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1. Introduction

We consider the infinite chain of oscillators having harmonic nearest-neighbor
interactions. We assume that the oscillators have identical masses m, = m_ in
positions x < 0 and m, = m, in positions x > 0 with some positive numbers
m-. The displacement of the z-th oscillator from its equilibrium position obeys
the following equations:

mi(z, ):(V+AL—/<;+) u(z,t), x>1, t>0 (1.1)
moii(0,t) = V3 (u(1, ) —u(0,t))+v2 (u(—1,¢) —u(0,t)) — kju(0, ) —y2(0, t) (1.2)
m_i(x, ):(V Ap — r2)u(x,t), x<-1, t>0 (1.3)

with the initial data
u(z,0) = up(z), u(x,0)=1vy(z), x€Z. (1.4)

Here u(z,t) € R, ma,mg,vL > 0, ki, Ko,y > 0, Ay denotes the second derivative
on Z:
Apu(z) =u(x + 1) — 2u(z) +u(x — 1), =z € Z.

If v = 0, then formally the system (1.1)—(1.3) is Hamiltonian with the Hamiltonian
functional

Heww) = 237 (P90 2o 1) — @) + 2 ue)?)

2 zeZ M
-5 ('U(x)' v u(e = 1) = u(@)P + 1 u(z) )
ez T (1.5)
1 v(0)]* + 1/<c2|u(0)\2
—?m ( 22 :
"‘5 (—‘Ug_ﬂ + V2 |lu(z41) — u(x)|* + /12_|u(x)\2>,

where v(z,t) = myu(x,t) is momentum of x-th oscillator, @(x,t) is its velocity,
mg its mass; k, = ky fore > 1, kp,=k_fore < -1, v, =v, fore >0, v, =v_
for x < —1. We divide (1.1) by m4, (1.2) by mg and (1.3) by m_ and rename the
rest constants. Then, without loss of generality, we can put m, = mg=m_ = 1.
Also, we assume that ke < Ky,

On the constants v, k4, kg, v+ of the system we impose condition C or C,.
In formulating these conditions we consider various cases of mutual disposition of
points k4 and ar = \/4v3 + k% (see also page 34) and in each case we impose
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restrictions on v and k. At first, we introduce the following notations.

_ 1/2

ko= ((k2 +K7)/2) (1.6)

1
Ki(w) = R2+§\/w2—/£i\/w2—ai, lw| > ay > Ky (1.7)

1
Ko(w) = R*— 5\/’& — cu?\/ai —w?, |w| <Ky (f kL >0) (1.8)

1

Fi(w) = %\/w2—mi\/ai—w2, ke <w < ay (1.9)
Flw) = F_.(w)+ Fi(w), k+ <w<apy, a,:=min(a_,a;) (1.10)
Y= Fo(ky), 2= Fo(ay), 73:= Fi(a-) (1.11)
v¢ = max Fi(w) = Fi(y/k_a_) = % (1.12)
Fiax := max F(w), Fuyp = min F(w) (1.13)

For v € (0,77) (v € (0,~{)), introduce numbers Py € (k_,a_) (numbers Q+ €
(K4,ay), resp.) as follows

P2 e k2 pe peo= 202 —72 i2\/ V2~ 22— k242 € (0,402), (1.14)

QL =K +qr, qr =207 )+ 2\/ — k242 € (0,417). (1.15)

Note that v < 7%, %9 < 97, 93 < 7Y, Foax < 72 +98 1 =72 iff
m_\/myg_wlﬂ%q_\/m73_7”1&@ VEray. T ko =0,
then a_ =2v_, v = \/a®2 — k1/2, 1o = /a® — a2 /2, v =v_. If K, =0, then
ay = 2vy, and y3 = \/at —a? /2.

Condition C is the following.

(i) Let k- =Kk, =0 and v_ # v,. Then kg # 0, and, in addition,
if v =0, then k3 < 2max(v_, v, )\/|V2 — V2]

if v € (0,+/|v2 —v2]), then KO#Q\/maXV V) — 2/ 2.
(ii) Let ko =k =0and v_ = vy. Thenmo#Oandfy#O
(iii) Let k. = ky # 0 and v_ = v,. Then v # 0.
In addition, if v € (0,a_ — K_], then kg # K_.
(iv) Let k- = ky #0and v_ # vy. If v =0, then
k2 € (k2, k% + 2max(v_, v ) /|2 — V2)).
In addition, if v € (0, Fiuay], then kg # &.
Moreover, in the case when v, < v_, it is assumed that if v € (0,~s], then
kg # Ko (Py), if v € (72,7"] and ay < /R_a_, then ki # K (Py).
In the case when v, > v_, we assume that if v € (0,73], then k3 # K_(Q.),

if v € (v3,7]] and a_ < \/kias, then kg £ K_(Quy).




(V)

(vi)

(vii)

(viii)

(ix)

(%)

(xi)

(xii)

(xiii)

(xiv)
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Let k. =0, ky >0,and ay < a_. If y =0, then k3 < K, (a_).

In addition, we assume that if 7 € [, Fmax] then ko # k.

Moreover, if v € (0,72), then k3 # K+(2 v: —~2),

if v € (71,v_), then k3 # Ko(21/v2 — ~2).

Let 0 < k- < ky, and ay < a_. If y =0, then k3 € (Ko(x_), K (a_)).
In addition, if v € [Fiin, Finax], then kg # & (where Fi, = min(yy, 72)).
Moreover, if v € (0,7], then k3 # Ko(P_);

if v € (m1,7"] and k4 > /R_a_, then x§ # Ko(Py).

It e (0772]7 then KZ(Q) 7& K+(P+);

if v € (72,7"] and ay < /k_a_, then k§ # K, (Py).

Let k. =0, ky >0, a_ =a,. Then if v =0, then r§ < K, (a_) = >
In addition, we assume that if v € (0, Fiuax, then kg # &.

Moreover, if v € (y1,v_), then k% # Ko(24/v2 — v )

Let k- #0, ky >k, and a_ = ay. If v =0, then s € (Ko(k_), &?).
In addition, we assume that if v € (0, Fiuax, then kg # .

Moreover, if v € (0,7], then k3 # Ko(P_);

if v € (m1,77] and k4 > /R_a_, then x§ # Ko(Py).

Let ko =0and 0 < ky < a_ < ay. Ify=0, then v < K_(ay).

In addition, if v € [Fiin, Finax|, then kg # & (Where Fin = min(7y;,73)).
Moreover, if v € (71, v_), then k3 # Ko(24/v2 — ~?).

if ve (0 73] then w3 # K_(Q);

if v € (737 “]and a_ < /Riay, then K3 # K (Q+).
Let 0 < k- <Ky <a_ <ay. Ify=0,then k2 € (Ko(k_), K_(ay)).

In addition, if v € [Fiin, Finax), then kg # & (where F, = min(yy,73)).
Moreover, it v € (0,71], then k3 # Ko(P_);

if v € (y1,7] and /-€+ > \/k—a_, then k§ # Ko(Py).

Ity e (0 ’73] then k§ # K (Q+);

if v € (v3,77] and a_ < \/kias, then /-4;0 #+ K _(Q+).
Let k. =0, /<a+—a_ If y=0, then/f0<K (ay) and Ko # K.

If v € (0,v_), then k2 # KO(Z v: —~2).

Also, if v € (0,77, then x§ # K_ (Qi)

Let i #0, Ky =a_. If y =0, then 3 € (Ko(x_), K_(a+)) and ko # K.
Also, if v € (0,~7°], then k3 # KO(Pi) If v € (0,7<], then k3 # K_(Q+).
Let ko = O, a- < mr. If v = 0, then either k3 € (K_(ky), K_(ay)) or
Ifye (O,z/ ), then mo;éKo(Q v —2).

Also, if v € (0,757, then x§ # K_(Q4).

Let KJ # 0, a_ < k4. Then if 4y = 0, then either k3 € (K_(ky), K_(ay))
or K% € (Ko( _), Ko(a_)) (if Ko(a—) > 0)

If v € (0,7, then k3 # Ko(Py). Also, if v € (0,~5], then £ # K_(Q4).
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Remark 1.1. Condition C looks complicate especially in the cases (iv)—(xiv)
and for v # 0. Note that in these cases instead of restrictions of condition C
it suffices to impose a stronger condition. Namely, in the cases (iv)—(xiv), it is
enough to assume that either v > v+~ or v = 0 and kg satisfies the following
restrictions.

ki < Ki(a ), if a_>a ki<K (ay), if ay >a_;
k: > Ko(k_), if k- #0;
ki > K (ky) or ki< Kola), if a_ <ky.

