

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 100 за 2015 г.</u>

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

<u>Долголева Г.В.</u>

Влияния переноса быстрых заряженных частиц на горение термоядерных мишеней

Рекомендуемая форма библиографической ссылки: Долголева Г.В. Влияния переноса быстрых заряженных частиц на горение термоядерных мишеней // Препринты ИПМ им. М.В.Келдыша. 2015. № 100. 12 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2015-100</u>

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.Келдыша Российской академии наук

Г.В. Долголева

Влияния переноса быстрых заряженных частиц на горение термоядерных мишеней

Москва — 2015

Долголева Г.В.

Влияния переноса быстрых заряженных частиц на горение термоядерных мишеней

Для адекватного описания физики лазерной плазмы необходимо учитывать большое количество физических процессов. Один из них – перенос энергии быстрыми заряженными частицами, продуктами термоядерных реакций. Проблема рождения и переноса заряженных частиц, возникающих в результате термоядерных реакций в горящей дейтериево-тритиевой плазме, очень существенна. Важно точно отразить в модели, где и как заряженные частицы отдают свою энергию, т.е. рассчитать нестационарный перенос энергии быстрыми заряженными частицами. В работе приводится модель расчета переноса α-частиц, численно исследуется влияние этого процесса на параметры мишени.

Ключевые слова: лазерная плазма, заряженные частицы, перенос энергии.

Galina Vladimirovna Dolgoleva

The influence of the transport of fast charged particles in burning fusion targets

For an adequate description of the physics of laser plasma it is necessary to consider a large number of physical processes. One of them is the transfer of energy of a fast particle products of thermonuclear reactions. The problem of the birth and transfer of the charged particles resulting from fusion reactions in a burning deuterium - tritium plasma, is very significant. It is important to reflect in the model, where and how charged particles give up their energy, i.e. to calculate the non-stationary transfer of energy of the fast charged particles. The paper presents a model calculation of the transport of α -particles, we numerically investigate the influence of this process on the parameters of the target.

Key words: laser plasma, charged particles, energy transfer

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект 14-01-00251-а.

Введение

Ограниченность наших возможностей в проведении экспериментов с полномасштабным термоядерным горением в мишенях с необходимостью диктует обращение к численному моделированию. Это не только позволяет объяснить эксперимент, способствует пониманию его результатов, но и облегчает проведение самих экспериментов, прогнозирование их результатов.

Физика, имеющая место в задачах управляемого термоядерного синтеза, очень сложна. Для ее адекватного описания нужно учитывать большое физических процессов. Существует много количество программ лля численного исследования процессов, протекающих в плазме, как одномерных, так и двумерных. Одномерные программы в отличие от двумерных содержат большее количество физических процессов [1]-[3], адекватно описывающих Это естественно: поскольку сложная физика в задачах физику плазмы. управляемого термоядерного синтеза диктует создание сложных математических моделей, а они в свою очередь требуют разработки сложных численных алгоритмов, в одномерном случае это сделать проще.

Проблема рождения и переноса заряженных частиц, возникающих в результате термоядерных реакций в горящей дейтериево-тритиевой плазме очень существенна. Часто расчет горения мишени проводится в приближении локального выделения энергии α -частицами, т.е. частица отдает свою энергию в той же точке пространства, в которой она родилась. Однако в условиях, когда запасы по зажиганию мишеней малы, при определении параметров мишени, а масштаба лазерной установки, необходимой при оценке также для осуществления зажигания мишени важно точно отразить в модели, где и как заряженные частицы отдают свою энергию, т. е. рассчитать нестационарный перенос энергии, импульса и массы быстрыми заряженными частицами.

Модель переноса быстрых заряженных частиц

Bce эксперименты программе, вычислительные проведены по ориентированной исследование физических процессов, на численное протекающих в лазерной плазме [3]. В программе рассчитываются следующие процессы: движение среды при наличии отрыва температур (ионов и электронов), поглощение лазерной энергии с учетом отражения от критической плотности, перенос тепла электронами И ионами с ограничением диффузионного спектральный излучения потока, перенос В квазидиффузионном приближении и его взаимодействие с веществом, ионизация вещества и возбуждение ионов в неравновесной нестационарной плазме, кинетика термоядерных реакций и перенос энергии быстрыми заряженными частицами – продуктами термоядерных реакций (α-частицами). Уравнения состояния, пробеги излучения, коэффициенты электронной и ионной теплопроводности, электрон-ионной релаксации и поглощения лазерной энергии рассчитывались согласно составу плазмы [4].

