
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 18, 2015

Perepelkina A.Yu., Levchenko V. D.

DiamondTorre Algorithm for
High-Performance Wave

Modeling

Recommended form of bibliographic references: Perepelkina A.Yu., Levchenko V. D.
DiamondTorre Algorithm for High-Performance Wave Modeling // Keldysh Institute Preprints. 2015.
No. 18. 20 p. URL: http://library.keldysh.ru/preprint.asp?id=2015-18&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2015-18&lg=e
http://library.keldysh.ru/author_page.asp?aid=1306&lg=e
http://library.keldysh.ru/preprint.asp?id=2015-18&lg=e

Ордена Ленина
ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ

имени М. В. Келдыша
Российской академии наук

A. Perepelkina, V. Levchenko

DiamondTorre Algorithm
for High-Performance Wave Modeling

Москва
2015

УДК 519.688

А. Ю. Перепёлкина, В. Д. Левченко

Алгоритм DiamondTorre для высокопроизводительного
волнового моделирования

Аннотация. Обсуждаются эффективные алгоритмы решения задач чис-
ленного моделирования физических сред, темп вычислений в которых для
традиционных алгоритмов ограничен пропускной способностью памяти. Рас-
сматривается численное решение волнового уравнения при помощи конечно-
разностных схем с явным шаблоном типа «крест» высокого порядка ап-
проксимации. Построен алгоритм DiamondTorre, учитывающий особенности
иерархии памяти и параллельности графических процессоров общего на-
значения (GPGPU). Преимуществами алгоритма является высокий уровнь
локализации данных, а также свойства асинхронности, позволяющие эф-
фективно задействовать все уровни параллелизма GPGPU. Вычислительная
интенсивность алгоритма превышает соответствующее значение для луч-
ших алгоритмов с пошаговой синхронизацией, а результате становится воз-
можным преодоление указанного выше ограничения. Алгоритм реализован
в рамках модели программирования CUDA. Для схемы второго порядка
аппроксимации получена производительность более 50 миллиардов ячеек в
секунду на одном устройстве, что в 5 раз превосходит результаты оптими-
зированного алгоритма с пошаговой синхронизацией.
A. Perepelkina, V. Levchenko

DiamondTorre Algorithm for High-Performance Wave Modeling

Abstract. Effective algorithms of physical media numerical modeling prob-
lems solution are discussed. Computation rate of such problems is limited by
memory bandwidth if implemented with traditional algorithms. The numerical
solution of wave equation is considered. Finite difference scheme with cross stencil
and high order of approximation is used. The DiamondTorre algorithm is con-
structed, with regard for the specifics of GPGPU’s (general purpose graphical
processing unit) memory hierarchy and parallelism. The advantages of these algo-
rithms are high level of data localization as well as the property of asynchrony,
which allows to effectively utilize all levels of GPGPU parallelism. Computa-
tional intensity of the algorithm is greater than the one for the best traditional
algorithms with stepwise synchronization. As a consequence, it becomes possi-
ble to overcome the above-mentioned limitation. The algorithm is implemented
with CUDA.For the scheme with second order of approximation the calculation
performance of 50 billion cells per second is achieved, which exceeds the result
of the best traditional algorithm by a factor of 5.

1 Introduction
On the path to the exascale computations there seems to be a certain stag-

nation of algorithm ideas. Let us try to analyze the most prominent issues of
contemporary computations on the example of wave modeling.

The first issue is the inability to operate on all levels on parallelism with
maximum efficiency. It may be solved for some software (testing packages alike
LAPACK [1] being the evident example), but remains an open question for the
larger part of relevant problems. Also, only one programming instrument is not
enough for this. As the supercomputer performance is mostly increased by adding
parallelism, the modern Top500 computers [2] are essentially heterogeneous and,
as a rule, include GPGPU. The peak performance is achieved by using all levels of
parallelism in some ideal way. The sad truth about the expensive supercomputers
is that they mostly run the software that does not accomplish this requirement.