(\}

We also study the behavior of the system under the following condition.
Condition Cj: One of the following restrictions is fulfilled.
(i) a- >a;,v=0, k3 = Ky(a_).
(ii) a- <ay,v=0, k=K (a)).

The particular case of the condition (i) or (ii) is

ke =k, v_ # vy, y=0, k3 =r> 4+ 2max(v_,v)\/|v: —v
(iii) ay =a_, (k—,k1) # (0,0), v =0, kg = k.
(iv) k. #0,7v=0, s = Ko(k_) (if Ko(k_) > 0).

The particular case of the condition (iv) is

ko=kKy #£0,v=0, ki = Ko(r_) = R

The particular case of the conditions (iii) or (iv) is

d

ko =Ky #0, v =vy, 7 =0, kg = K.
(v) a <k, 7=0, 6 = K_(ky).
In particular, if a_ = x, and v = 0, then k3 = K_(k,) = k>

(vi) a_ <k, v=0, k3 = Ko(a_) (if Ko(a_) > 0).
(vil) ko < ky <ay <a_,y=min(y, V), ko = k.
(viil) ko < ky < a- < ay,y=min(y,7s), kg = k.

Our objective is to study the long-time behavior of solutions. Write Y (¢) =
(u(-,t),u(-, 1)), Yo(z) = (YP(2),Yy () = (uo(x),vo(x)). We assume that the
initial state Yy(z) belongs to the Hilbert space H,, o € R, defined below.

Definition 1.2. (2 = (*(Z), a € R, is the Hilbert space of sequences u(z), v € 7Z,
with norm ||ul|?2 = > (x)2|u(z)]? < oo, (z) := (14 22)1/2.

TEZL
Ho = 2 @ (2 is the Hilbert space of pairs Y = (u,v) of sequences equipped with
norm |[Y]3 = llull? + [[0]l3 < oo.

We prove that for any initial state Yy € H,, with o > 3/2, the solution Y (¥)
of the system (1.1)—(1.4) obeys the following bound

Y (O)ll-a < CL+I) Yol t R, (1.16)
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where § = 3 if condition C holds and g = 1 if condition Cy holds. We specify
the long-time behavior of the solutions in Theorem 2.4. If conditions C and C,
are not fulfilled, then the bound (1.16) is not true, in general, see Remark 4.5.

For the solutions of the linear discrete Schrodinger and Klein—Gordon equa-
tions, the dispersive estimates of the type (1.16) were obtained by Shaban and
Vainberg [10], Komech, Kopylova and Kunze [8] and Pelinosky and Stefanov
[9]. The wave operators for the discrete Schrodinger operators were studied by
Cuccagna [1]. In [5], we studied the long-time behavior of the chain of oscillators
on the half-line with random initial data Yy € H, and o < —3/2. In [3], we consid-
ered the linear Hamiltonian system consisting of the discrete Klein—-Gordon field
coupled to a particle and obtained the similar results on the long—time behavior
of the solutions.



2. Main Results

The following theorem can be proved by a similar way as [5, Theorem 2.2].

Theorem 2.1. (1) Let v, k4, ko > 0, v4 > 0, and let Yy € H,, o € R. Then the
problem (1.1)-(1.4) has a unique solution Y (t) € C(R, H,).

(11) The operator U(t) : Yy — Y (t) is continuous on H,. Moreover, there exist
constants C, B < oo such that ||U(t)Yp|la < CePH||Yo]la.

(iii) Let Yy € Ho. Then

Hwﬁ»+ylqugﬁm:Hua,tzo, (2.1)

where H(Y (t)) is defined in (1.5).

The proof is based on the following representation for the solutions of the
problem (1.1)—(1.3):

| oz (zt) (2, t), x>0, t>0,
“(x’t)_{ (@, 8) +r(x,t), 2<0, t>0, (22)

where 24 (z,t) are solutions of the mixing problems with zero boundary condition

Ei(,t) = (AL — kh)2e(2,t), Fz>1, >0, (23)
zi(O,t):: 0, t>0, .
24 (2,0) = ug(x), 2+(x,0) =vo(z), =Lz >1. (2.5)

Therefore, r(x,t) is a solution of the following problem

(1) = VPAL — kE)r(e,t), +r>1, t>0, (2.6)
7#(0,1) = vi(r(L,t) = 7(0,8)) + 2 (r(=1,¢) = r(0,1)) — Kg (0, 7)
—y7(0,1) + 22, (1, t) +122.(=1,1), t>0, (2.7)
r(z,0) =0, 7(x,0)=0, x#0, (2.8)
7(0,0) = up(0), 7(0,0) = v,(0). (2.9)
(2.

At first we state results concerning the solutions of the problem (2.3)—(2.5).
Write Z1(t) = (2x(-t), 2+(,t)). Introduce a Hilbert space (2 . = (7 ,(Z=),
a € R, with norm [[ulz . = > (#)**|u(z)]* < 00, Zs = {x € Z : £z > 0}.

+x>0
Let Hot = 02 + ® 6 be a Hilbert space of pairs Y = (u, v) equipped with
norm [[Y|2 . = 5,2 < oo
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Lemma 2.2. (see Lemma 2.7 in [2]) Assume that o € R. Then

(1) for any initial data Yy € He +, there exists a unique solution Z.(t) € C(R, Ha 1)
to the problem (2.3)-(2.5);

(11) the operator Wi (t) : Yo — Z.(t) is continuous on Ha . Furthermore, the
following bound holds,

W ()Yollax < C{[[Y0|a.

(2.10)

with some constants C' = C(a), 0 = o(a) < 00.

The proof of Lemma 2.2 is based on the following formula for the solutions
24 (x,t) of the problem (2.3)-(2.5):

A t) =Y Gl(n,y)Yi(y), +2>1, i=0,1, (2.11)

y=0

where 28 (2, 1) = zs(2,1), 22(2,1) = 24 (2,1), V(@) = wo(w), Y (2) = vo(a),
the Green function G, 4 (x,y) = (G’” (,9)); j—o is a matrix-valued function of a
form

1

— / e~0G, L (0)dh, (2.12)

Gt,:l:(xay) = gt,:l:(l'_y) — Qt,i(a: + y), gt’:t(x) = . i

T = R/(27Z) denotes torus,

5 ) — (6 _ ( cos(o=(0)t) sin(¢+(0)t) /¢+(0)
gti<9>—-(g 0,0 = (ot ko) st ™ N
P+ (0) = /12 ( 2—20089)—%/@[
In particular, ¢.(0) = 2vi|sin(6/2)] if £+ = 0. We see that 24(0,¢) = 0 for any
t, since Qti( r) = Gy (z).

For the solutions of the problem (2.3)—(2.5), the following bound is true.
Theorem 2.3. Let Yy € Ho v and o > 3/2. Then

IWelO)Yoll-as < CU) 2 [Yollae, ¢ ER (2.14)

This theorem can be proved by a similar way as Remark 3.3 in [4].
To formulate the main result, introduce the following notations.
(i) Write
gi(y1) = (Gl (£1,y), Gl (1)) 015
= (G — ) — GL(EL + ), GL(FL — ) — G (F1 +p)),



y€Z,i=01,t€eR, G is defined in (2.12) and (2.13).
(ii) G’ (y), j = 0,1, denotes the vector valued function

G (y) = N9(s)gl(y, —s)ds, y€Z, (2.16)
0

where N (s) = N(s), NO(s) = N(s), N(s) is introduced in (3.12), gl (y,s) is
defined in (2.15). Note that g1(0,¢) = 0 and G’_(0) = 0. Introduce

—j 2Go (y), y>0 :
G(y) =4 e\ Y= —0,1. 2.17
w={Gei sz 1=0 217

(iii) Denote by W (t) the operator adjoint to Wy(t), t € R,
(VWL6)0)e = (We(t)Y, V), YV € Hyr, U= (0°,0') € [S(Zo))".

