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Яшунский А. Д.
О выпуклыхмногогранниках распределений, сохраняемыхопе-

рациями конечного поля
Строятся семейства многогранников в пространстве вероятностных

распределений над конечным полем, обладающих свойством сохране-
ния: при сложении или умножении независимых случайных величин,
имеющих распределение из построенного множества, распределение
результата также лежит в этом множестве.

Ключевые слова: случайная величина, конечное поле, сохраняемое
множество, выпуклый многогранник

Alexey Dmitrievich Yashunsky
On convex polytopes of distributions preserved by finite field oper-

ations
We construct families of polytopes in the space of probability distribu-

tions over a finite field, which are preserved, i.e. when adding or multiplying
independent random variables with distributions from the constructed set,
one obtains a result whose distribution belongs to the set as well.
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Let us consider transformations of random variables over a finite set 𝐸
by applying operations from a given operation set ℬ to these variables.
When considering such transformations, one naturally arrives to the issue
of constructing a distribution set 𝐾 with the following property: for any
set𝑋1, . . . , 𝑋𝑛 of mutually independent random variables over 𝐸 with distri-
butions belonging to𝐾 and any operation 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ ℬ the distribution
of the variable 𝑓(𝑋1, . . . , 𝑋𝑛) belongs to 𝐾 as well. In this case the set 𝐾
shall be referred to as preserved by operations from ℬ (see also [1, 2]). Usually
the set𝐾 is constructed for some given set 𝐺 of initial distributions, so as to
have 𝐺 ⊆ 𝐾.

The present work considers a set 𝐸 with 𝑘 elements (we further let
𝐸 = {0, 1, . . . , 𝑘 − 1} for the sake of convenience and denote 𝐸 ∖ {0} by
𝐸*) and a set ℬ, containing two binary operations. The first operation,
denoted by +, is a quasigroup operation on 𝐸, for which the element 0 ∈ 𝐸
is the identity element1, i. e. 0 + 𝑖 = 𝑖 + 0 = 𝑖 for any 𝑖 ∈ 𝐸 (for necessary
definitions see [3]). The second operation, denoted by ×, is a quasigroup
operation on 𝐸* and additionnaly satisfies the equalities 0 × 𝑖 = 𝑖 × 0 = 0
for any 𝑖 ∈ 𝐸. An example of such a set with the corresponding pair of
operations is the finite field of order 𝑘 with + and × being the finite field
addition and multiplication, respectively.

The operations fromℬ applied to independent randomvariables naturally
induce operation of the random variables’ distributions (stochastic vectors):
tuples (𝑥0, 𝑥1, . . . , 𝑥𝑘−1) satisfying the conditions 𝑥𝑖 > 0, 𝑖 ∈ 𝐸 and

∑︀
𝑖∈𝐸

𝑥𝑖 =

1. The set of such vectors is a simplex that we shall further refer to
as distribution space. Let us denote the operations induced by + and × with
⊕ and ⊗. One can easily verify that for distributions 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑘−1)
and 𝑦 = (𝑦0, 𝑦1, . . . , 𝑦𝑘−1) the following hold:

(𝑥⊕ 𝑦)𝑖 =
∑︁
𝑗 ∈ 𝐸,

𝑗 + ℓ = 𝑖

𝑥𝑗𝑦ℓ, 𝑖 ∈ 𝐸; (1)

(𝑥⊗ 𝑦)0 = 𝑥0 + 𝑦0 − 𝑥0𝑦0 = 𝑥0 + 𝑦0(𝑥1 + . . .+ 𝑥𝑘−1); (2)
(𝑥⊗ 𝑦)𝑖 =

∑︁
𝑗 ∈ 𝐸*,
𝑗 × ℓ = 𝑖

𝑥𝑗𝑦ℓ, 𝑖 ∈ 𝐸*. (3)

Note that due to quasigroup properties of the + and × operations, the index
ℓ in sums (1) and (3) is uniquely defined for every pair of 𝑖 and 𝑗.