To efficiently utilize the supercomputing power the software should be written
with account to the model of parallelism of a given system. For physical media
simulation, the common methods of utilizing concurrency include domain de-
composition [3]. It assumes decomposition into large domains, the data of which
fits into the memory attached to a processor (coarse-grained parallelism). The
common technology to implement it is MPI [4]. On the other hand, tiling [5]
is often used in computer graphics and other applications. Data array is de-
composed into small parts, which all lie in the same address space (fine-grained
parallelism), and OpenCL [6] and CUDA [7] is a common technology for this.
Similar technique is loop nest optimization [8], which arise when initially se-
quential programs are rewritten to be parallel and a dependency graph [9] has
to be analyzed to find optimal algorithm. It is often executed with OpenMP [10]
in coarse-grain and loop auto-vectorization [11] in fine-grain. With all parallel
technologies, developers have to struggle with the issues of unbalance, large com-
munication latency and low throughput, non-uniform data access [12], necessity
of memory coalescing [7].

Second issue in applied computations that deal with processing large amount
of data (such as wave modeling) is the deficiency in memory bandwidth. The
balance of main memory bandwidth to peak computation performance is below
0.1 byte/flop for the majority of modern computers (see fig. 1), and tends to
decrease even further as new computation units appear. To illustrate the scale
of this decrease an archaic system NEC-SX is also shown on the graph. Legacy
algorithms require the balance to be at near NEC-SX value (or greater) to reach
maximal efficiency. In terms of hardware, the access to data takes more time
and costs more (in terms of energy consumption) than the computation itself.
To cope with this issue most systems have a developed memory subsystem hi-

4

 10

 100

 1000

 0.1 1 10

G
B

/s

TFLOP/s (fp32)

nVidia Maxwell, 2014-15
nVidia Kepler, 2012-13

Intel CPU, 2014
NEC SX, 199x

0.1 Bytes/F
lops

0.04 Bytes/F
lops

4 Bytes/F
lops

Figure 1: FLOPs and Bandwidth Performance Ratio

erarchy, and the program solutions should use the knowledge of it accordingly.
There are several approaches that take this into account on CPU [13, 5]. On
GPGPU, CUDA is an instrument that allows working with memory hierarchy
levels conveniently [14, 15]

2 Computation models
With the hierarchy of memory subsystems and levels of parallelism, contem-

porary computers display an extreme complexity.
One helpful tool is a model of pyramidal memory subsystem hierarchy. In

fig. 2 in a log-log scale we plot rectangles, which vertical position shows data
throughput of the memory level, and the width of rectangle shows data set size.
The picture looks like a pyramid for the CPU device. With each level the memory
bandwidth is about twice higher and the data size is smaller by a factor of eight.

Locally Recursive non-Locally Asynchronous (LRnLA) algorithms [16, 17] use
the divide and conquer approach by decomposing the problem into subproblems
recursively in several levels, so that each time the data of subproblems fits into
higher level of memory hierarchy. It allows to reach peak performance for the
problems, the data of which is as large as the lower level of memory subsystem.

Here we also see that register memory of GPGPU is larger than on CPU, so

5

. GK110 Haswell GM204 .

. GTX Titan Xeon E5 v3 GTX 980 .

109

1010

1011

1012

1013

1014

1T 1G 1M 1K 1M 1G 1T

D
a
ta

 t
h
ro

u
g

h
p

u
t,

 B
/s

e
c

Data set size, B

regs

L1+sh

L2
GDDR5

regs

L1+sh

L2

GDDR5

regs

L1

L2
LLC

DDR4

SSD/PCIe

HDD

Figure 2: Memory subsystem hierarchy for GPGPU and CPU

it may be used as a main data localization site. This register file is distributed
between several multiprocessors. The next significant memory level (GDDR5)
has worse memory bandwidth and latency. So instead of recursive decomposition
it is important to provide a continuous data flow from device memory to registers
and back. In this work we will construct DiamondTorre algorithm which meets
this criteria.

The hierarchy is best known to hardware designers, but in the same time it is
unacceptable to ignore it in programming. For making the software the complex
structure should be simplified as some model. One example of such model is
roofline. Introduced in [18] the roofline model is a graph of attainable GFlops
per second productivity versus operational intensity. It has two distinct portions,
and visually assorts the programs into two categories based on the operational
intensity: memory-bound and compute bound. The higher the ceiling rises (this
corresponds to increase in peak performance) the more problems fall under the
slope and suffer from memory bandwidth limitations.

