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УДК 519.8+519.7

Бацын М.В., Калягин В.А., Туляков Д.Н.
Эффективный подход для задачи структурного сопоставления протеи-

нов. Препринт Института прикладной математики им. М.В.Келдыша РАН,
Москва, 2015

Задача Структурного Сопоставления Протеинов (ЗССП) заключается в
поиске наилучшего сопоставления двух протеинов, заданных их первичны-
ми структурами. В данной работе представлен эффективный алгоритм для
задачи ЗССП. Вычислительные результаты представлены для известного те-
стового набора Скольника из 40 протеинов и показывают, что предложенный
алгоритм более эффективен, чем один из наиболее быстрых подходов для
ЗССП - алгоритм ACF (Malod-Dognin et al., 2010).
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The Protein Structure Alignment Problem (PSAP) consists in finding the
best alignment of two proteins defined by their primary structures. In this paper
we present an efficient algorithm for the PSAP. The computational results are
provided for the popular Skolnick test set of 40 proteins and show that the
suggested algorithm is more efficient than one of the fastest PSAP solvers - the
ACF algorithm by Malod-Dognin et al. (2010).
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1. Introduction
For the majority of the existing proteins only the primary structure is

known and the secondary structure could be predicted. But functions of a pro-
tein depend also on its tertiary and quaternary structures. However it is known
that similar proteins usually have common functions (Marti-Renom et al., 2009
[17]). Similar substructures of amino acids can provide similar functions of
proteins. This makes the Protein Structure Alignment Problem (PSAP), which
goal is to find the most similar substructure of two proteins, an important prob-
lem in bioinformatics. This problem is also used for classification of proteins
into families of similar ones (Malod-Dognin et al., 2011 [16]).

The PSAP has received much attention in recent decades. It is a challeng-
ing problem of computational biomedicine (Pardalos & Rebennack, 2010 [20]).
One of the most widely used approaches to this problem is the CMO (Contact
Map Overlap) method introduced by Godzik & Skolnick (1994) [11]. Holm &
Sander (1993) [12] proposed a distance matrix alignment (DALI) method to
measure proteins similarity and a heuristic algorithm to find the most similar
substructure. Gibrat et al. (1996) [10] developed Vector Alignment Search
Tool (VAST) which uses reduction to the maximum clique problem (MCP) and
applies Bron & Kerbosh (1973) [5] algorithm for the exact solution. Shindyalov
& Bourne (1998) [23] suggested to use a notion of aligned fragment pair for
measuring similarity and developed a fast algorithm for solving the alignment
problem. Integer programming approaches for solving the CMO problem be-
long to the papers of Carr et al. (2000) [8], Lancia et al. (2001) [14], Caprara &
Lancia (2002) [6], Caprara et al. (2004) [7]. These authors reduce the original
problem to the MCP (or the maximum independent set problem) and apply
their branch-and-cut algorithms. Dukka et al. (2002) [9] use the reduction of
the CMO problem to the MCP and solve it with the MCQ algorithm (Tomita
& Seki, 2003 [25]). Konc & Janezic (2007) [13] propose MatchProt algorithm
to solve the same problem and report slightly better results. Strickland et
al. (2005) [24] also consider the CMO problem, present several preprocessing
techniques to the resulting MCP and apply their branch-and-bound algorithm.
Xie & Sahinidis (2007) [27] suggest a branch-and-bound algorithm to the CMO
problem in its original formulation. Pullan (2007) [22] reduces the CMO prob-
lem to the MCP and applies the phased local search heuristic (Pullan, 2006
[21]) to obtain high-quality solutions in small time. Andonov et al. (2011) [1]
propose an efficient branch-and-bound algorithm for the CMO problem with
bounds obtained by a novel Lagrangian relaxation. Malod-Dognin et al. (2010)
[15] introduce DAST (Distance Alignment Search Tool) method for the PSAP,
reduce it to the MCP and present a fast branch-and-bound algorithm for solv-
ing it. In contrast to the CMO the DAST approach always guarantees a small
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value of the root mean square deviation for the resulting alignment.
In this paper we suggest an efficient approach to the PSAP. We use the

DAST method to reduce the alignment problem to the MCP. The suggested
algorithm IMCS (Improved MCS) is more efficient than the ACF algorithm
(Alignment Clique Finder) which is one of the fastest algorithms for the PSAP
to the best of our knowledge. Our approach is based on the MCS algorithm
for the MCP by Tomita et al. (2010) [26]. We significantly improve the perfor-
mance of the MCS algorithm in solving the PSAP. Our main contributions are
the following.