Here S(Z+) denotes the class of rapidly decreasing sequences in Z., (-, -)+ stands
for the inner product in H 4 or for its different extensions. Below we also use the
notation (-, -) for the inner product in H, or for its different extensions. Applying
the Green function Gy 1, we rewrite W ()W in the form

WLOTY () = > > Gli(z,y)V'(z), teR, £y>0, j=0,1.

1=0,1 x>0
In particular (see (2.15)),
gi(y,t) = (WL()Yo)(y) with Yo(w) = (0:14,0), (2.18)

where d;; denotes the Kronekker symbol.

(iv) Introduce a vector-valued function Kj(a:, y) j =0,1, z,y € Z, by the rule

( +00

V2 0 K;(s)(Wi(—s)Gi)(y)ds, it 2>1, +y>0,
T —+00 .
RO = 02 [ K0 (Wh-9)GL) () ds, it o < -1 2y > 0.1
| G, if 1 =0, yez

where KF(s) is defined in (3.4), G, is introduced in (2.16). In particular, Kj(x,O) =
0 for any x € Z.
(v) Define an operator W(t), t € R, by the rule

(W+(t)Y0) (CL’), if x > 07

(o) @ = { o) 20 (220)



In particular, (W (¢)Yy) (0) = 0 for any ¢.
(vi) Introduce an operator €2 : H, — H_n, a > 3/2, by the rule

Q.Y = Y(2)+ ((Y(-),KO(:U, WAY (). K (z, -)>>. (2.21)

The properties of the functions K and GZ_L and the operator {2 are given in
Remarks 4.2 and 4.4.

Theorem 2.4. Let Yy € H,, a > 3/2, and conditions C or Cy hold. Then the
following assertions are fulfilled.

(i) Ut)Yo = QW ()Yo) + 8(t), where [[5(t)]|-a < C{&)~7?[Yolla, B = 3 if
condition C holds and 8 =1 if condition Cy holds.

(11) The solution Y (t) = U(t)Yy obeys the bound (1.16).

This theorem is proved in Section 4 using the technique of Jensen and Kato
|7] which was developed in the works of Komech at al. [8]. If conditions C and
Cy are not fulfilled, then the bound (1.16) is not true for any initial data Yy € H,
(see Remark 4.5 below).

3. Fourier—Laplace transform

In this section, we construct the solution r(x,t) of the problem (2.6)—(2.9)
using the Fourier—Laplace transform.

Definition 3.1. Let |r(t)] < CePB'. The Fourier-Laplace transform of r(t) is
given by the formula

+oo
Fw) = / Sl (t) dt, Sw > B.
0

The Gronwall inequality implies standard a priori estimates for the solutions
r(x,t), x € Z. In particular, there exist constants A, B < oo such that

Z(!r(m,tﬂz + (2, 1)) < OBt as t — +oo.

TEL

Hence, the Fourier-Laplace transform of r(x,¢) with respect to t-variable,
r(z,t) — 7(z,w), exists at least for Sw > B and satisfies the following equation

(—iAL 4+ KL —w)F(z,w) =0 for +2>1, Sw> B. (3.1)

Now we construct the solution of (3.1). We first note that the Fourier transform of
the lattice operator —v2 Ar + k2 is the operator of multiplication by the function



$2(0) = v3(2 — 2cos ) + k%. Thus, —v2IAL + k2 is a self-adjoint operator and
its spectrum is absolutely continuous and coincides with the range of ¢%(9), i.e.,
with the segment [k2%,a%], where a% := k2 + 4v3. Denote by Ay the critical
set, Ay = [—ax, —k+] U [ks,ax], and by A = {—ax, —ks, ks, ar} the set of
“spectral edges”.

Lemma 3.2. (see Lemma 2.1 in [§]) For given w € C\ Ay, the equation
V2 (2 —2cosf) = w? — K (3.2)

has the unique solution 01(w) in the domain {# € C: J0 >0, RO € (—m,7|}.
Moreover, 0 (w) (0_(w)) is an analytic function in C\Ay (in C\A_, respectively).

Since we seek the solution 7(-,¢) € £2 with some «, 7(x,w) has a form

(2, ) = 70, w)ef+@r g >0,
e = 7(0,w)e - 4 <.

We put K Hw) = eF0:W)r 44> 1 Applying the inverse Fourier-Laplace trans-
form with respect to w-variable, we write the solution of (2.6) in the form

(r(x,t),r(x,t))z/o Kt — 5)(r(0,5),#(0,5)) ds for £ > 1, ¢ >0, (3.3)

where
+oo+iu
K=(t) =5 / e W KE(w)dw, £x>1, t>0, with some g > 0. (3.4)
T
—00+1 1
Put
/ 2« 2 1/2
1F@)lhe = (3 @>@PR) (3.5)

+x>1

Theorem 3.3. (see [5, Theorem 3.3]) For any o > 3/2, the following bound
holds,

<CWy32 t>o. (3.6)

I
o <

1K (O-s < COT2, 1K (1)
In particular,

K ()] <CQ+t)7%2 Kt <Cca+t)7%2 t>o0. (3.7)



Using (3.3), we rewrite Eqn (2.7) in the form
T<O7 t) = _(V—%— + VE + ’%(%)T(O? t) - fYT(O7 t) + V—2&—Z+<17 t) + VEZ—(_Lt)
t
+/ <VJ2rKf(t —s) + 1 K (t — 3))7“(0, s)ds, t>0. (3.8)
0
At first, we study the solutions of the corresponding homogeneous equation
#(0,t) = —(i +v2 +rg)r(0,t) — 77(0,1)
t
+ / (K (t—s) 402Ky (t—s)) (0, 5) ds, (3.9)
0
with the initial data

7(0,%)]i=0 = up(0), 7(0,t)|t=0 = vo(0). (3.10)
Applying the Fourier-Laplace transform to the solutions of (3.9), we obtain

7(0,w) = N(w) [—iwug(0) + ug(0)y + v9(0)]  for Sw > B,
where, by definition, N (w) := [D(w)]~" and
Dw) =k —w? + 121 — ") £ 12(1 — W) —jwy, weC. (3.11)

The analytic properties of D(w) and N(w) are studied in Appendix. In particular,
we prove that N(w) is analytic in the upper half-space. Denote

Footip
N(t) = % / e “IN(w)dw, t>0, withsome p > 0. (3.12)
—o0+ip
Theorem 3.4. Let condition C or Cy hold. Then
INB@®|<Cc1+6)2 t>0, k=012 (3.13)

where B = 3 if condition C holds and 8 =1 if condition Cy holds.
We prove Theorem 3.4 in Appendix.

Corollary 3.5. Denote by S(t) a solving operator of the Cauchy problem (3.9),
(3.10). Then the variation constants formula gives the following representation
for the solution of the problem (3.8), (3.10):

( 228:3 >:S<t> ( Zgg(()); ) i /otS(T) ( vizi(1,t—7) +OVEZ_(—1,t—T) > o

FEvidently, S(0) = I. The matriz S(t) has a form <%Eg 1zx8 %Eg )

IS(t)| < C(1L+t)"P2, by Theorem 3.4.



4. Asymptotic behavior of solutions
Set 7O(z,t) = r(x,t), rW(z,t) = 7(z,t).

Proposition 4.1. Let Yy € H,, a > 3/2, condition C or Cqy hold, and r(0,t) be
a solution of the problem (3.8), (3.10). Then fort >0, j = 0,1,

ri0,t) = Zyi(Wi(t)Yb,GQi"‘(sj(ﬂ

= (WY, @) +50), 150 <)Yl (A1)

where the vector valued functions G, G’ and the operator W (t) are defined in
(2.16), (2.17) and (2.20), respectively, 5 is introduced in Theorem 3.4.