6

Table 1: Numerical scheme coefficients
NO C0 C1 C2 C3 C4

2 −1 1 — — —
4 −5/4 4/3 −1/12 — —
6 −49/36 3/2 −3/20 1/90 —
8 −205/144 8/5 −1/5 8/315 −1/560

3 Problem statement
We deal with problems in numerical simulation of physics. The main scope

of the current work is wave modeling, which encompasses a vast range of ap-
plications, such as modeling of: elastic media wave propagation, nanophotonics,
plasmonics, acoustics. To be specific in the present paper we choose to limit the
discussion to the second order acoustic wave equation, but the implications are
easily generalized on all numerical methods with local stencil.

∂2F

∂t2
= c2

(
∂2F

∂x2
+

∂2F

∂y2
+

∂2F

∂z2

)
. (1)

The problem is to compute the temporal evolution of a field F = F (x, y, z, t) in a
finite simulation domain with given initial (F (x, y, z, 0) = F0(x, y, z)) and boundary
(F |boundary = U(t)) conditions. The explicit scheme has second order of approxi-
mation in time and adjustable order of approximation in space. That is, the mesh
is introduced over the domain with Nx, Ny, Nz cells along each corresponding
axis and the differentials are approximated by finite sums of the form:

∆x2 ∂2F

∂x2

∣∣∣∣∣
x0,y0,z0,t0

=

NO/2∑
i=0

Ci(F |x0+i∆x,y0,z0,t0
+ F |x0−i∆x,y0,z0,t0

), (2)

where NO is the order of approximation (it is even), Ci are numerical constants
(sample coefficients are given in table 1), ∆ signifies a mesh step along the cor-
responding axis. Differentials in all four variables are expressed similarly. NO = 2

for time derivative, NO = 2, 4, 6.. and more for space derivatives.
The following computation should be carried out to propagate the field value

to a new (k + 1)th time layer:

F |k+1 = 2F |k − F |k−1 + c2∆t2

 ∂2F

∂x2

∣∣∣∣∣
k

+
∂2F

∂y2

∣∣∣∣∣
k

+
∂2F

∂z2

∣∣∣∣∣
k
 , (3)

assuming that all values on the right hand side are known. In the implementation
it implies that the field data for two sequential time layers should be stored. Thus

7

Figure 3: Scheme stencil for 6th order of approximation (d = 1) (left). Dependency
graph of the problem (arrows are omitted) (right)

it is common to use two program arrays F and G: one for the even time steps,
another for the odd ones. To compute, it is necessary for 2 + 3NO values to be
loaded from memory, 1 to be saved to memory, and if values like c2∆t2/∆x2 are
defined as constant, the amount of FMA (fused multiply-add) operations in the
computation is at least 1 + 3NO.

By applying the stencil for each point in (d + 1)-dimensional mesh (d coordi-
nate axes and and one time iteration axis) we get an entity that we will call
a “dependency graph” in this paper. First two layers along time axis is an ini-
tial condition, the last layer is desired result of the modeling problem. Between
layers the directed edges show data dependencies of the calculations, and calcu-
lations are represented by vertices (the top point of the stencil that corresponds
to F |k+1). First two layers in time and boundary points represent initialization
of a value instead of calculation with a stencil. All stencil computations in the
graph should be carried out in some particular order.

It is important to trace throughout the study the inherent property of the
physical statement of the problem, namely, finite propagation velocity. According
to special relativity, there exists a light cone in 4D spacetime, which illustrate
the causalities of events (see fig. 4). For a given observer spot, all events that
affect it are contained in a past light cone (cone of dependence), and all events
that may be affected by the observer are contained in the future light cone (cone
of influence). In terms of acoustic wave equation, the slope of the cone is given
by the sound speed c.