Уравнение для переноса быстрых заряженных частиц в диффузионном приближении, которое получено из кинетических уравнений интегрированием последнего по углу, имеет вид:

$$\frac{\partial}{\partial t}N_{E} = \nabla \left(D_{E} \nabla N_{E} \right) + \frac{1}{t_{E}} \frac{\partial}{\partial E} \left[N_{E} \left(E + \frac{\gamma t_{E}}{E} \right) \right].$$

Здесь N_E – плотность быстрых заряженных частиц с энергией E, D_E – коэффициент диффузии, учитывающий ограничение потока, t_E – характерное время торможения α -частицы, γ -параметр, скорость α -частицы v связана с ее энергией соотношением $v = \sqrt{2E/m_{\alpha}}$.

Рождающиеся в результате термоядерных реакций α -частицы имеют некоторую максимальную скорость V_{max} и затем тормозятся по мере распространения от точки рождения. Введем безразмерную скорость α -частицы $u = \frac{v}{v_{\text{max}}}$, которая будет меняться в диапазоне от 0 до 1, и разобьем этот интервал на N групп. Пусть индекс k обозначает k-ю группу α -частицы. Переходя от дифференциальных уравнений для непрерывного спектра α -частицы к уравнениям для спектральных групп, после несложных преобразований получаем следующие уравнения, описывающие перенос быстрых заряженных частиц в приближении многогрупповой диффузии

$$\frac{\partial}{\partial t}N_{k} = div(D_{k}\nabla N_{k}) - \frac{N_{k}}{\tau_{k}} + \frac{N_{k+1}}{\tau_{k+1}} + N_{\alpha}\,\delta_{N_{k}},$$
$$\rho\frac{\partial E_{e}}{\partial t} = \dots + \frac{\partial Q_{e}}{\partial t}, \quad \rho\frac{\partial E_{i}}{\partial t} = \dots + \frac{\partial Q_{i}}{\partial t},$$

где N_k – плотность быстрых заряженных частиц с энергией E_k , N_{α} – источник α -частиц.

Если в качестве единиц измерения использовать единицы, принятые в расчетах лазерных мишеней, а именно: единица длины – 100 мкм, времени – 1 нс, массы – 10⁻⁶г, температуры – 1 кэВ, то входящие в уравнения параметры вычисляются по следующим формулам:

$$N_{\alpha} = 60.22 \frac{\rho C_{\alpha}}{\langle A \rangle},$$
$$C_{\alpha} = \frac{1}{\langle A \rangle} \rho C_T C_D \langle \sigma v \rangle_{DT},$$

где $\langle \sigma v \rangle_{DT}$ – скорость DT-реакции, C_T, C_D – концентрации трития и дейтерия.

Используемые в уравнениях коэффициенты на разностной сетке имеют вид:

$$\begin{split} \tau_{k} &= \frac{2}{3} t_{E} \ln \left(\frac{u_{k+1}^{2} + \gamma_{k+1} t_{E}}{u_{k}^{2} + \gamma_{k} t_{E}} \right), \qquad D_{k} = \frac{129 \sqrt{u_{k}}}{3\lambda_{k}^{-1} + \frac{1}{N_{k}} |\nabla N_{k}| \frac{1}{\mu_{k}}}, \\ u_{k} &= \frac{2}{3} \frac{u_{k+1} + u_{k+1}^{2} u_{k}^{1} + u_{k}}{u_{k+1}^{2} + u_{k}^{2}}, \qquad \frac{1}{\mu_{k}} = 1 + 3 \exp \left(-\frac{\lambda_{k}}{2} \frac{|\nabla N_{k}|}{N_{k}} \right), \\ \lambda_{k}^{-1} &= 1.63_{10} - 3 \frac{\langle z^{2} \rangle}{\langle A \rangle} \rho \frac{3}{u_{k+1}^{2} + u_{k} u_{k+1} + u_{k}^{2}}, \\ t_{E}^{-1} &= 348 \frac{\langle z \rangle}{\langle A \rangle} \frac{\rho}{T_{e}^{\frac{3}{2}}} \ln \Lambda_{e}, \qquad \gamma_{k} = 1.78 \frac{\langle z^{2} \rangle}{\langle A \rangle^{2}} \rho \ln \Lambda_{ik}, \\ \ln \Lambda_{e} &= \max \left\{ \frac{1}{1.578}, 1 + 0.085 \ln \left(\frac{0.2T_{e}^{2}}{\rho} \frac{\langle A \rangle}{\langle z^{2} \rangle + \langle z \rangle} \right) \right\}, \\ \eta_{k} t_{E} &= 5.11_{10^{3}} \frac{\langle z^{2} \rangle}{\langle A \rangle \langle z \rangle} T_{e}^{\frac{3}{2}} \ln \Lambda_{e}. \end{split}$$