In order to construct sets of distributions preserved by the + and ×
operations we shall first prove a property of quasigroup distribution trans-

1Hence, ⟨𝐸,+⟩ is a loop.
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formations. Let 𝑄 = {1, 2, . . . , 𝑞} be a finite set with a binary quasigroup
operation *, let ∖ be the corresponding left division operation and ~ be the
operation on distribution vectors, induced by *. One can easily check the
equalities:

(𝑥~ 𝑦)𝑖 =
∑︁
𝑗∈𝑄

𝑥𝑗𝑦𝑗∖𝑖, 𝑖 ∈ 𝑄. (4)

Note that for every ℓ ∈ 𝑄 the map 𝑖 ↦→ ℓ∖𝑖 is a permutation on 𝑄, let us
denote it by 𝜎ℓ. For a distribution 𝑥 = (𝑥1, . . . , 𝑥𝑞) and a permutation 𝑠 we
shall denote by 𝑥𝑠 the distribution (𝑥𝑠(1), . . . , 𝑥𝑠(𝑞)).

Recall, that a subset 𝐾 ⊆ R𝑘 is said to be convex if for any pair of points,
belonging to the set, it contains the segment that joins them, i. e. for any
𝑥, 𝑦 ∈ 𝐾 and 𝛼 ∈ [0, 1] we have 𝛼𝑥+ (1− 𝛼)𝑦 ∈ 𝐾.

Lemma 1. Let 𝐾 be such a convex subset of the distribution space over 𝑄 that
for any ℓ ∈ 𝑄 and any 𝑦 ∈ 𝐾 we have 𝑦𝜎𝑙 ∈ 𝐾. Then for any 𝑦 ∈ 𝐾 and an
arbitrary distribution 𝑥 over 𝑄 we have 𝑥~ 𝑦 ∈ 𝐾.

Proof. Let us rewrite the equation (4) in matrix form:

((𝑥~ 𝑦)1, (𝑥~ 𝑦)2, . . . , (𝑥~ 𝑦)𝑞) = (𝑥1, 𝑥2, . . . , 𝑥𝑞)

⎛⎜⎜⎝
𝑦1∖1 𝑦1∖2 . . . 𝑦1∖𝑞
𝑦2∖1 𝑦2∖2 . . . 𝑦2∖𝑞
... ... ...

𝑦𝑞∖1 𝑦𝑞∖2 . . . 𝑦𝑞∖𝑞

⎞⎟⎟⎠ .

One easily notes that the matrix rows are exactly the vectors 𝑦𝜎ℓ, ℓ ∈ 𝑄.
Hence, 𝑥~ 𝑦 =

∑︀
ℓ∈𝑄

𝑥ℓ𝑦
𝜎ℓ.

The lemma’s conditions imply that for all ℓ ∈ 𝑄 we have 𝑦𝜎ℓ ∈ 𝐾. Since∑︀
ℓ∈𝑄

𝑥ℓ = 1 and 𝑥ℓ > 0, ℓ ∈ 𝑄, the vector
∑︀
ℓ∈𝑄

𝑥ℓ𝑦
𝜎ℓ is a convex combination

of the vectors 𝑦𝜎ℓ and by convexity of 𝐾 we have 𝑥 ~ 𝑦 ∈ 𝐾. The lemma is
proved.

Lemma 1 allows us to construct sets of distributions over 𝐸 that are
preserved by +, yet it cannot be applied directly for constructing sets,
preserved by ×, since this operation is not quasigroup on the entire set 𝐸.

Lemma 2. Let 𝑄 = 𝐸* be the quasigroup with the × operation and let 𝜎ℓ,
ℓ ∈ 𝑄 be the corresponding set of permutations on 𝑄 extended to 𝐸 by defin-
ing 𝜎ℓ(0) = 0. Let 𝐾 be such a convex subset of the distribution space over 𝐸
that (1, 0, . . . , 0) ∈ 𝐾 and for any ℓ ∈ 𝑄 and any 𝑦 ∈ 𝐾 we have 𝑦𝜎ℓ ∈ 𝐾. Then
for any 𝑦 ∈ 𝐾 and an arbitrary distribution 𝑥 over 𝐸 we have 𝑥⊗ 𝑦 ∈ 𝐾.
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Proof. Similar to lemma 1, let us write the equations (2), (3) in matrix form,
in terms of permutations 𝜎ℓ:

((𝑥⊗𝑦)0, (𝑥⊗𝑦)1, . . . , (𝑥⊗𝑦)𝑘−1) = (𝑥0, 𝑥1, . . . , 𝑥𝑘−1)

⎛⎜⎜⎝
1 0 . . . 0
𝑦0 𝑦𝜎1(1) . . . 𝑦𝜎1(𝑘−1)
... ... ... ...
𝑦0 𝑦𝜎𝑘−1(1) . . . 𝑦𝜎𝑘−1(𝑘−1)

⎞⎟⎟⎠ .