Numerical approximation of wave equation by explicit scheme with local sten-
cil retains the property, but the cone is transformed according to the stencil
shape, and its spread widens. We shall refer to the resulting shapes as “depen-
dency conoid” and “influence conoid” accordingly. The shape of the conoid base
for the chosen stencil is a line segment in 1D, rhombus in 2D, octahedron in 3D.
We will call this shape “diamond” because of its similarity to the gemstone in

8

x

y

t

x
2 +

y
2 +

z
2 =

c
2 t2

domain of
influence

domain of
dependence

asynchro-
nous domain

asynchro-
nous
domain

synchronization instant

Figure 4: Dependence and influence cones in Minkowsky space

2D and 3D case. The distance between the opposing vertices of d-dimensional
orthoplex in the cone base increases by NO cells along each axis with each time
step away from the synchronization instant.

4 Algorithm as a rule of subdividing
a dependency graph

In the current approach algorithm is defined as a traversal rule of a dependency
graph.

Let us see how an algorithm may be represented by a shape in (d + 1)-space
where the dependency graph is given. If some shape covers some number of
graph vertices, it corresponds to an algorithm (or some procedure or function in
the implementation) that consists of processing all the calculations in these ver-
tices. This shape may be subdivided into similar shapes, each of which contain
smaller number of vertices, in such way, that the data dependencies across each
subdivision border are exclusively unilateral. The direction of data dependencies
between shapes show the order of evaluation of the shapes. If there is a depen-
dency between two shapes, they must be processed in sequence, if not, they may
be processed asynchronously.

After subdivision all the resulting shapes also correspond to some algorithm if
given a subdivision rule. By recursively applying this method the smallest shapes
contain only one vertex, and correspond to a function performing the calculation.
This is a basic idea of LRnLA decomposition.

9

Let us give an example. The most prevalent way is to process the calculation
one time iteration layer after another. The illustration (see fig. 5) by graph sub-
division shapes is as follows: a (d+ 1)-dimensional box, which encompasses whole
graph of the problem, is subdivided into d-dimensional rectangles, containing all
calculations on a certain graph layer. The order of computation in each such lay-
er may be arbitrary: either a loop over all calculations, subdivision into domains
for parallel processing, or processing the cells by parallel threads.

Layer-by-layer stepwise calculation is indeed used in almost all physics simu-
lation software, and very few authors have ventured outside the comfort zone.
The most notable unfavorable consequences are that during processing each time
layer whole data array should be loaded from memory and stored into it, and the
parallel processors have to be synchronized. There exist many other dependency
graph traversal rules, which require much less synchronization steps and much
less memory transfer. More operations may be carried out on the same data. One
example is in fig. 5, which arises from tracing dependency/influence conoids.

We shall show now how the optimal algorithm is constructed for a given prob-
lem (wave equation with cross-shaped stencil) and for a given implementation
environment (GPGPU with CUDA). The illustration is given for two-dimensional
problem with d = 2 in x—y axes. The dependency graph is plotted in 3D x—y—t

space. If we treat each vertex as processing not of one, but of Nz elements, then
this illustration is also applicable for 3D simulation problems. Such DiamondTile
decomposition is assumed for all further discussion.

• The most compact shape that encompasses the stencil in space coordinates
is a diamond. The 2D computational domain is subdivided into diamond
shaped tiles. For NO = 2, each tile contains two vertices.

• One diamond tile is chosen on the initial layer. Its influence conoid is plot-
ted. After Nt layers we choose another tile, which lies near the edge of the
influence conoid base, on the far side in the positive direction of x-axis. Its
dependence conoid is plotted.

• On the intersection of conoids we find a prism (fig. 6).

This prism is a base decomposition shape for DiamondTorre algorithms. Since
it is built as an intersection of conoids, the subdivision retains correct data
dependencies, and since the shape is a prism, all space may be tiled by this
shape (boundary algorithms are the only special case).

Each prism has dependency interconnections only with the prisms, the bases
of which are directly adjacent to the base of this prism (see fig. 7). That is,
the bases have common edges. The calculations inside the prism depend on
calculation result of the two right prisms, and influence the calculations inside
the two prisms to the left. The crucial feature is that the calculations inside

10

Figure 5: Algorithm as a rule of subdividing a dependency graph: stepwise (top),
domain decomposition (center), LRnLA example(bottom). Arrows show data
dependencies between subdivision shapes

11

Figure 6: DiamondTorre algorithm construction as an intersection of influence
cone (orange) and dependence cone (red) of two tiles. If a point falls onto a shape
border, we consider that it is inside the shape if it is on the bottom face; and
that it is outside the shape if it falls on the top face

the prisms with common y coordinate, even those the bases of which touch each
other, are absolutely independent.