Proof Applying Corollary 3.5 and the bound (3.13), we obtain
(0. 1) Z%/ NO () oy (21, £ — 7)dr + O((1+£)P2), t>0.
Furthermore, the bounds (2.14) and (3.13) give

400
‘/ T)ze (1t — 7 dT‘ < C/ (ry Pt — )3 dr < O 7P|V |

t

Using (2.18) and the equality Wi (t — s) = Wi (t)Wi(—s), we have

O+1z
(1t —7) = <Wi<t — 7)Y, ( oil ) >i = (We(t)Yo, 82(-, —7))=.
This implies the representation (4.1). m

Remark 4.2. Now we list the properties of the functions Gi and (el
(i) By (2.12) and (2.13), g% (x,t) is odd w.r.t. & € Z. Then, G’ is odd. Formulas
(2.13) and the Parseval identity give

I8 (-, t)|2 = c/_ﬁ (cos*(6(0)0) + i ((/)i(e)t)) sin?(0)df < C < oo, (4.2)

” ¢1(0)

(ii) Let condition C or Cy hold. The action of group W (¢) coincides with action
of group WL(t), up to order of the components. Hence, using (2.18) and the
bound (2.14), we have

) +00 .
[IWL(#)GL—ax < / INV(S)IWL(E = 8)(610,0) | -0 ds < C ()7 (4.3)
0



for any o > 3/2. Therefore,
(W ()Y0, GL) x| < 1Yol WL () Gl -0 < CO) Yoo
Since

W)Y, K (0,)) = (W(t)Yo, G') =Y 2 (We(t)Yo,GL)e,  (44)

by (2.17) and (2.19), we obtain the following estimate
(W)Yo, G| < )P |Yilla, o >3/2. (4.5)
(iii) Let condition C hold. Then, G/ € Hy by (4.2) and (3.13). Moreover,
since Wi (t)gl(x, —s) = gl (x,t — s), we have

) “+00 '
sup [WL(H) G lo.s < sup / INO($)[g2(t — 5)lods < C < o0,  (4.6)
teR teR JO

by the bounds (3.13) and (4.2).
Now we study the large time behavior of r(x,t) for = # 0.

Lemma 4.3. Assume that Yy € H,, o > 3/2, condition C or Cy hold. Then
the solution r(xz,t), with x # 0, of the problem (2.6), (2.8) admits the following
representation

rO(z,t) = (W)Yo, K (2,°)) +0;(x,t), j=0,1, t>0, (4.7)

where K is introduced in (2.19), 16;( )" 0s < Ct) P2Yolla. The norm
|- |"0x ds defined in (5.5).

Proof At first, by (3.3) and (4.1),
)(z,1) /Kit—s ()Y(),G>d3—|—5'(xt) for +x>1, (4.8)
where [|0%(-,¢)[|", L < C(t)~%/2. Indeed, by (4.1) and (3.6),

t
16, ) s = H/ KE(t — 5)5,(s) ds ig/ |KE(t = )], 185(s)lds

< /(1+t )21 4 5) P2 ds < Cy(t) P2
0




Second, using (2.19), we have

| v | K () (Wa(t — )Yy, GL)uds, x> 1,
WY K () =4 = i
S ovi | K (s)(Walt — )Yy, GL)ads, 2 < —1,
. =+ 0
= +ongCi( YW (t—s)Yy, G)ds, +x> 1. (4.9)

Therefore, the first term in the r.h.s. of (4.8) has a form

/ KE() (W (t — )0, @) ds = (W(0) Yo, K (0, ) + 8" ), +x > 1, (4.10)

+00
where, by definition, 67 (z,t) = —/ KE(s)(W(t—s)Yy, G’ }ds for £ > 1. The

bounds (3.6) and (4.5) yield

IA

5 ¢ &)l

Hfa,:lz

JA L (T =R 2
< C<t>_ﬁ/2”YOHa- 411)

Hence, the bounds (4.8), (4.10) and (4.11) imply (4.7) with d;(x,t) = &%(x,t) +
87 (x,t). |
J 9

Remark 4.4. (i) Assume that condition C or Cy hold. Then HKj(:C, MN-a € Hoa
with a > 3/2, since

. “+00
1) ) + ! 2 a J
i, < [ (Shol ) (e wieaed] )
G| < oo,
due to (2.19), (3.6) and (4.3). Hence,
YK (2, ))|-a < OV [l for a>3/2. (4.12)

Then, using (2.21), we obtain

19V [-a < IV + D VK (2, )0 < Ol |la-

7=0,1



_17_

(ii) Assume that condition C holds. Then, HKj(:U, Mo € H-n with a > 3/2.
Indeed,

[ | < /OW@HW H_M)@ViHw;(—smiuw)ds

by (3.6) and (4.6). Hence, H(Y,Kj(x,-)HLa < C||Y||o for « > 3/2. Therefore,
|QY ]| o < C||Y||o for any Yy € H, a > 3/2.

Proof of Theorem 2.4. The item (i) follows from the representation (2.2)
and the bounds (2.14), (4.1) and (4.7). Further, definition (2.21) implies

1

QW ()Yl —a < W)Yol + > W ()Y, K’ (2,)) |-, (4.13)
7=0
where
W (£)Yo||—a < C@E)™2||Yo|la for a > 3/2, (4.14)

by (2.20) and (2.14). Using (4.4), (4.9), (3.6) and (4.5), we have

| (0)Yo, K (2, )0 < / (IO )| Wt~ %0, T s
H(T(£)Y0, @) < () 2ol (4.15)
for « > 3/2. Thus, (4.13)-(4.15) yield
W @Y -0 < CO2Nilla, o> 3/2 (4.16)

Finally, the bound (1.16) follows from the part (i) of Theorem 2.4 and the bound
(4.16). m

Remark 4.5. In Appendix, we prove that condition C is a necessary and sufficient
condition under which D(w) # 0 for any w € R. If v # 0, condition C includes
the restrictions on 7 and kg (for different cases of mutual disposition of vy and k4 )
under which D(w —i0) # 0 for values of w from the singular set Us AL \ (U+A%).
If v = 0, we impose such restrictions on v and k¢ that l~7( ) # 0 for “regular”
real points w € R\ (U+A+). Moreover, condition C implies that the asymptotic
behavior of D(w) in the neighborhood of the points wy € AY is of a form D(w) ~
Cy + Co(w? — W2 4+ ... as w — wy with some constants C1,Cy # 0. If
condition Cy holds, then D(w) # 0 for any w € R\ (ULAY%). However, the



asymptotics of D(w) in the neighborhood of the points wy € AY is of a form
( ) Cl( — )1/2 with Ol 7& 0.

Now we cons1der the different cases when conditions C and Cy do not hold
and show that the bound (1.16) is not true for any initial data Yy € H,.

(i) Let k_ = Ky = kg = 0 and v > 0. Then N(w) has a simple pole at zero
(see (5.35)), and any constant is a solution of the system (1.1)—(1.3).

(ii) Let v = 0, and s > K (a_) if a_ > a,, or k3 > K _(ay) if a_ < ay,
where Ky are defined in (1.7). In particular, this is true in the following cases:

D=0, ko =k =0, v_# vy, k5> 2max(v_,vy)/|vE — V2|

2)v=0, k. =k =0, v_=vy, Kg#0
3)y=0, a- =ay #0, kK3 > > = (k2 +£2)/2

Then, by Remark 5.4 (i), there exists a point wy > max(a_, ay) such that N(w)
has simple poles at the points w = Fwy. Note that S0y (wy) > 0, ROL(wy) = 7.
Hence, the function of the form

104 (wo)x 3
e\ Wl sin(wet), = >0
— , > .

U(ZL’,t) { 6—29,(w0)x Sin( Ot)7 <0 t > 07 (4 17)

is a solution of the system (1.1)~(1.3), and |u(z,t)| < e~ 3%+o)l#l Therefore, the
bound (1.16) is not true.

(iii) Let v = 0, k_ # 0 and 3 < Ky(k_), where Kj is defined in (1.8). Then,
by Remark 5.4 (ii), there exists a point wy € (0, x_) such that N(w) has simple
poles at the points w = +wy. Note that Jb(wy) > 0, Rb4(wy) = —m. Hence,
the function (4.17) is a solution of the system (1.1)—(1.3).

The particular case of the cases (i) and (ii) is 7y =0, ko = ky # 0, v_ = vy,
ko # Kke. Then K_(ay) = Ki(a_) = Ko(ky) = 2. Hence, if ko > K_,
then see item (ii) above, if kg < k_, see item (iii).

(iv) Let v = 0, a_ < k4, and k3 € (Ko(a_), K_(ky)). Then, by Remark 5.4
(iii), there exists a point wy € (a_, ) such that N(w) has simple poles at the
points w = Fwy. Note that 0L (wy) > 0, RO_(wy) = 7, RO, (wy) = —m. Hence,
the function (4.17) is a solution of the system (1.1)—(1.3).