Since 𝜎ℓ(0) = 0 by definition, we have:

((𝑥⊗ 𝑦)0, (𝑥⊗ 𝑦)1, . . . , (𝑥⊗ 𝑦)𝑘−1) = 𝑥0(1, 0, . . . , 0) +
∑︁
ℓ∈𝑄

𝑥ℓ𝑦
𝜎ℓ.

Due to
∑︀
𝑖∈𝐸

𝑥𝑖 = 1 and 𝑥𝑖 > 0, 𝑖 ∈ 𝐸, the vector 𝑥⊗ 𝑦 is a convex combination

of (1, 0, . . . , 0) and the vectors 𝑦𝜎ℓ, ℓ ∈ 𝑄, which, by lemma’s conditions, all
belong to𝐾. By convexity of𝐾 we obtain that 𝑥⊗ 𝑦 ∈ 𝐾.

Let us now prove a theorem that describes a class of convex sets preserved
by both + and × operations.

Theorem. Let 𝜎×
ℓ , ℓ ∈ 𝐸* be the permutations corresponding to the quasigroup

⟨𝐸*,×⟩, with additional definition 𝜎×
ℓ (0) = 0; let 𝜎+

ℓ , ℓ ∈ 𝐸 be the permutations
corresponding to the quasigroup ⟨𝐸,+⟩. Let𝐺 be such a set of distributions that
for any 𝑔 ∈ 𝐺 and any ℓ ∈ 𝐸 we have 𝑔𝜎

×
ℓ ∈ 𝐺, 𝑔𝜎

+
ℓ ∈ 𝐺. Let𝐾 be the convex hull

of 𝐺 ∪ {(1, 0, . . . , 0)} then for any 𝑥, 𝑦 ∈ 𝐾 we have 𝑥⊕ 𝑦 ∈ 𝐾 and 𝑥⊗ 𝑦 ∈ 𝐾.

Proof. Let us show that the set 𝐾 is preserved by the + operation. Let 𝐾 ′ be
the convex hull of𝐺. Then the set𝐾 is the convex hull of𝐾 ′ ∪{(1, 0, . . . , 0)}.

Consider distributions 𝑥, 𝑦 ∈ 𝐾. By convexity there exist such 𝛼, 𝛽 ∈ [0, 1],
that 𝑥 = 𝛼(1, 0, . . . , 0) + (1 − 𝛼)𝑥′ and 𝑦 = 𝛽(1, 0, . . . , 0) + (1 − 𝛽)𝑦′, where
𝑥′, 𝑦′ ∈ 𝐾 ′. Due to the bilinearity of the operation 𝑥 ⊕ 𝑦 (see (1)), and also
the equalities (1, 0, . . . , 0) ⊕ 𝑦′ = 𝑦′ and (1, 0, . . . , 0) ⊕ 𝑥′ = 𝑥′ we obtain the
equation

𝑥⊕ 𝑦 = (𝛼(1, 0, . . . , 0) + (1− 𝛼)𝑥′)⊕ (𝛽(1, 0, . . . , 0) + (1− 𝛽)𝑦′) =

= 𝛼𝛽(1, 0, . . . , 0) + 𝛼(1− 𝛽)𝑦′ + (1− 𝛼)𝛽𝑥′ + (1− 𝛼)(1− 𝛽)(𝑥′ ⊕ 𝑦′).

Since the set 𝐾 ′ satisfies lemma 1 conditions, we have 𝑥′ ⊕ 𝑦′ ∈ 𝐾 ′. Then
𝑥⊕ 𝑦 is a convex combination of vectors from𝐾 ′ ∪ {(1, 0, . . . , 0)}, and hence
𝑥⊕ 𝑦 ∈ 𝐾.