A certain freedom remains with the calibration of prism parameters: height
and base size. The distance from the stencil center to its furthest point is defined
as stencil half size and equals ShS ≡ NO/2. By default, the base of the prism
contains 2 · ShS2 vertices. It may be increased in DTS (diamond tile size) along
each axis, then the base would contain 2 · ShS2DTS2 vertices. The height of the
prism equals Nt. Nt should be divisible by 2 and DTS.

5 Benefits of LRnLA approach
The goal of the introduction of these algorithms is the solution of the issues

which were presented in the introduction, namely, to reduce requirements for
memory bandwidth and to increase asynchrony.

To quantitatively compare different algorithms of wave equation modeling in
terms of memory bandwidth requirements, we introduce measures of locality and
asynchrony of an algorithm. Locality parameter is defined as a ratio of number
of dependency graph vertices inside the algorithm shape to the number of graph
edges that cross the shape’s boundaries. Asynchrony parameter is equal to the
number vertices that may be processed concurrently.

The higher are the parameters of locality and asynchrony, the higher perfor-
mance can be reached for memory-bound problems. While the locality parameter
is generally not as high as it could be, the asynchrony parameter is often redun-
dantly large. It is imperative not to increase the asynchrony parameter, but to
correctly distribute the concurrent computation on different levels of parallelism.

12

Figure 7: Data dependencies are directed from green prisms into purple one; from
purple prism to yellow prisms. Red and purple prisms calculations are completely
independent from each other and may be processed asynchronously

Locality parameter has the similar meaning as “operational intensity” measure
introduced in the roofline model [18] but differs by a certain factor. The factor
is defined from the scheme stencil and is equal to the number of operations per
one cell per one time step divided by data size.

Let us calculate the locality parameters for the algorithms, that are introduced
above as a subdivision of the dependency graph. For one dependency graph
vertex the locality parameter is equal to 1/(3 + 3NO). This subdivision may be
illustrated as enclosing each vertex in a box. We will call such algorithm “naive”,
since it corresponds to direct application of the scheme (3) without account for
caching ability specifics on contemporary computers with hierarchical memory
subsystem organization.

A row of cell calculations along one axis is asynchronous on one time step. Fine-
grain parallelism can be utilized by vectorizing the loop of Nz elements along
one (z) axis. The locality parameter increases to 1/(3 + 2NO), the asynchrony
parameter is Nz.

More generally, the locality parameter may be increased in two ways. The first
method is to use the spatial locality of data of a stepwise algorithm (fig. 5). The
quantity of data transfers may be reduced by taking into account the overlapping
the scheme stencils. If a scheme stencil stretches in k layers in time (k = 3 for
the chosen scheme above), it is necessary to load data from k − 1 layers, and
to save data of 1 time layer. The locality parameter is equal to 1/k, and this
value corresponds to a maximal one for all stepwise algorithms. It is reached
only if the algorithm shape covers all vertices of one time layer. In practice this
algorithm is impossible since there is not enough space on the upper layers of
memory subsystem hierarchy (which means register memory for GPGPU) to

13

allocate data of all the cells in simulation domain.
Taking the limited size of the upper layer of memory hierarchy into account,

we choose tiling algorithm with a diamond shape tile as an optimal. It correspond
to DiamondTorre algorithm with Nt = 1. The locality parameter in this case is
equal to 1/(3+2/DTS+1/DTS2), and it differs from the optimal one for (1/k = 1/3)
by a factor of two or less. The asynchrony parameter reaches Nz ·2DTS2ShS2 since
all vertices in a horizontal DiamondTorre slice are asynchronous.