(v) Let v # 0, and condition C or Cy be not fulfilled. Then, there exists a
point wy € UrA4\ (U+AY) such that E(wo—iO) = 0. Write 8% := lim,_, ¢ 0+(wo+
ic), 01 € R. Hence, the function of the form

/2;—/1

[ sin(@%x + wot), >0
u(w,t) = { sin(0z + wot), = <0 t=0,

is a solution of the system (1.1)—(1.3), and the bound (1.16) does not hold.



5. Appendix: Proof of Theorem 3.4

For the chain of the harmonic oscillators in the half-line, Theorem 3.4 was
proved in [5]. For the model studied in this paper, the proof is more complex since
the singular set A_ U A, contains two segments and we have to study carefully
the mutual positioning of these segments.

5.1. Properties of ¢+« for w € C . In this subsection, for simplicity, we omit
indices + and — in the notations a4, v4, ke, Ar, A, 01 (w) (A+(w) is introduced
in Lemma 3.2). We indicate the properties of the function e for w € C\ A,
w e A\ A” and w € A® = {£x, +a} applying the technique of [8, 3].

For w € C\ A, S0(w) > 0, and e is an analytic function. Moreover, by
(3.2) and the condition 30(w) > 0, we have

W) < as |w| — oo. (5.1)
Furthermore, if w € R and |w| > a, then @) = —e=30) If w € R and |w| < &
(with k # 0), then Rf(w) = 0 and ew( w) = ¢739@) In both cases, @) < ¢¥2)

if |w1| < ‘(UQ’.
For w € A\ AY, put f(w £ i0) = lim O(w + ig). Since H(w) = —0O(w) for

e——+0

w € C\ A, then @0 = ¢ib(w+i0) for v € A\ A°. Further, if w € A\ A°, then

pif(w+i0) _ 1- ,,22 + 5 signw Vw? — k2Va? —w?, if K #0,
1—ﬁ+2y2\/41/2—w2 if xk=0.

Now we study the behavior of €(“) near the points w € A°. Eqn (3.2)
implies

@) = cosO(w) +isinf(w) =1 — v 2;; + 222 V(w?—k2)(a? —w?) (5.2)

for w € C\ A. The Taylor expansion implies

= 14— \/w2 — K2— 5,2 (W =k )—é(wQ—ﬁ;Q)?’/QJr... as w — *k, (5.3)
% %
welCyp i ={weC: JSw >0}, Svw? — k2 > 0. Moreover, sgn(Rvw? — k?) =
sgn(Rw) for Sw > 0. This choice of the branch of the complex root vw? — K2
follows from the condition J6(w) > 0. Similarly,
1 7

ci0(w) — —1+% a2 — w2+ﬁ(a2_w2)_@(a2_w2)3/2+. .. as w— +a, (5.4)



w e Cq, Va2 —w? < 0. Here va? — w? is the complex root and we choose
the branch of this root such that sgn(fva? —w?) = sgn(Rw) by the condition
J0(w) > 0.
If Kk =0, then (5.2) and the Taylor expansion give
w _ w? i
ig(w):{1+— 55 — 53 - as w — 0, weC,. (5.5)

—1+ivar2 —w?/v+... as w — L2,

5.2. Properties of D(w) and N(w) for w € C .

Lemma 5.1. (i) N(w) is meromorphic for w € C\ (A_ UA,).
(ii) IN(w)| = O(|w| %) as w] — co.
(iii) D(w) # 0 for allw € Cy.
(iv) If v =0, then D(w) #0 for anyw € C_ = {w e C: Sw < 0}.

Proof The first assertion of the lemma follows from the formula (3.11) and
the analyticity of D(w) for w € C\ (A_ U A,). The assertion (ii) follows from
(3.11) and (5.1). To prove the third assertion, we assume that D(wy) = 0 for some
wp € C,. Introduce a function u,(z,t), v € Z, t > 0, as

il +(wo)zg—icot 0> () > (),
u*('x’ t) = e_ie_(wo)xe—iwot T < O t > 0

[t is easy to check that u.(x,t) is a solution of the problem (1.1)—(1.3) with the
initial data Y, (z) = e*W=0)7(1 —jwy) for £2 > 0. Therefore, the Hamiltonian
(see (1.5)) is

H(u, (-, 1), (-, 1)) = eX5°H(Y,) for any t >0, where H(Y.) > 0.

Since Swy > 0 and Y, € Ho 4, this exponential growth contradicts the energy
estimate (2.1). Hence, D(w) # 0 for any w € C,.

If v = 0, then D(w) = D(@), because A(w) = —O0(@) for w € C\ A.
Therefore, item (iv) follows from item (iii) of Lemma 5.1. u

Theorem 5.2. Let condition C or Cy hold. Then D(w) # 0 forw € R\ (UsAy),
D(w=10) #0 forwe (A-UA,) \ ULAY.

We study D(w) at first for w ¢ (U+A1) in Lemma 5.3 and then for w €
(A_UAL)\ (U£AY) in Lemmas 5.5 and 5.6.

Let w € R\ (U+A1). We consider three regions of such values of w:
(I.1) |w| > max(a_,a), (I.2) |w| < min(k_,k;) = k- (if K- # 0),
(I.3) a- < |w| < ky (if a- < Kky).



Lemma, 5.3. (I.1) For |w| > max(a_,ay), D(w) # 0 iff either v # 0 or vy = 0
and one of two following inequalities hold (see (1.7))

ke < K (a_), if a_>a,. (5.6)
ke < K_(ay), if ay >a_. (5.7)

(1.2) If k_ #0, then D(w) # 0 for |w| < k_ iff either v # 0 or v = 0 and
kg > Ko(k_). (5.8)

(I.3) If a_ < Ky, then D(w) # 0 for |w| € (a_, ki) iff either v # 0 ory = 0
and one of two inequalities holds

K(Z) Z K—(H-F)? (59)
kg < Ko(a ), if Kola_)>0. (5.10)

Proof. Case (I.1): For |w| > max(a_,ay),

D(w) = /4;(2) — w4 Z V:2t (1 . eiﬂ(w)) — jwry, where pif(w) — _ = S0x(w)
+

Hence, C\}D(W) #0iff v 0. If y =0, then ﬁ(w) £ 0 iff
D(w) = RD(w) = £ —w? + 3 v (14 e 20,
+

Note that RD(w) < S%f)(ap) for |wi| > |we| > max(a_,a, ), and RD(w) — —o0
as |w| — oo. Therefore, D (w) # 0 for such values of w iff

RD(maxas) < 0. (5.11)

Now we find conditions on K, kg, v+ such that (5.11) holds.
Let max(a_,a;) = a—. Then

RD(a_) = K2 —a* +20% + 12 (1 + e_%+(“)) : (5.12)
We calculate 7 := —ef+(@-) = ¢=5%+(a-) By (3.2), we have
1 2 2
r+—=—-2cosf(a_) = = QK“L — 2.
r vi
Since r < 1, then
by —2— \/b> —4b, a? — K2
r= i , where by = — (5.13)



Note that b > 0 and by — 4 = (a? — a%)/v? > 0. Therefore,

—30,4 (a 1
Vi<1 TR U )> =vi(l+7)= §(a2 — K2 — \/a2_ — ﬁi\/aQ_ — ai).(5.14)
We substitute (5.14) in (5.12) and obtain
RD(a_) = K2 — K, (a_). (5.15)

Thus, RD(a_) < 0 iff (5.6) holds.
In the case when max(a_,ay) = a,, we have

RD(ay) = k2 —a® + 202 + 2 (1 + e~ 0-(a+)y

—30_(ay) b — 2 — b2 —4b_ CL%_ — KR

e - = 5 — , Wwhere b_ := "

Thus, RD(a) < 0 iff (5.7) holds.
Case (1.2): Since we assume that k_ < k4, then min(k_, k1) = k_. More-
over, for |w| < k_ (k- # 0),

= (5.16)

D(w) —w’+ ZVi ( — sl ) — iwy, where e+ = ¢=30x()