Полное выделение энергии частицами к-ой группы:

$$\frac{\partial Q_k}{\partial t} = 560 \frac{N_k}{t_k} (u_{k+1} - u_k) \frac{1}{\rho},$$

выделение энергии частицами k-ой группы в ионы:

$$\begin{aligned} \frac{\partial Q_{ik}}{\partial t} &= 560 \frac{1}{\rho} \frac{N_k}{t_k} (\gamma_k t_E)^2 \begin{cases} \frac{1}{3} \ln \left[\left(\frac{x_{k+1}}{x_{k+1}+1} \right)^2 \frac{x_{k+1}^2 - x_{k+1} + 1}{x_k^2 - x_k + 1} \right] + \\ \frac{2}{3} \left[\arccos\left(\frac{2x_{k+1} - 1}{\sqrt{3}} \right) - \operatorname{arctg}\left(\frac{2x_k - 1}{\sqrt{3}} \right) \right] \end{cases},\\ x_k &= \sqrt{\frac{u_k}{(\gamma_k t_k)^2}}. \end{aligned}$$

Отсюда выделение энергии частицами в электроны:

$$\frac{\partial Q_e}{\partial t} = \sum_k \left(\frac{\partial Q_k}{\partial t} - \frac{\partial Q_{ik}}{\partial t} \right).$$

Здесь

*Е*_{*e*},*Е*_{*i*} – внутренняя удельная энергия электронов и ионов соответственно,

T_e – температура электронов,

ρ – плотность вещества,

r – пространственная координата,

<z>, <A> – средний заряд и атомный вес соответственно,

 λ – длина свободного пробега α -частицы,

t – переменная по времени.

Постановка и результаты расчетов

На первый взгляд кажется, что учет переноса α-частиц в мишени должен уменьшить энерговыделение в DTобласти, так как часть энергии переносится в соседнюю с DT-область (пушер) и тем самым уменьшается температура DTэнергии. области термоядерной Естественно, уменьшается И выход коэффициент усиления мишени (отношение выделившейся термоядерной энергии к вложенной в мишень энергии). Но не все так пессимистично. Проведенное численное исследование показало, что это не всегда так. Энергия, выносимая из DT-области, "оседает" в соседней с ней области (пушер). В ней увеличиваются энергия, давление и тем самым сдерживается разлет DTобласти, увеличиваются время горения и выход термоядерной энергии.

Рассмотрим влияние переноса α-частиц на параметры микромишени в лазерном и термоядерном синтезе на примерах известных мишеней. В расчетах рассматривались все процессы, описанные выше.

Для каждого расчета приведена таблица, которая содержит результаты расчетов мишеней без учета переноса α-частиц (вторая строка) и с учетом переноса α-частиц (третья строка). В таблицах содержатся следующие величины:

- Е вложенная в мишень энергия,
- F выделившаяся в результате термоядерных реакций энергия,
- К коэффициент усиления мишени (K=F/E),

F_α - энергия α-частиц, полученная при горении,

Δ - доля энергия α-частиц, вынесенная из рабочей DT-области.