The further increase of locality may be reached through temporal locality,
namely, by repeated update of the same cells the data of which is already loaded
from memory. DiamondTorre algorithm contains 2ShS2DTS2 calculations on the
each of Nt = 2DTS · n (n is some integer number) and requires 2ShS2(DTS + 1)2−
2ShS2DTS2 loads and 2ShS2DTS2−2ShS2(DTS−1)2 saves on each layer, as well as
4ShS2DTS2 initial loads and 4ShS2(DTS − 1)2 final saves. The locality parameter
for one DiamondTorre amounts to

DTS · n/(4n + 2− 2/DTS + 1/DTS2), (4)

and approaches DTS/4 with large Nt.
At this step the transition from fine-grained to coarse-grained parallelism takes

place. For a row of asynchronous DiamondTorre (with common y coordinate)
asynchrony parameter is increased by a factor of Ny/(2DTS · ShS), which is the
amount of DiamondTorres in a row. The locality parameter increases to

DTS · n/(n(4− 1/DTS) + 2− 2/DTS + 1/DTS2), (5)

and approaches DTS/(4− 1/DTS) with large Nt.
If the asynchrony of DiamondTorres with different x (and t) positions is in-

volved, the coarser parallel granularity may be utilized. Asynchrony parameter
would increase in about Nx/(2Nt · ShS) times.

The roofline model may be plotted with the localization parameter as its
horizontal axis. In fig. 10 rooflines for the two target GPUs are plotted in red
and green lines. With its use the maximum possible performance for a given
algorithm is found as a ceiling point for its localization parameter (black arrows).

6 CUDA implementation
The computing progresses in subsequent stages. A stage consists of processing

a row of DiamondTorre algorithm shapes along y axis (fig. 8,9). They may be
processed asynchronously, since there are no dependencies between them on any
time layers. They are processed by CUDA blocks. Each element of 3D dependency
graph that was subdivided into prisms corresponds to processing of Nz elements
for 3D problems. Therefore in each DiamondTorre Nz CUDA threads process

14

Figure 8: DiamondTorre algorithm implementation with CUDA. First stage
(left), second stage (right)

cells along z axis. The DiamondTorre function contains a loop over Nt time
layers. Each loop iteration processes cells that fall into the DiamondTile.

It should be noted that as asynchronous CUDA blocks process cells in Di-
amondTorre’s in a row along y axis, the data dependencies are correct even
without synchronization between blocks after each time iteration step. The only
necessary synchronization is after whole stage is processed. But since there is
no conoid decomposition along z axis, CUDA threads within a block should be
synchronized. This is important to calculate finite approximations of ∂2F

∂z2 deriva-
tive. When CUDA thread processes a cell value, it stores it in shared memory.
After synchronization occurs the values are used to compute the finite sum of
cell values along z axis. This way it is assured that in one finite sum all values
correspond to the same time instant.

Next stage processes a row of DiamondTorre’s that is shifted by ShS · DTS

in negative x direction, and by same amount in positive y direction. The row is
processed like the previous one, and the next one is shifted again in x and y so
that by alternating these stages all computation domain is covered.

The first of these rows start near the right boundary of the domain (fig. 8).
The upper part of the prisms fall outside the computation domain. These cor-
respond to the boundary functions, in which the loop over the tiles has fewer
iterations, and last iterations apply boundary conditions. After boundary prisms
are processed (fig. 9), we arrive at the situation when in some cells of the com-
putation domain the acoustic field have the values of the Nt-th iteration step;
in some cells the field has its initial values; and other cells have values on time
step from 0 to Nt. After all stages are processed, all field values reach Nt-th time
step.

All calculations at each time are conducted in a region near the slope on the

15

Figure 9: After boundary prisms are processed, in some cells of the computation
domain the field have the values of the Nt-th iteration step; in some cells the
field has its initial values; and other cells have values on time step from 0 to Nt

(left). After all stages are processed, all field values reach Nt-th time step(right)

current DiamondTorre row. This property can be used to implement a so-called
“calculation window”. Only the data that is covered at a certain stage has to be
stored in the device memory, the rest remains in the host memory. This way even
big data problems can be processed by one GPGPU device. If the calculation
time of one stage equals the time needed to store the processed data and load the
data to be processed on the next stage, then the computation reaches maximum
efficiency.