The preservation of the set 𝐾 by the operation × follows directly from
lemma 2. The theorem is proved.
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Let us now consider the construction of a preserved set 𝐾, that contains
a given initial distribution 𝑔. In order to use the above theorem, we need
to construct a set 𝐺, containing the distribution 𝑔 and invariant under
permutation of coordinates by 𝜎+

ℓ and 𝜎×
ℓ , ℓ ∈ 𝐸. One can easily see that a

finite set 𝐺 suffices.
Let 𝑆 be the subgroup of the symmetric group, generated by all the

permutations 𝜎+
ℓ , 𝜎

×
ℓ , ℓ ∈ 𝐸. Let 𝐺 = {𝑔𝑠 | 𝑠 ∈ 𝑆}. The set 𝐺 is easily seen

to contain 𝑔 and satisfy the theorem’s conditions. Let further 𝐾(𝑔) be the
convex hull of the set 𝐺 ∪ {(1, 0, . . . , 0)}. According to the theorem, 𝐾(𝑔)
is preserved by the operation + and ×. Evidently, 𝑔 ∈ 𝐾(𝑔) and 𝐾(𝑔) is a
polytope whose vertices belong to the set 𝐺 ∪ {(1, 0, . . . , 0)}.

Statement 1. The polytope𝐾(𝑔) containing the given distribution 𝑔 has at most
|𝑆|+ 1 vertices.

All of the distributions 𝑔𝑠 are vertices of the so-called permutohedron.
In case all components of 𝑔 are distinct, all distributions 𝑔𝑠 are distinct as
well, and as a corollary from Rado’s results [4], none of these distributions
belong to the convex hull of the others [5]. In other words, the polytope 𝐾 ′

that is the convex hull of the set 𝐺, has exactly |𝑆| vertices and only when
considering the convex hull of the set 𝐾 ′ ∪ {(1, 0, . . . , 0)} can the number of
vertexes get less than |𝑆|.

Since 𝑆 contains no more than 𝑘! elements, the following holds:

Statement 2. The polytope𝐾(𝑔) containing the given distribution 𝑔 has at most
𝑘! + 1 vertices.

Note that one can define+ and× operations in such a way that the group
𝑆 coincides with the entire symmetric group. We shall now demonstrate it
by defining in a specific way the operation ×.

Since 𝜎×
ℓ (𝑖) = 𝑙∖𝑖, the values of 𝜎×

ℓ (𝑖), ℓ, 𝑖 ∈ 𝐸* define in fact a quasigroup
operation ∖, which is the left inverse for the × operation. Let us define the
operation ℓ∖𝑖 on the set 𝐸* for ℓ = 1, 2 the following way.

∖ 1 2 3 4 . . . 𝑘 − 2 𝑘 − 1
1 2 1 3 4 . . . 𝑘 − 2 𝑘 − 1
2 1 3 4 5 . . . 𝑘 − 1 2

Then, by virtue of Hall’s theorem [6], the operation ∖ can be defined for
other values of ℓ ∈ 𝐸* so that it is a quasigroup operation on 𝐸*, with the
corresponding operation × being quasigroup too. Besides, one can easily
check that the values of 𝜎×

1 (𝑖) and 𝜎×
2 (𝑖) correspond to permutations which

generate the cycles (1 2) and (1 2 . . . 𝑘 − 1), and, hence (see, e.g. [7]), the
entire subgroup of permutations that preserve the element 0 ∈ 𝐸.
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Note now, that since + is a quasigroup operation on the set 𝐸, the set
of values 𝜎+

ℓ (0), ℓ ∈ 𝐸 coincides with 𝐸. Consequently, for any 𝑗 ∈ 𝐸 there
exists such a permutation 𝜎+

ℓ , ℓ ∈ 𝐸 that 𝜎+
ℓ (0) = 𝑗.