Первая задача – это расчет мишени прямого сжатия, геометрия и вид энерговыделения для которой предложены в работе [5]:

Лазерный импульс 1.48 МЈ вкладывается на внешней границе CH с длиной волны λ=0. 35 μm. Его вид:

Рис. 2. Вид энерговыделения

Таблица 1

Е	F	F_{α}	Δ	K
1.48 MJ	9.84 MJ			6.65
1.48 MJ	6.2 MJ	6.1 MJ	7.3%	4.2

При локальном энерговыделении α-частиц при «горении» микромишени выделяется 9.84 МЈ термоядерной энергии, коэффициент усиления мишени K=6.65. В расчете с учетом переноса α-частиц выделяется 6.2 МЈ энергии, коэффициент усиления мишени K=4.2. α-частицами выделено 6.11 МЈ энергии, причем 7.3% этой энергии (0.444 МЈ) переносится α-частицами в СН и исключается из процесса термоядерного горения. То есть, учитывая перенос αчастиц, энерговыделение в результате термоядерных реакций снижается, и это, на первый взгляд, понятно, так как часть энергии выносится из DT-области в CH и не участвует в термоядерных реакциях. Но посмотрим результат второго расчета.

Во втором расчете моделировались нагрев и сжатие оболочечной мишени из полимера, заполненной дейтерий-тритиевой (DT) смесью. По сравнению с предыдущей задачей, в этой задаче другая геометрия и другая форма импульса. Геометрия и импульс мишени взяты из работы [6]

Мишень облучалась лазером с длиной волны 0.35 µm и энергией 1 МJ. Лазерный импульс имел нарастающий передний фронт до момента времени t₁, затем постоянный импульс и быстро спадающий задний фронт, начиная со времени t₂. Временная форма импульса имеет вид:

$$\dot{E}(t) = \dot{E}_0 \begin{cases} \left(\frac{t}{t_1}\right)^2, ecnut < t_1 \\ 1, ecnut_1 < t < t_2 \\ \frac{t_3 - t}{t_3 - t_2}, ecnut_2 < t < t_3 \end{cases} \dot{E}_0 = E_{max} / \left(\frac{t_3 + t_2}{2} - \frac{2}{3}t_1\right).$$

В расчетах полагалось, что вся лазерная энергия полностью поглощается в плазме.

Таблица 2

Е	F	Fα	Δ	K
1 MJ	2.68 MJ			2.68
1 MJ	3.19 MJ	3.06 MJ	51.8%	3.19

При локальном энерговыделении α-частиц при «горении» микромишени выделяется 2.68 МЈ термоядерной энергии, коэффициент усиления мишени К=2.68. В расчете с учетом переноса α-частиц выделяется 3.19 МЈ энергии, коэффициент усиления мишени К=3.19. α-частицами выделено 3.06 МЈ энергии, причем 51.8% этой энергии (1.49 МЈ) переносится α-частицами в СН и исключается из процесса термоядерного горения. Что же здесь повлияло на картину горения? Из DT-области выносится большой процент энергии, но

горение идет дольше по времени и интенсивнее. Если часть энергии переносится из DT-области в CH, то ясно, что CH «сдерживает» разлет DT-области. Приведем графики R-t границы DT-слоя и CH в первом и во втором расчетах.

Рис. 4. Графики R-t границы DT-слоя и CH в расчетах с переносом и без переноса энергии α-частицами.

Горение начинается в 7.76 ns и в первом расчете заканчивается в 11.2 ns, в расчете с переносом α-частиц горение заканчивается в 11.27 ns. Как видно из рисунка, радиус границы DT-слоя и CH в расчете без переноса α-частиц больше, чем в расчете с переносом, т.е. DT-слой разлетается меньше в расчете с переносом α-частиц. В этом случае перенос α-частиц стимулирует "горение" мишени: коэффициент усиления увеличился в 1.2 раза. Вышедшая в пушер энергия α-частиц увеличивает в нем давление и сдерживает разлет DT-слоя.

Почему же такая большая разница между расчетами первой и второй мишеней? Что больше влияет: геометрия системы или вид источника? Приведем результаты расчета второй мишени, сохранив ее геометрию, но взяв вид энерговложения, как в первой мишени. В первом расчете оно равно 1.48MJ, а во втором уменьшим его в 1.48 раза, т.е. кривую энерговложения пропорционально уменьшим в 1.48 раза и сделаем энерговложение равным 1 MJ.

Таблица 3

Е	F	F_{α}	Δ	K
1.48 MJ	2.076 MJ	2.03 MJ	59.6%	1.4
1 MJ	2.1 MJ	2.072 MJ	62.2%	2.11

Из этих расчетов можно сделать вывод: при переносе α-частиц параметры мишени в основном зависят от вида энерговложения. Увеличение его почти в полтора раза не улучшает результат: коэффициент усиления остается меньше, чем в расчете без переноса α-частиц.