Note that D(0) = &3 + >, v2 (1 — e73%(0)) > k2 > 0, since

-2
2
e%()—4< +,M+——> <1, if ke >0, (5.17)
Vi vy

Hence, D(0) # 0. Therefore, if w # 0, then ID(w) # 0 iff 4 # 0. Assume
that w # 0 and v = 0 and find restrictions on kx, ko, v+ such that D(w) # 0.
Note that RD(w;) > RD(ws) for |wi| < |we| < min(k_,ky), and RD(0) > 0.
Therefore, RD(w) # 0 for such values of w iff RD(k_) > 0. Since v = 0,

RD(r_) = D(k_) = kg — k> + V2 (1 — 0+(52)), (5.18)

We calculate r := e%+("-) = ¢=30+(+-) By (3.2), we have

1
r4+—-=2cosb (k) =2— —5—
r

Since r < 1, then r = (dy + 2 — \/d% +4d.)/2, where d, = “*=

: 1
V2 (1 _ e’9+(“‘)> =vi(l—r)= 3 (/{2_ — K2 + \/ﬁ:i — I€2_\/CL3_ — I€2_> . (5.19)




We substitute (5.19) in (5.18) and obtain
RD(k_) = kg — Ko(k_). (5.20)

Thus, RD(x_) > 0 iff (5.8) holds.
Case (I.3): For w € R: a_ < |w| < Ky, @) = ¢ 50w) pif-(w) —
—S0-(@)  If 4 % 0, then SD(w) = —wy # 0. Assume that v = 0 and
ﬁnd the restrictions on k., Ko, v+ such that D(w v) = RD(w) # 0. Note that
%D(wl) < RD(w,) for jwi| > |ws|. Hence, RD(w) # 0 iff RD(k,) > 0 or
RD(a_) < 0. Calculate ®D(x.) and %D(a_).

RD(k1) = K2 — K2 + 12 (1 — -5y,

where 7 1= —e-(5+) = ¢=30-(54) ig 4 solution of the following equation
1 K2 — K2
r+-=-2cosf_(ky) = ——— —2.
r v

Since r < 1, then r = (d- — 2 — \/d? —4d_)/2, with d_ := (k% — k%)/V2.

Therefore,

2 (1_619(/€+)> =12 (147) = (m—m — \//@+ 2_\/ a2_> .

Hence,

RD (k1) = kE — K_(ky). (5.21)

Thus, RD(x) > 0 iff (5.9) holds.
On the other hand, RD(a_) = k§ — a® + 202 + 12 (1 — e 3%+()) | Let us
calculate r := ¢?+(@) = ¢=30+(a-) for g, > a_. By (3.2), we have (cf (5.13))

e = 5 , Where c; = %
Therefore, .
RD(a_) = ki — Ko(a_). (5.22)
Hence, RD(a_) < 0 iff (5.10) holds. Note that
Kola_) > 0 <= 12 < (k% +202) (k% — 20°) (k2 — a®) ! (where K, > ay).

Remark 5.4. (i) Let v = 0 and condition (5.6) (if a— > ay) or condition (5.7)
(if a_ < ay) be not true. Then, there exists a point wy > max(a_, a, ) such that



D(4wy) = 0. Note that D'(wy) < 0. Therefore, N(w) has simple poles at the
points w = Fwy.

(ii) Let v = 0, k— # 0 and condition (5.8) be not true. Then, there exists
a point wy € (0,k_) such that D(£wy) = 0. Moreover, D’'(wy) < 0. Therefore,
N(w) has simple poles at the points w = wy.

(iii) Let v =0, a— < k4, and conditions (5.9) and (5.10) be not true. Then,
there exists a point wy € (a_, k) such that D(+wy) = 0 and D’(dwy) # 0.
Hence, N(w) has simple poles at the points w = =wy.

Lemma 5.5. For any w € UsAx \ (UzAY), D(w 4 i0) # 0.
If v =0, then D(w — i0) = D(w + i0) # 0.

Proof Forw e A\ A’ andw ¢ A,
ID(w +1i0) = —wy — 2 sin6_(w + i0)
—sign(w) <|w|’y + 3/ w? — k2 \/ad® — w2) , ifk. #£0

—w (w+%\/41/2—w2), if k. =0

Hence, SD(w + i0) # 0 for such values of w. Similarly, we can check that for
weA\AL andw ¢ A, SD(w +i0) # 0. Forw e (A-NAL)\ Ug A,

ID(w+i0) = —wy — V2 sinf_(w +i0) — 12 sin 6, (w + i0)
( —Sign(w)(|w|fy+%z\/w2—/<ft\/a2i—w2), if ke #0
EE

—sign(w)(|w|fy + w12 — w?/4+ 33/ w? — K2\ /a2 — wQ),
if k_ = 0, Ry # 0

—w<”y+§\/yi—w2/4>, itk =ky =0

Therefore, $D(w 4 0) # 0 for such values of w. ]

\

Now we consider the case when v = 0 and find necessary and sufficient
conditions on the constants of the system under which D(w — i0) # 0 for w €
(UxAL) \ (ULA}). Below we consider four regions of such values of w:

(ML) weA \AY, wg A |w| <ky,ie ko <|w| <min(ky,a) (ke >k),
(ML2) we A\NAY, wg A |w| >ay,ie, ap < |w|<a_ (ifay <a ),
(IL3) we AL \A), we A ie, max(ky,a-) < |w| < ay (if am < ay),
(IL4) we (A-NA)\ (UsAY), ie, iy < |w| <min(a_,ay) (if y < a_).

Lemma 5.6. Let v > 0. In the case (IL1), D(w — i0) # 0 iff the following
conditions hold.



(i) If ko =0 and Ky > a— = 2v_, then either (1) v > v_ or (2) v € (0,v_)
and
kg # Ko(ws) (5.23)

with w, = 24/v% — 2.

(1i)) If k= =0 and ky < a_, then either (1) v >v_ or (2)~v € (y1,v_) and
(5.23) holds with w, = 2\/v% —~% or (3) v € (0, n].

(111) If K # 0 and Ky > a_, then either (1)~ >~ or (2) v € (0,7] and
(5.23) holds with w, = Py, where Py from (1.14). In particular, if v = ~<", then
Wy = y/R_a_.

() If ko # 0 and k. € (\/Fea—,a_), then either (1) v > v or (2)
v € (71,77 and (5.23) holds with w, = Py (if v =<, then Py = \/k—a_) or
(3) v € (0,v] and (5.23) holds with w, = P_.

(v) If k= # 0 and k4 € (k_, \/k_a_], then either (1) v > v or (2) v €
(0,71) and (5.23) holds with w, = P_. Note that if k. = \/R_a_, then v = 1.
In the all cases (i)—(v), wyx € (k—, min(k4,a_)).

In the case (I1.2), D(w —i0) # 0 iff the following conditions hold.

(1) If k- =0, then either (1)~ > v or (2) v € (0,72) and

K2 £ K () (5.24)

with w, = 24/v% — 2.

(i) If k= # 0 and ay > \/k_a_, then either (1) v > v or (2) v € (0,72)
and (5.24) holds with w, = Py.

(i) If ki # 0 and ay. < \/E_a_, then either (1)~ >~ or (2) v € (y2,7"]
and (5.24) holds with w, = Py (if v =~ then P. = \/k_a_) or (8) v € (0, o]
and (5.24) holds with w, = Py.

In the all cases (1)—(i1i), wy € (ay,a_).

In the case (I1.3), D(w — i0) # 0 iff the following conditions hold.

(1) If k- = ke =0, then either (1) v > ~3 or (2) v € (0,73) and

ke £ K_(w,) (5.25)

with w, = 24/V2 — 2.

(i) If Ky # 0 and a— € [\/ryar,ay), then either (1) v > 3 or (2) v €
(0,73) and (5.25) holds with w, = Q, where Q+ from (1.15). In particular, if
a_ = /kyay, then y3 =~ and w, = /K ay.

(i4i) If Ky # 0 and a_ € (K4, /Fyay), then either (1) v > ~¢ or (2)
v € (13,77] and (5.25) holds with w, = Q+ (if v = v, then w, = \/kiay) or
(3) v € (0,73] and (5.25) holds with w, = Q.

(iv) If a— < k., then either (1) v >~ or (2) v € (0,7¢] and (5.25) holds
with w, = Q+ (if v =, then Q+ = \/ryay).



In the all cases (1)—(iv), w, € (max(ky,a_);ay).