Let us now show that an arbitrary permutation 𝑠 is generated by the
above defined permutations 𝜎+

ℓ , 𝜎
×
ℓ , ℓ ∈ 𝐸. Let 𝑠(0) = 𝑗. Then there exists

a permutation 𝜏 = 𝜎+
ℓ for which 𝜏(0) = 𝑗. By choice of 𝜏 we therefore have

(𝜏−1𝑠)(0) = 0, and consequently 𝜏−1𝑠 is a permutation generated by the above
defined permutations 𝜎×

ℓ . Hence 𝑠 is generated by the permutations 𝜎
+
ℓ , 𝜎

×
ℓ ,

ℓ ∈ 𝐸.
Thus the group 𝑆 can coincide with the entire symmetric group on 𝐸.

Yet, special properties of the operations + and × may significantly simplify
the structure of the group 𝑆 and consequently of the polytope𝐾(𝑔).

Let + and × be finite field addition and multiplication. Then the
quasigroups ⟨𝐸,+⟩ and ⟨𝐸*,×⟩ are actually groups of orders 𝑘 and 𝑘 − 1,
respectively. Applying the permutations 𝜎×

ℓ to an element 𝑖 ∈ 𝐸 is in fact
multiplication of 𝑖 by ℓ−1, while permutations 𝜎+

ℓ add −𝑙 to 𝑖. By virtue of
distributive property for multiplication over addition we easily obtain that
any combination of permutations reduces to one multiplication of 𝑖 by an
element of the field and one addition of a field element, which implies that
the group 𝑆 contains 𝑘(𝑘 − 1) elements.

Statement 3. Let the operations + and × be the addition and multiplication in
the finite field of order 𝑘. Then the polytope 𝐾(𝑔) containing the given distribu-
tion 𝑔 has at most 𝑘2 − 𝑘 + 1 vertices.

In author’s earlier papers [1, 2] there have been constructed other sets
preserved by + and × operations. We shall now compare previously con-
structed families of sets with the ones that are subject of the present work.

The previously constructed family of polytopes was the intersection of
the distribution space with the polytopes whose vertices have the following
coordinates (where 𝑎 is a parameter, 0 6 𝑎 6 1

𝑘 ):

1. (1, 0, . . . , 0);

2. (1/𝑘 − 𝑘(𝑘 − 1)𝑎2, 1/𝑘 + 𝑘𝑎2, . . . , 1/𝑘 + 𝑘𝑎2);

3. (1/𝑘, 𝑑1, . . . , 𝑑𝑘−1),

where 𝑑1, . . . , 𝑑𝑘−1 are all the tuples with one 𝑑𝑖 possibly equal to zero and
the others equal to 1/𝑘 ± 𝑎.

These polytopes are contained one within the other and every distri-
bution, except those lying on the boundary of the distribution space, may
belong to the boundary of at most one polytope from this family. For a given
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distribution 𝑔 without zero components, the polytope from the family that
has 𝑔 on its boundary is the minimal polytope containing 𝑔 in this family.

Let us consider the mutual positioning of the preserved sets depending
on the distribution 𝑔 they are to contain, taking e.g. distributions over a 3-
element finite field. The figures below represent the (𝑥0, 𝑥1, 𝑥2) distribution
space projected onto the (𝑥1, 𝑥2) plane.

Solid black lines represent the distribution space boundaries, while the
dashed black lines are symmetry axes of this space. The red polygon is the
one from the “old” family, while the green one is from the “new” family and
constructed for the initial distribution 𝑔, marked by a green circle, lying on
the “old” family polygon’s boundary. The green dashed lines are sides of the
polygon𝐾 ′ that are not sides of the polygon𝐾.

Depending on the position of the distribution 𝑔, the “new” polygon may
be either entirely inside the “old” one (fig. 1) or contain the entire “old”
polygon (fig. 2).

Fig. 1 Fig. 2

Finally, for some positions of the distribution 𝑔 the “new” and “old”
polygon have a non-empty symmetric difference (fig. 3), which, in a sense,
illustrates the “independence” of the discussed preserved sets’ families.
Also in the case represented in fig. 3 the intersection of the “old” and “new”
polygons provides another preserved set, not belonging to either of the
constructed families.

Note that the previously constructed family did not cover the entire
distribution space, whereas in the “new” family, for any given distribution,
one finds a preserved polytope to contain it.

The author is deeply grateful to professor O.M.Kasim-Zade for fruitful
discussions that contributed to writing the present paper.
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