To enable multi-GPGPU computation the calculation on each stage may be
distributed by subdividing the DiamondTorre row in y axis into several parts,
equal to GPGPU number.

7 Results
The algorithm is implemented and tested for various values of Nt, DTS, NO.
In fig. 10 the achieved results for second order of approximation are plotted

under the roofline. The lowest point corresponds to FDTD3d result from built-in
CUDA examples. It should be noted that the comparison is not exactly fair, since
in FDTD3d the scheme is of first order in time, and uses a stencil with one point
less (k = 2). Other points are from the computation results with DiamondTorre
algorithm with increasing DTS parameter, Nt = 100.

In fig. 11 the calculation rate is plotted versus parallel levels, measured in
warps. It is measured as strong scaling, for a calculation mesh of about ∼ 5 · 109

cells. From 1/32 to 1 on horizontal axis the number of used GPGPU threads rises
from 1 to 32. The increase in calculation rate is satisfactorily linear. After 1 the

16

 10

 100

 1000

 0.1 1 10

p
e
rf

o
rm

a
n
ce

,
1

0
9
 c

e
lls

/s
e
c

localization parameter, cells calculations/(data loads+stores)

D
ia

m
o
n
d

T
ile

,
D

T
S

=
1

D
T
S

=
4

D
T
S

=
7 D
T
S

=
1

4

D
T
S

=
2

0

 t
h
e
 b

e
st

 o
f

st
e
p

w
is

e

 D
T
S

=
1

 n
a
iv

e

 DiamondTorre
 for various D

TS

 C
U

D
A

 F
D

T
D

3
d

 r
e
su

lt
s

TitanZ

GTX 970

Figure 10: RoofLine Model for Wave Equation on GPGPU

parallel levels increase by adding whole warps up to the maximum number of
warps in block (8), with the amount of enabled registers per thread equal to 256.
After this the amount of blocks is being increased. The increase of calculation
rate remains linear until the number of blocks becomes equal to the number of
available multiprocessors. The maximum achieved value is over 50 billions cells
per second.

In fig. 12 the achieved calculation rate is plotted with different parameters. The
labels on horizontal axis are in the form NO/DTS. Overall, the results correspond
to the analytical predictions (5). With fixed DTS = 1 and NO = 2, 4, 6, 8 (first 4
points) the calculation rate is constant (for Maxwell architectures), although
the amount of calculation per cell increases. It is explained by the fact that the
problem is memory bound. Computation rate increases with DTS for constant
NO since the locality parameter increases. For the rightmost points of the graph,
the deviation from the analytical estimate for Kepler architecture is explained
by insufficient parallel occupancy.

8 Generalization
The area of DiamondTorre application is not limited to acoustic wave equa-

tion. It has also been successfully implemented for finite difference time domain

17

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000

ca
lc

 r
a
te

,
G

ce
lls

/s
e
c

parallel level, warps

FDTD3d CPU rate

FDTD3d CPU rate with -O3

FDTD3d TitanZ rate
FDTD3d GTX970 rate

TitanZ
GTX970

Figure 11: Strong scaling for wave equation. DTS = 6, Nt = 96, NO = 2

 0

 10

 20

 30

 40

 50

 60

2/1 4/1 6/1 8/1 10/112/114/1 6/1 6/2 4/1 4/2 4/3 2/1 2/2 2/3 2/4 2/5 2/6 2/7

ca
lc

 r
a
te

,
G

ce
lls

/s
e
c

various scheme/algorithm parameters, NO/DTS

GTX 750Ti
GTX 970

TitanZ (1)

Figure 12: Performance results for different parameters. Horizontal axis labels
are in the form NO/DTS.

18

methods (FDTD) [19], Runge-Kutta discrete Galerkin method [20], Particle-in-
Cell plasma simulation [21]. The LRnLA method of algorithm construction may
also be applied for any other numerical methods with local dependencies, and
other computer systems and methods of parallelism.

What remains to be discovered is the concept, benefits and area of use of
other possible algorithms based on the discussed concept. For example, a fully
3D DiamondTorre dependency graph decomposition.