∙ We run the ILS heuristic (Andrade et al., 2012 [2]) and obtain an ini-
tial solution close to optimal. This requires relatively small time, but
considerably reduces the search tree size of the main branch-and-bound
algorithm. This solution is then used for filtering large alignment graphs
reducing its size.

∙ We suggest to calculate for each vertex an upper bound on the size of
the maximum clique containing this vertex. For this purpose we run a
branch-and-bound algorithm truncated to two levels. The vertices which
have the upper bound not greater than the heuristic lower bound (the
size of the clique found by the ILS heuristic) could be removed from the
alignment graph. This preprocessing is really efficient and removes up to
70% of vertices and edges in large alignment graphs.

∙ We preallocate dynamic memory enough to store the candidates and
their colours on every path from the search tree root to a leaf. We use
this memory as a stack. This allows to avoid multiple inefficient alloca-
tion/deallocation operations with the heap.

∙ We use one bit for storing every element of the adjacency matrix and
thus reduce its size in memory by 8 times. Since the adjacency matrix
is accessed frequently this decreases the CPU cache misses and improves
the performance especially for large alignment graphs.
The paper is organized as follows. In the next section we describe the

PSAP problem and the DAST approach to reduce it to the MCP. The suggested
algorithm is presented in Section 3. Section 4 contains computational results
and completes the paper.

2. Protein structure alignment problem
To reduce the protein structure alignment problem to the maximum clique

problem we follow the DAST approach. A protein is defined as a sequence of
amino acids. Every amino acid has 3D-coordinates of its atoms. We use the
coordinates of 𝛼-carbon atoms. Amino acid 𝑖 of protein 𝑃1 is compatible with
amino acid 𝑘 of protein 𝑃2 if 𝑖 and 𝑘 belong to the same secondary struc-
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(𝑖𝑏, 𝑘𝑏)

Figure 1. An edge in a protein alignment graph

ture element (SSE): 𝛼-helix, 𝛽-strand, or coil. We apply KAKSI software by
Martin et al. (2005) [18] (http://migale.jouy.inra.fr/?q=kaksi) for SSE pre-
diction. A distance between amino acids 𝑖 and 𝑗 is measured as a Euclidean
distance: 𝑑𝑖𝑗 =

√︀
(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2. The objective of the pro-

tein structure alignment problem is to find the longest ordered sequence of
amino acids 𝑖1, 𝑖2, ..., 𝑖𝜔 in protein 𝑃1 matching an ordered sequence of amino
acids 𝑘1, 𝑘2, ..., 𝑘𝜔 in protein 𝑃2. Sequence 𝑖1, 𝑖2, ..., 𝑖𝜔 matches 𝑘1, 𝑘2, ..., 𝑘𝜔 if for
any 𝑎 = 1, ..., 𝜔 amino acid 𝑖𝑎 is compatible with amino acid 𝑘𝑎 and for any
𝑎, 𝑏 = 1, ..., 𝜔 |𝑑𝑖𝑎𝑖𝑏 − 𝑑𝑘𝑎𝑘𝑏| < 𝜏 . Here 𝜏 is a distance threshold set to 3Å. This
constraint requires that any two amino acids 𝑖𝑎, 𝑖𝑏 of the 𝑃1 sequence aligned
with two amino acids 𝑘𝑎, 𝑘𝑏 of the matching 𝑃2 sequence should have the same
distance between them as 𝑘𝑎 and 𝑘𝑏 with precision 𝜏 . This also guarantees
that the root square mean deviation of this alignment cannot be more than 𝜏
(Malod-Dognin et al., 2010 [15]). Note that the CMO method does not provide
such guarantee and potentially can align two close amino acids with two distant
ones.

