the DiamondTorre algorithm of implementation
on GPU, the approach to simulate this problem numerically at the affordable
computers, particularly, the PCs, is developed.

The mathematical model is rather simplified, for example, the multicompo-
nentness is not taken into account. However, this statement is basic and its
study is important for the extensions and applications. In the paper it is shown
that this problem can be simulated on the PC, which means that dealing with
more complex statements is also can be less difficult.

Acknowledgements
The work in partly funded by the Russian Foundation of Basic Research grants

12-01-00490-a and 12-01-00708-a and the ”UMNIK” grant of the Foundation for
Assistance to Small Innovative Enterprises.

6 References
[1] Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated

Problems : Rep. / NASA ; Executor: B. Cockburn, C. Shu : 2000.

[2] Caper J., Atkins H. A Finite-Volume High-Order ENO Scheme for Two-
Dimentional Hyperbolic Systems // Computational Physics. –– 1993. –– Vol.
106. –– P. 62–76.

[3] Reddy J. N., Gartling J. I. The finite element method in heat transfer and
fluid dynamics // C.R.C. Press. –– 1994.



11

[4] Van Leer B. Towards the Ultimate Cinservative Difference Scheme V. A
second Order Sequel to Godunov’s Method // Computational Physics. ––
1979. –– Vol. 32. –– P. 101–136.

[5] Perepelkina A.Y., Levchenko V.D., Goryachev I.A. Implementation of the
Kinetic Plasma Code with Locally Recursive non-Locally Asynchronous Al-
gorithms // Journal of Physics: Conference Series / IOP Publishing. ––
Vol. 510. –– 2014.

[6] Zakirov A.V., Levchenko V.D. The Effective 3D Modeling of Electromag-
netic Waves Evolution in Photonic Crystals and Metamaterials // Session
3AP. –– 2009. –– P. 169.

[7] Use of 3D Computer Seismic Full Waveform Simulation for Validation of
Porous-fractured Reservoirs Predictions / J.A. Titova, S.M. Glubokovskikh,
V.E. Rok et al. // Saint Petersburg 2012. –– 2012.

[8] A computational parameter study for the three-dimensional shock–bubble
interaction / John H.J. Niederhaus, J.A. Greenough, J.G. Oakley et al. //
Journal of Fluid Mechanics. –– 2008. –– Vol. 594. –– P. 85–124.

[9] Hejazialhosseini Babak, Rossinelli Diego, Koumoutsakos Petros. 3D shock-
bubble interactions at Mach 3 // arXiv preprint arXiv:1210.3822. –– 2012. ––
URL: http://arxiv.org/abs/1210.3822.

[10] Gryngarten Leandro D, Menon Suresh. Shock-Bubble Interaction Simu-
lations Using a New Two-Phase Discontinuous Galerkin Method // 49th
AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, no. AIAA-2011-294, Orlando, FL. –– 2011.

[11] Toro E.F. Riemann Solvers And Numerical Methods for Fluid Dynamics: A
Practical Introduction. –– Springer, 2009.

[12] Gottlieb Sigal, Shu Chi-Wang. Total variation diminishing Runge-Kutta
schemes // Mathematics of Computation of the American Mathematical
Society. –– 1998. –– Vol. 67, no. 221. –– P. 73–85.

[13] Perepelkina A. Y., Levchenko V.D., Goryachev I.A. 3D3V plasma kinet-
ics code DiamondPIC for modeling of substantially multiscale processes on
heterogenous computers. –– 2014.

[14] Korneev B.A., Levchenko V.D. A Locally Recursive non-Locally Asyn-
chronous Algorithm to RKDG Methods for Gas Dynamics Equa-
tions // Preprints of Keldysh Institute of Applied Mathematics RAS. ––
2013. –– Vol. 28. –– URL: http://library.keldysh.ru/preprint.asp?
id=2013-28.

http://arxiv.org/abs/1210.3822
http://library.keldysh.ru/preprint.asp?id=2013-28
http://library.keldysh.ru/preprint.asp?id=2013-28


12

Contents
1 Introduction 3

2 RKDG method 4
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 DG space discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Time integration and limiting . . . . . . . . . . . . . . . . . . . . . . 5

3 The algorithm of implementation 5
3.1 Limitations of the numerical experiments . . . . . . . . . . . . . . . 6

4 Bubble-shock interaction problem solution 6
4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Mesh-sensitive effects research . . . . . . . . . . . . . . . . . . . . . . 6
4.3 The case of a rarefied gas in a bubble . . . . . . . . . . . . . . . . . 7
4.4 The case of a dense gas in a bubble . . . . . . . . . . . . . . . . . . 8

5 Concluding remarks 10

6 References 10


	Untitled.pdf
	prep2014_97_eng
	Introduction
	RKDG method
	Governing equations
	DG space discretization
	Time integration and limiting

	The algorithm of implementation
	Limitations of the numerical experiments

	Bubble-shock interaction problem solution
	Problem statement
	Mesh-sensitive effects research
	The case of a rarefied gas in a bubble
	The case of a dense gas in a bubble

	Concluding remarks
	References