9 Aknowledgements
The work is supported by RFBR grant 14-01-31483.

References
[1] “LAPACK,” retrieved on 2015-03-05. [Online]. Available:

http://www.netlib.org/lapack/

[2] “TOP500 list,” retrieved on 2015-03-05. [Online]. Available:
http://www.top500.org/lists/2014/11/

[3] W. D. Gropp and D. E. Keyes, “Domain decomposition on par-
allel computers,” IMPACT of Computing in Science and Engi-
neering, vol. 1, no. 4, pp. 421 – 439, 1989. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0899824889900037

[4] “MPI: A message-passing interface standard version 3.0, message passing
interface forum, september 21, 2012,” retrieved on 2015-03-05. [Online].
Available: http://www.mpi-forum.org

[5] M. Wolfe, “More iteration space tiling,” in Proceedings of the 1989
ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’89.
New York, NY, USA: ACM, 1989, pp. 655–664. [Online]. Available:
http://doi.acm.org/10.1145/76263.76337

[6] “OpenCL,” retrieved on 2015-03-05. [Online]. Available:
https://www.khronos.org/opencl/

[7] “CUDA toolkit 6.5,” retrieved on 2015-03-05. [Online]. Available:
https://developer.nvidia.com/cuda-downloads

[8] L. Lamport, “The parallel execution of DO loops,” Commun.
ACM, vol. 17, no. 2, pp. 83–93, Feb. 1974. [Online]. Available:
http://doi.acm.org/10.1145/360827.360844

19

[9] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods. Prentice-Hall, Inc., 1989.

[10] “OpenMP application program interface version 4.0 - july 2013,” re-
trieved on 2015-03-05. [Online]. Available: http://openmp.org/wp/openmp-
specifications/

[11] “Intel R© 64 and IA-32 architectures optimization ref-
erence manual,” retrieved on 2015-03-05. [Online].
Available: http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-manual.html

[12] C. Lameter, “NUMA (non-uniform memory access): An overview,” ACM
Queue, 2013.

[13] H. Prokop, “Cache-oblivious algorithms,” Master’s thesis, MIT, 1999.

[14] P. Micikevicius, “3D finite difference computation on GPUs using CUDA,”
in Proceedings of 2Nd Workshop on General Purpose Processing on Graphics
Processing Units, ser. GPGPU-2. New York, NY, USA: ACM, 2009, pp.
79–84. [Online]. Available: http://doi.acm.org/10.1145/1513895.1513905

[15] V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense linear alge-
bra,” in High Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, Nov 2008, pp. 1–11.

[16] V. Levchenko, “Asynchronous parallel algorithms as a way to archive effec-
tiveness of computations (in russian),” J. of Inf. Tech. and Comp. Systems,
no. 1, p. 68, 2005.

[17] A. Perepelkina, I. Goryachev, and V. Levchenko, “Implementation of
the kinetic plasma code with locally recursive non-locally asynchronous
algorithms,” Journal of Physics: Conference Series, vol. 510, no. 1,
p. 012042, 2014. [Online]. Available: http://iopscience.iop.org/1742-
6596/510/1/012042

[18] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insight-
ful visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[19] V. Levchenko, I. Goryachev, and A. Perepelkina, “Interactive FDTD simu-
lation using LRnLA algorithms,” in Progress In Electromagnetics Research
Symposium Abstracts, Stockholm, Sweden, Aug. 12–15 2013, p. 1002.

20

[20] L. V. Korneev B.A., “Effective numerical simulation of the
gas bubble-shock interaction problem using the RKDG numeri-
cal method and the DiamondTorre algorithm of the implementa-
tion,” Keldysh Institute Preprints, no. 97, 2014. [Online]. Available:
http://library.keldysh.ru//preprint.asp?lg=e&id=2014-97

[21] A. Y. Perepelkina, V. D. Levchenko, and I. A. Goryachev, “3D3V plasma
kinetics code DiamondPIC for modeling of substantially multiscale processes
on heterogenous computers,” in 41st EPS Conference on Plasma Physics,
ser. Europhysics Conference Abstracts, P. O. Scholten, Ed., no. 38F, EPS.
Berlin: European Physical Society, June 2014, p. O2.304.

	Untitled.pdf
	prep2015_18_eng