The described problem is equivalent to the maximum clique problem (MCP)
for the protein alignment graph. The MCP consists in finding the largest clique
in the graph – the largest subgraph in which every two vertices are connected
with an edge. The alignment graph has vertices (𝑖.𝑘) where 𝑖 is an amino acid of
protein 𝑃1, 𝑘 is an amino acid of protein 𝑃2, and 𝑖 is compatible with 𝑘 (belongs
to the same predicted secondary structure element: 𝛼-helix, 𝛽-strand, or coil).
Two vertices (𝑖𝑎.𝑘𝑎) and (𝑖𝑏.𝑘𝑏) are connected with an edge if 𝑖𝑎 < 𝑖𝑏, 𝑘𝑎 < 𝑘𝑏,
and |𝑑𝑖𝑎𝑖𝑏 − 𝑑𝑘𝑎𝑘𝑏| < 𝜏 (see Figure 1). The objective is to find the maximum
clique (𝑖1.𝑘1), (𝑖2.𝑘2), ..., (𝑖𝜔.𝑘𝜔) in this graph.
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3. Algorithm description
Our IMCS algorithm is based on ILS&MCS approach suggested in Batsyn

et al. (2014) [4]. Below we provide a general scheme of our algorithm.
1. Preprocessing of the graph. The current clique is empty: 𝑄 = ∅. The

best clique is the clique found by the ILS heuristic: 𝑄* = 𝜔𝐼𝐿𝑆. The
candidate set 𝑆 contains all the vertices: 𝑆 = 𝑉 . All vertices in 𝑆 are
coloured with a greedy colouring and sorted in decreasing order of their
colours.

2. Branch-and-bound procedure.
(a) Take the next candidate 𝜐. Its colour is 𝑐𝜐. If |𝑄|+ 𝑐𝜐 ≤ |𝑄*| return

from the recursion.
(b) Add 𝜐 to the current clique: 𝑆 = 𝑆 ∖ {𝜐}, 𝑄 = 𝑄 ∪ {𝜐}
(c) Get new candidate set 𝑆 ′ = 𝑆∩𝑁(𝜐), where 𝑁(𝜐) is the set of vertex

𝜐 neighbours.
(d) If 𝑆 ′ is empty (we are in a leaf of the seach tree) then return from

recursion. (If the current clique is larger than the largest clique 𝑄*

found so far, then update it before returning: 𝑄* = 𝑄).
(e) Colour vertices in 𝑆 ′ with a greedy colouring.
(f) Recursively perform the branch-and-bound procedure (2) for the new

candidate set 𝑆 ′.
(g) Perform steps (a) - (f) while the candidate set 𝑆 is not empty, and

then return from recursion.
3. Return the maximum clique 𝑄*.
We suggest to preallocate dynamic memory of the size large enough to

store all candidate sets and colours of candidates on the longest path from the
search tree root to its leaf. The length of such a path is equal to the size of the
maximum clique and the total number of candidates can be estimated using
the following proposition.

Proposition 3.1. In a branch-and-bound algorithm the total number of can-
didates on any path from the search tree root to its leaf cannot be more than
𝜔𝑛, where 𝜔 is the size of the maximum clique and 𝑛 is the number of vertices:
|𝑉 | = 𝑛.

Proof. According to the general scheme of a branch-and-bound algorithm in
any node on level 𝑙 of the search tree the current clique 𝑄 has 𝑙 vertices. So
the candidate set on level 𝑙 has not more than (𝑛− 𝑙) vertices. The maximum
number of levels is 𝜔 since it is the size of the largest clique. On level 𝜔 the
size of the current clique is |𝑄| = 𝜔 and the number of candidates is zero since
it is a leaf node of the search tree. So on every path from the root to a leaf of
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1

2 3

4

Figure 2. Total number of candidates on branch 1-2-3-4 is (2𝑛− 𝜔)(𝜔 − 1)/2

the search tree the total number of candidates is not greater than:

(𝑛− 1) + (𝑛− 2) + ...+ (𝑛− (𝜔 − 1)) + 0 =
(2𝑛− 𝜔)(𝜔 − 1)

2
≤ 𝜔𝑛

Note that this bound (2𝑛−𝜔)(𝜔−1)/2 on the total number of candidates
on any path of the search tree is reachable. In Figure 2 on level 1 vertex 1
has (𝑛− 1) candidates, on level 2 vertices 1,2 have (𝑛− 2) candidates, on level
3 vertices 1,2,3 have (𝑛 − 3) candidates, and finally on level 4 we have the
maximum clique 1,2,3,4 and zero candidates.

Using proposition 3.1 in our implementation we preallocate dynamic mem-
ory for 𝑘𝑛 candidates, where 𝑘 is the number of colours in the greedy colouring
of the whole graph. This is enough since the number of colours 𝑘 cannot be
less than the size of the maximum clique 𝜔 (Balas, 1986 [3]).