И последний расчет, на котором исследовалось влияние переноса α-частиц на параметры мишени, – это цилиндрическая мишень микромишень для тяжелоионного синтеза.

Геометрия мишени:

В цилиндрической микромишени первый слой – DT-слой («рабочий» слой), тонкие слои 2, 4 состоят из плотных материалов («тяжелые» слои), в «легкий» слой 3 вводится внешнее энерговложение. Функция тяжелых слоев – сдерживать разлет DT-области и всей системы соответственно.

Энерговложение вводится в область 3 так, чтобы на границе области с DTгазом обеспечить определенные величины скорости и давления, необходимые для безударного сжатия слоя [7]. Форма такого энерговложения получена в работе [8].

Таблица 4

resyntratist pae fora minipominimenti (pite.5)		
E	F	K
21 MJ	25.6 MJ	1.22
21MJ	27.2MJ	1.3

Результаты расчета микромишени (рис.5)

Без учета переноса α-частиц выделяется 25.6 МЈ энергии, с учетом переноса α-частиц 27.2 МЈ. Это несмотря на то, что 17% энергии α-частиц термоядерных реакций 0.46676 МЈ выносится из DT-области и оседает в соседней с ней области из золота и тем самым сдерживается разлет DT-области и увеличивается ее горение.

В расчетах использовалось приближение многогрупповой диффузии. Как показано в работе [9], использование многогрупповой диффузии дает удовлетворительную точность в расчетах термоядерного горения. Отличие от расчетов с переносом α-частиц в кинетическом приближении не более 10%, т.е. проведенным расчетам можно доверять.

Заключение

Приведем основные результаты.

1. Сформулирована модель для описания процессов переноса и нелокального термоядерного энерговыделения быстрых заряженных частиц – продуктов термоядерных реакций.

2. Проведено численное исследование влияния процесса переноса α-частиц на параметры мишеней, геометрии которых опубликованы.

3. Показано, что перенос α-частиц может как уменьшать, так и увеличивать энерговыделение в зависимости от того, какой вид энерговложения, какая доля энергии переносится в пушер. Этот факт говорит о необходимости учета переноса α-частиц в расчетах микромишеней.

Библиографический список

1. Самарский А.А., Гайфулин С.А., Змитренко Н.В. и др. Программа ДИАНА расчета одномерных задач лазерного термоядерного синтеза // ВАНТ. Сер. Методики и программы численного решения задач математической физики, вып. 2/13/, 1983, 34-37.

2. Зуев А.И. Комплекс программ и методика для численного интегрирования физических процессов в плотной плазме // ВАНТ. Сер. Методики и программы численного решения задач математической физики, вып. 3/14/, 1983, 41-43.

3. Долголева Г.В. Методы расчета движения двухтемпературного излучающего газа // Вопросы атомной науки и техники. Сер. Методики и программы численного решения задач математической физики, вып. 2/13/, 1983, 29-33.

4. Бельков С.А., Долголева Г.В. Модель среднего иона для расчета кинетики ионизации, населенностей возбужденных уровней и спектральных коэффициентов переноса излучения в программе СНДП // Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов, вып.1,1992, 59-61.

5. Cryogenic Deuterium and Deuterium- Tritium Direct- Drive Implosions on OMEGA. Laboratory for Laser Energetics Annuel Report (University of Rochester), LLE, REVIEW, vol., 130, p 72.

6. Долголева Г.В., Лебо А.И., Лебо И.Г. Моделирование сжатия термоядерных мишеней на уровне энергии лазера порядка 1 МЈ. // Математическое моделирование (в печати).

7. Станюкович К.П. Неустановившиеся движения сплошной среды. М.: Наука, 1971.

8. Долголева Г.В., Забродин А.В. Кумуляция энергии в слоистых системах

и реализация безударного сжатия. М.: ФИЗМАТЛИТ, 2004.

9. Бельков С.А., Долголева Г.В., Ермолович В.Ф. Исследование влияния переноса быстрых заряженных частиц на горение термоядерных мишеней // Вопросы атомной науки и техники. Сер.: Математическое моделирование физических процессов, вып. 1, 2003, С.51-55

Оглавление

Введение	3
Модель переноса быстрых заряженных частиц	3
Постановка и результаты расчетов	6
Заключение	10
Библиографический список	11
1 1	