In the case (11.4), D(w — i0) # 0 iff the following conditions hold.

(1) If k. = k_ =0, then either (1) v > vy +v_ or
(2)v e (WVIv2 —vi|, vy +v_) and ko # 0 or (3) v € (0,/|v2 — V2]].

If, in addition, v, = v_, then the case (3) is excluded.

(1)) If ky = Kk_ #0 oray = a_, then either (1) v > Fuax (Fmax 1S defined
in (1.13)) or (2) v € (0, Fiax) and ko # K. In particular, if Ky = k- # 0 and
ay =a_, then Fioax = a_ — K_.

(1) If Ky # Kk_ and ay # a_, then either (1) v > Fuax or (2) v €
(Finin, Finax] and kg # K or (8) v € (0, Fum|. Here Fiyn = min(yy,7y2) if ay < a_,
and Fim = min(vyy,7y3) if ar > a_.

Proof Since D(w — i0) = D(w + i0) — 2iwy, then for w € A_,

%l:?(w —i0) = K3 — w4+ 21— @) 412 (1 — cosf_(w +i0))
SD(w —1i0) = v2sinf_(w+1i0) — wy.

(I1.1): In this case, we have

2 2
Ky —w 1

0y (w) _ —S04(w) 2 2
b+ (w) — g=90+(w) — 1 4 %) —2%%\//4;+—w2\/a+—w2.

Hence, D(w — i0) = 0 for such values of w iff

kg = Ko(w), w?€ (k2,min(x3,a?)) (5.26)

\/w2 — K2 \/&2_ — w? = 2|wly. (5.27)

If k. =0, (5.27) becomes /4v2 — w? = 27 and the assertion (i) is obvious, since

w = Fw, = +24/v% — 42 are the solutions of (5.27) if v € (0,v_). The assertion
(ii) can be checked by a similar way.
Let k_ # 0 and p := w? — k2. Then, p is a solution of the equation

P+ Ap(y? — v2) + 4k% 4% = 0 (5.28)

in the region p € (min(x2 — k2),4v%). Eqn (5.28) has solutions iff (72 — v2)?
k24? > 0 and 0 < v < v_. This is equivalent to the condition v € (0 :
Therefore, if k_ # 0 and v € (0,7“], then Eqn (5.28) has solutions p. € (0,41%)

with p1 from (1.14). Hence, Eqn (5.27) has the solutions of the form

w = tw,, where w?=P?=rk>+psc(k:,d*). (5.29)



_27_

Therefore, if kK, > a_, then the system (5.26)—(5.27) has no solutions in the
interval (I1.1) iff the conditions (iii) are fulfilled.

Let k- # 0 and k4 < a—. Then, k_ < |w| < k4. For the function F_(w)
(see (1.9)), max(, , )F_(w) = F_(wo) = v, where wy = \/a_k_. We calculate
the minimum and maximum of the function F_(w) in the interval w € (k_, k)
and deduce the rest conditions (iii)—(v).

(I1.2): Let we A_\ A’ w¢ A, and a; < |w| < a_. Then,

G0+ (@) — _ =0 (w) 1 _ w? — ’f+ \/wz iy \/wg az.
207 2V+

Hence, D(w — i0) = 0 iff Eqn (5.27) holds and 3 = K, (w). F_(a_) = 0,
F_(ay) = 7. By the similar reasoning as before, we can derive conditions under
which D(w — 40) # 0 in the region ]w\ € (ay,a )

(I1.3): In this case, €~ = —e=3%-(“)  This case is similar to the case
(I1.2) and all arguments remain valid up to the replacement of the plus and
minus indices.

(IL.4): Let w € (AN Ay)\U:AY. D(w —1i0) # 0 in this interval iff one of
the following two equalities is not fulfilled

Ko = R (5.30)
Fw) = v for wée (ky,am), ap:=min(a_,ay), v>0, (5.31)

where F'(w) is defined in (1.10).
(i) Assume first that K = 0. Then, ky = k- =0, ax = 2v4, and Eqn (5.31)

becomes Y, \/4v: —w?/2 = ~. In particular, if k. = k- = 0 and v_ = vy,
then Eqn (5. 31) becomes \/41/ —w? = v. Moreover, F.x = F(0) = v_ 4+ vy,
Fin = F(ay) = \/|v?> — v2|. This implies assertion (i).

(ii) Let ki # 0. Then, F'(w) = 400 as w — Ky + 0, F'(w) - —o0
as w — a, — 0, F'(w) < 0 for w € (ky,a,). There exists a unique point
wo € (Ky,ap) such that F'(wy) = 0, and Fiax = F(wp).

If kK, =Kk_ #0o0ra, =a_, then F, = 0. This implies assertion (ii).

(iii) If k4 # k- and ay # a_, then Fu = min(y, ) if ay < a_, and
Fin = min(vyy,73) if ay. > a_, where 71,792, v3 are defined in (1.11). This implies
assertion (iii). m

Proof of Theorem 5.2 For each mutual disposition of the segments A
and A_ (or of the points ki, as), we first divide R\ (U+AY) into the intervals
(I.1)-(1.3) and (II.1)(IL.4) (if they exist). Then, using Lemmas 5.3 and 5.6, we
deduce the corresponding restrictions on «y and kg (see conditions C and Cy) such
that D(w) # 0 for w € R\ (U+A) and D(w +i0) # 0 for w € UsAx \ (ULAY).



We split these restrictions into conditions C and Cy because of the difference in
the asymptotic behaviour of D(w) at the points A% (see Lemma 5.7 below). =

5.3. Behavior of D(w) and N(w) near singular points in A° UA}. Now we

study the behavior of N (w) in the neighborhood of the singular points in A° UAY.
This behavior will be used in the proof of Theorem 3.4 below.

Lemma 5.7. Let wy € A° U Ag and wy # 0. If condition C holds, then
N(w) = Cy +iCy(w? —wd) 2+ ... as w— twy, weCy, (5.32)
with some Cy,Cy # 0. If condition Cy holds, then either (5.32) is true or
Nw)=iC (W =) V2P +Cy+... as w— Fwy, weCxy, (5.33)

with some C7 # 0.
Let wy =0 € A UAY and conditions C or Cy hold. Then

N(w)=Ci+iCow+ ... as w—0, weCy, (5.34)
with some C,Cy # 0.

To prove Lemma 5.7, we consider various cases of mutual disposition of the
points k+ and a.

(1) Let wg = £k_. We consider the following cases: (1.1) k_ = k4 = 0;
(1.2) ko = k4 #0; (1.3) ko =0, iy > 0; (1.4) 0 < K < Ky
(1.1) If s = k, = 0, then we apply the representation (5.5) to () and obtain

- w? Z'w3 '
Dw) = Ki—w +Zyi( — 2Vi+@—...>—zw’y
1 1
= m%—zw(u_+v++7)+zw <_81/ +_81/ )— as w — 0.
~ +

In particular, D(0) = &2 # 0 by condition C or Cy. Hence, (5.34) is true with
C1 = kg2 and Cy = (v_ + vy +7)ky*. Note that if k_ =k, = kg = 0 (this case
is excluded by conditions C and Cy), then N(w) has a simple pole at zero,

: i iw 11
N(w) = + (—+—>+..., w— 0. (535
) wv-+ve+7) 8- +rvi+y)?\ve vy (5:35)

(1.2) If ki = k4 # 0, then we apply the representation (5.3) to e+ and obtain

. ) 1
D _ 22 2(_L/2_ 2 2 2 )_
(w) K — w” + gi vy o w /<a_—|—2 5 (W — k) + iwy

= [k — K2 F k] —ilv-+ v~ _)1/2—i(w¢fﬂ—)v+...



as w — +r_, w € C,. In particular, D(xk_) = k2 — k2 T ik_y # 0 iff either
v # 0or~=0and kg # k_. Hence, if condition C holds, then (5.32) is true with
wo = +k_, C) = (k3 — k2 Firk_y)™t, Cy = C3(v_ + vy). If condition Cy (iv)
holds, then (5.33) is true with wy = +x_, C; = (v_ + vy )7 L.