We use the preallocated memory as a stack. In every search tree node,
when we go to the next level of recursion, we push new candidates and their
colours to this stack (and move the pointer to the stack top). When we return
one level up the pointer to the top is automatically restored to its previous
value. These operations are much faster than allocating/deallocating memory
in the heap.

Another idea of improvement of the algorithm performance is a bit im-
plementation of the adjacency matrix. In standard implementation a boolean
adjacency matrix needs 𝑛2 bytes or even 4𝑛2 bytes in some implementations
of the boolean data type. For example, for an alignment graph with 25000
vertices the adjacency matrix occupies 625 megabytes of memory while in bit
implementation it will be only 78 megabytes. This approach reduces the CPU
cache misses when the adjacency matrix is accessed. Every cache miss increases
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the access time by 3 - 50 times (depending on the cache level L1, L2 or L3).
Since this matrix is accessed many times at every node of the search tree, when
the current candidates are coloured, it is reasonable to use the bit implementa-
tion.

The next idea is to preprocess large alignment graphs (more than 20 thou-
sand vertices and 25 million edges) and remove vertices which could not be in
the maximum clique. For this purpose we first run the ILS heuristic (Andrade
et al., 2012 [2]) to find a feasible MCP solution 𝑄* which is close to the opti-
mal. This solution is then serves as a lower bound and every vertex, for which
an upper bound on the size of the maximum clique containing this vertex is
not greater than |𝑄*|, could be removed together with its edges. For better
performance a vertex is not removed immediately, but only marked to be re-
moved after the whole procedure. To get an upper bound for a vertex we run a
truncated branch-and-bound procedure down to the depth of two levels of the
search tree. On the first level for every vertex 𝜐 we colour the subgraph of its
neighbours (candidates) 𝜐1, 𝜐2, ..., 𝜐𝑘 with the greedy sequential colouring. Let
the number of the used colours be 𝑐. The maximum clique in the subgraph of
candidates together with vertex 𝜐 cannot have size greater than 𝑐 + 1. So if
𝑐 + 1 ≤ |𝑄*| then vertex 𝜐 can be removed. Otherwise, we go to the second
level and consider every vertex 𝜐𝑖. The subgraph of candidates for 𝜐𝑖 contains
only vertices from {𝜐1, 𝜐2, ..., 𝜐𝑘} which are neighbours of 𝜐𝑖. Let it be vertices
𝜐1
𝑖 , 𝜐

2
𝑖 , ..., 𝜐

𝑙
𝑖, and let the greedy colouring of this graph has 𝑐𝑖 colours. The

maximum clique in this graph together with vertices 𝜐 and 𝜐𝑖 cannot be larger
than 𝑐𝑖 + 2. If 𝑐𝑖 + 2 ≤ |𝑄*| we continue with the next vertex 𝜐𝑖+1. If for all
𝑖 = 1,2, ..., 𝑘 we get 𝑐𝑖 + 2 ≤ |𝑄*| then vertex 𝜐 can be removed. Otherwise, if
for some 𝑖 𝑐𝑖 + 2 > |𝑄*| we stop this procedure and conclude that 𝜐 cannot be
removed.

We demonstrate the suggested preprocessing on the graph shown in Figure
3a. Let the heuristic solution 𝑄* found for this graph by the ILS algorithm
be a clique of size 3. Consider vertex 6 for example. The subgraph of its
neighbours can be coloured in 3 colours as shown in Figure 3b (colours are
shown in brackets). So this vertex together with its neighbours can potentially
form a clique of size 1 + 3 = 4 > |𝑄*| = 3. We have to go down the search tree
and consider every neighbour. For vertex 1 the candidates (common neighbours
of vertex 6 and vertex 1) are vertices 2 and 5. We can colour the subgraph of
these candidates in 1 colour and so the maximum clique size on this branch is
not greater than 2+1 ≤ |𝑄*| = 3. The same is true for the branches of vertices
2, 3, 4, and 5. So any branch for vertex 6 will not lead to a clique larger than
𝑄*. This means that this vertex can be removed together with its 5 edges. In
the same way vertices 2, 3, and 4 can be also removed, and the resulting graph
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(2)

(1)
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Figure 3. a. Input graph b. Colouring of vertex 6 neighbours

will have only vertices 1, 5, 7, 8.

4. Computational results
The first computational experiments are made for 7 small alignment graphs

having about 8 thousand vertices and 4 million edges. We do not run the ILS
heuristic for such graphs because it is not efficient to do it for simple instances.
For these graphs in average our IMCS algorithm is more than 11 times faster
than the Ostergard’s algorithm (2002) [19] and more than 1.25 times faster than
the MCS algorithm (see table 1). These results show that the suggested IMCS
algorithm is faster than the ACF algorithm by Malod-Dognin et al. (2010)
[15] (one of the fastest algorithms for the PSAP to the best of our knowledge).
The ACF algorithm is 9 times faster than the Ostergard’s algorithm on these
graphs. Unfortunately, we have not been able to implement the ACF algorithm
and make a direct comparison, because it is not described in detail in Malod-
Dognin et al. (2010) [15]. That is why we compare our IMCS algorithm with
the state-of-art ACF algorithm indirectly via the Ostergard’s algorithm.

For main computational experiments we use the same Skolnick set of 40
proteins as in Malod-Dognin et al. (2010) [15]. We compare our results with
the MCS and Ostergard’s algorithms on 10 large graphs (20 – 25 thousand
vertices and 25 – 30 million edges) and 30 moderate graphs for which the
Ostergard’s algorithm works not more than 5 hours. For large graphs we first
run the suggested preprocessing before the main branch-and-bound algorithm.
The results are shown in table 2, where columns |𝑉 | and |𝐸| contain a number
of vertices and edges before preprocessing, columns ”Removed |𝑉 | and |𝐸|”



– 10 –

Table 1. Running time comparison for small alignment graphs

Instances Ostergard,
sec

MCS,
sec

IMCS,
sec

d1k32b d1n6ei 6.20 2.81 2.36
d1k32b d1n6fb 2.48 2.30 2.05
d1k32b d1n6ff 2.41 2.27 2.06
d1k32b d1n6dd 24.01 4.07 2.77
d1n6dd d1n6ei 9.02 2.82 2.32
d1n6dd d1n6fb 87.02 3.66 2.67
d1n6dd d1n6ff 62.11 3.59 2.67

contain a percent of vertices and edges removed by the preprocessing procedure,
columns 𝜔𝐼𝐿𝑆 and 𝜔 contain the size of a clique found by the ILS heuristic and
the size of the maximum clique. For smaller graphs the preprocessing does not
give a notable speedup and is not performed.

Table 2. Preprocessing of large alignment graphs

Removed
Instances |𝑉 | |𝐸|

|𝑉 | |𝐸|
𝜔 𝜔𝐼𝐿𝑆 ILS,

sec
d1amk d1b9bA 24208 28526291 69.93% 77.43% 76 76 68
d1amk d1tri 23688 27254559 26.84% 24.90% 50 50 23
d1amk d3ypiA 23152 26096428 28.21% 28.28% 53 53 81
d1amk d8timA 23838 27739393 15.45% 12.20% 42 42 1694
d1aw2A d3ypiA 23893 27528114 25.49% 25.15% 50 50 866
d1amk d1aw2A 25100 30045134 23.24% 22.34% 52 52 404
d1aw2A d1btmA 25423 30655812 8.28% 5.38% 43 40 288
d1aw2A d1tmhA 25706 31397640 51.06% 54.91% 65 65 215
d1aw2A d1treA 25448 30898250 14.76% 12.72% 46 46 551
d1tmhA d1treA 25262 30270402 11.15% 7.75% 42 42 1230

All experiments are performed on Intel Core i7 machine with 2.2 GHz
CPU and 8 Gb of memory. The comparison in computational time (in seconds)
is presented in table 3 for large graphs and in table 4 for moderate graphs.
On large instances our IMCS algorithm is more than 375 times faster than
the Ostergard’s algorithm and more than 5 times than the MCS in average.
In comparison with the Ostergard’s algorithm the speedup varies from 100 to
9450 times. Note that only 3 large instances have been solved by the Oster-
gard’s algorithm, and 7 instances have been stopped after 4000000 seconds (45
days). For such instances the comparison of the ACF with the Ostergard is not
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reported in Malod-Dognin et al. (2010) [15].

Table 3. Running time comparison for large instances

Instances |𝑉 | |𝐸| 𝜔 𝜔𝐼𝐿𝑆

ILS +
Preprocess,

sec

Ostergard,
sec

MCS,
sec

IMCS,
sec

d1amk d1b9bA 24208 28526291 76 76 68 4000000 10545 423
d1amk d1tri 23688 27254559 50 50 23 4000000 84608 5260
d1amk d3ypiA 23152 26096428 53 53 81 4000000 2393 1257
d1amk d8timA 23838 27739393 42 42 1694 1975437 55573 18060
d1aw2A d3ypiA 23893 27528114 50 50 866 4000000 23421 23331
d1amk d1aw2A 25100 30045134 52 52 404 4000000 41793 11320
d1aw2A d1btmA 25423 30655812 43 40 288 4000000 27002 9386
d1aw2A d1tmhA 25706 31397640 65 65 215 4000000 112158 8365
d1aw2A d1treA 25448 30898250 46 46 551 469600 56850 2846
d1tmhA d1treA 25262 30270402 42 42 1230 3133832 73572 9068

On moderate instances our IMCS algorithm is more than 40 times faster
than the Ostergard’s algorithm and more than 5 times than the MCS in average.
These results prove that in average our algorithm is 2 times faster than the
ACF algorithm which is 20 times faster than the Ostergard’s algorithm on
moderate instances. The best performance in comparison with other algorithms
our approach has on large instances which are hard to solve (table 3). It is due
to our preprocessing of large alignment graphs. It allows us to reduce the
alignment graphs and the search tree size of the branch-and-bound algorithm
considerably.
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Table 4. Running time comparison for moderate instances

Instances |𝑉 | |𝐸| 𝜔 𝜔𝐼𝐿𝑆
ILS,
sec

Ostergard,
sec

MCS,
sec

IMCS,
sec

d1amk d2b3iA 6192 2127737 23 23 1.9 50 37 9
d1b00A d1b9bA 11467 7159288 31 31 20.9 3197 451 111
d1b00A d1htiA 11221 6637902 41 41 2.4 9750 52 19
d1b71A d8timA 16717 14576531 34 23 133.6 5667 5534 1015
d1b9bA d2pcy 6735 2376861 23 22 17.2 122 67 29
d1b9bA d3chy 6340 2353878 29 29 3.4 13698 114 17
d1bawA d1btmA 6861 2939442 25 25 3.9 2172 236 37
d1bawA d2plt 4692 1734838 27 27 0.6 91 37 5
d1bawA d4tmyA 3156 719655 21 21 0.8 6.7 5.7 1.6
d1byoA d1treA 6621 2754094 25 25 2.7 104 134 15
d1dbwA d1ydvA 11723 6964457 35 35 0.8 3609 271 61
d1dpsA d1nat 3133 378554 25 21 0.1 219 0.4 0.4
d1dpsA d1qmpA 3009 387178 25 17 0.0 748 1.8 0.3
d1dpsA d3chy 2240 167322 26 14 0.8 362 1.3 0.9
d1dpsA d4tmyA 2100 144179 26 26 0.0 94 0.3 0.1
d1ier d1qmpB 9667 5133743 27 27 13.9 4849 450 65
d1ier d3chy 10189 5544475 26 26 9.2 4632 368 77
d1kdi d1tri 6417 2433204 27 27 0.0 3936 44 10
d1kdi d2b3iA 4427 1184704 38 38 0.1 5.5 0.8 0.7
d1nin d8timA 6969 2737857 23 23 5.5 667 58 18
d1ntr d4tmyB 5078 1706264 29 29 0.8 44 9 3
d1pla d1treA 7009 2917919 24 24 30.5 157 86 46
d1qmpA d1qmpD 5997 2374341 46 46 0.9 6217 9.6 2.3
d1qmpC d1qmpD 5892 2387556 40 40 0.8 4476 17.0 3.8
d1qmpD d1treA 12084 7772858 37 37 36.7 8788 538 164
d1qmpD d3chy 6119 2523565 46 46 1.0 1291 16.0 3.1
d1rn1A d2pcy 4515 1331519 22 22 1.7 68 18.0 5.1
d1ydvA d2b3iA 6541 2249656 22 22 1.0 116 50 11
d1ydvA d4tmyA 11063 6236246 42 42 4.9 240 164 18
d3chy d4tmyB 5898 2324115 31 31 0.7 751 46.0 5.5
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