(1.3) If k. = 0 and s, > 0, then the function ¢?+®) is an analytic function in
a small neighborhood of origin. Applying the representation (5.5) to e-®) we

obtain
2

D(w) = /ﬁ;g—w2+uz<—iﬁ+2w7+...> +Vi(1—e_%9+(”)) — Wy

= [n?) + Vi (1 — e_%+(0)>} + ciw + W’ + ... , w—0,
with some complex constants ¢y, ¢o. In particular, by (5.17),
D(0) = k2412 (1 — e_%*(o)) > 0.

Hence, (5.34) holds with C; = (D(0))~* > 0.
(1.4) If 0 < k_ < Ky, then e+ is an analytic function in a small neighborhood
of the points w = +k_. Applying the representation (5.3) to e?-(@) we obtain

~ ) 1
D(w) = /1(2)—002+V3<—Vi\/w2—/€2_+ﬁ(w2—/§2_)—|—...)

—|—1/i(1 — e_%(’*(w)) — Wy
= D(£r ) —iv (W =)+ O(wF k), w—Fr, weCy,
where (5.20) gives
D(xr_) =rg — w2 + 21 — e S0 F ik y = w2 — Ko(k_) Fir 7.

Hence, D(%k_) # 0 iff either v # 0 or v = 0 and % # Ky(k_). Therefore, if
condition C holds, then (5.32) is true with wy = £x_. If condition Cy (iv) holds,
then (5.33) is true with wy = +x_ and C; = v,

(2) Let wy = £k4. There are five cases: (2.1) ky > a—; (2.2) Ky = a_;
(2.3) ko < Ky < a—; (2.4) ko = ke = 0 (see case (1.1)); (2.5) ko = ks # 0
(see case (1.2)).

(2.1) Let 5, > a_. Then the function e~ = —e=3%-(“) is analytic in a
small neighborhood of the points wy = +x4. Applying the representation (5.3)
to €+ we obtain

- i 1

D(w) = m%—w2+yi(—zy/w2—/@2 —M(aﬂ—/ﬁi)—k...)
+12 (1 - e_%*(w)) — Wy

= D(#r.) —ivy (W — &)+ O(|lw F ky]), w— £h4.



Using (5.21), we obtain
D(%ry) = K3 — K2+ V%(l + 6_%‘("+)) Fikey = ki — K_(ky) F ik .

Hence, D(£k,) # 0 iff either v # 0 or v = 0 and x3 # K_(x;). Therefore,
condition C implies (5.32) with wy = +xy, C1 = (k3 — K_(ky) Firk_7y)"
Cy = C}v,. If condition Cy (v) holds, then (5.33) is true with wy = +x..

(2.2) If k. = a_, then we apply (5.3) and (5.4) to €+ and €~ respec-
tively, and obtain

. ) 1
D(w) = /@(2)—CU2+V42_<—L\/W2—/€2 —W(wz—ni)—k...)

Vi +

' 1
+V2(2—VL a%—wQ—W(a2—w2)+...)—iw7

= D) — (52— )y +iv )+ Ol F rel), w— £y,
w € C,. Here D(+k,) = k2 — K? F ik,v. Therefore, condition C implies (5.32)
with wy = £k4. If condition Cy (v) holds, then (5.33) is true with wy = k.
(2.3) If k4 € (k_,a_), then we apply (5.3) to €+(“) and obtain

~ ) 1
D(w) = /ig—wz—l—u_%(—i\/w?—l-@?——2(w2—/ﬁi)—|—...)
2v7

Vi
—|—V%(1 — ew*(w)) — Wy
= D(ky +i0) —ivy (W? — &)Y+ O(|lw — K4]), w — Ky £10,

where D(ky £i0) = k2 — k2412 (1 - eiw—(mr”o)) — 1k47y. Therefore,
RD (k. & i0) = k7 — &> and

SD(ky £i0) = —kyy T2 sinf_(ky +i0)
— (fi+’}/:|: SVEL — K2 /d? — /ﬁ;i) , if ke >0

—Ky (’7:&%\/@2_—/{3_), itk =0

Then, SD(ky 4 i0) = —ky(y £ 1) (see (1.11)). Hence, D(r4 + i0) # 0 since
SD (kg 410) # 0. D(ry—i0) # 0 iff either y # 41 or kg # &. Hence, condition C
implies (5.32). In the cases when either 71 < 45 and ay < a_ or 11 < 73 and
a_ < a4, condition Cy (vii), (viii) implies (5.33).

(3) Let wy = H+a_. There are the following cases: (3.1) a_ > a; (3.2)
a_ = ay; (3.3) a_ € (ky,ay); (3.4) a_ = Ky (see the case (2.2)); (3.5)
a_ < Kq.




(3.1) If a_ > a., then the function e+« = —e=3%+) i5 analytic in a small
neighborhood of the points wg = +a_. We apply (5.4) to ¢~ and obtain
" 2 i Ly 2
D(w) = k§ —w® +172 <2_1/_ az_—wQ—ﬂ(a_—w )+>

+Vi(1 4 e 0w )) — Wy
= D(xa_ ) —iv_(a®> =)+ O(lwFa_|), w— *a_, weCy,

where (see (5.15)) D(#a_) = k2 — K, (a_) Fia_v. Hence, D(£a_) # 0 iff either
7 7é 0 or v =0 and 2 # K, (a_). If condition C holds, then (5.32) is true with
= +a_, C, = (D(zxa_))"', Co = C2v_. If condition Cy (i) holds, then (5.33)
is true with wy = +a_.
(3.2) In the case when a_ = a., we apply (5.4) to €+ and obtain

~ ) 1
D(w) = /{)(2)—(,()2—|—I/3(2—VL az—WQ—W(CL%—(JJQ)—F...)
' 1
+Vi(2—:—+ a2—w2—ﬁ(a2_—w2)+...)—iw7

= D(+a_) —i(v_+v)(d® - ) +0(wFa_|), w— +a_,

where D(4a_) = k¢ — &% Fia_v. Hence, D(da_) # 0 iff either v # 0 or v = 0
and kg # K. Condition C implies (5.32) with wy = fa_. If condition Cy (iii)
holds, then (5.33) is true with wy = +a_.

(3.3) If a_ € (K4, ay), then we apply (5.4) to €~ and obtain

;- 2 ‘ 2 2
D(w) = ki—w?+1* (Q—V— aQ_—wQ—ﬂ(a_—w)+...)

+V3_(1 . 6@9+(a_:|:10)) . ZCU’Y
= D(a_ +i0) —iv_(a®> —w)?* + O(lw —a_]), w— a_ £10,

where w € Co, D(a_ £i0) = k2 —a® + 202 + 12 (1 - jEZ'(”+(“—H())) — da_~y with
a_ € Ay \AY and 30, (a_ +1i0) = 0. Hence, RD(a_ +i0) = k2 — R?,

SD(a_ +i0) = —a_vyFvisind,(a_ +10)
{ —(a_y £ 3v/a® — k2\/a2 —a?), if k>0

—a_(y+/vi —12), if kp =k =0
Then, SD(a_ +i0) = —a_(y £ 73). Hence, D(a_ +i0) # 0. D(a_ —i0) # 0 iff

v # 73 or kg # k. Hence, condition C implies (5.32). If v3 < =, and condition Cy
(viii) holds, then (5.33) is true. Similarly, for w — —a_ £ 0.




(3.5) If a_ < Ky, then ¢+®) is an analytic function in a small neighborhood
of the points wg = +a_. Applying the representation (5.4) to e’?- @) we obtain

- ) 1
D(w) = KS—MQ-I—V%(Q—VZ—_ aQ_—wQ—ﬂ(aQ_—wQ)—l—...)
—H/i(l — e*%*(ia‘)) — Wy

= D(xa) —iv_(a2 =)'+ O(lwFa_|), w— a,

where D(+a_) = k2 — a® + 20% + 12 (1 — e 30+=a)) £ ja_~. Therefore, by
(5.22), D(£a_) # 0 iff either v # 0 or v = 0 and x§ # Ky(a_). Condition C
implies (5.32) with wy = £a_. If condition Cy (vi) holds, then (5.33) is true with
Wy = +a_.

(4) Let wy = £a,. There are the following cases:

(4.1) ar <a_; (4.2) ay = a_ (see the case (3.2)); (4.3) ay > a_.
(4.1) If ay < a_, then ay € A_\ A%. Applying the representation (5.4) to ef+®),
we obtain

~ ) 1
D(w) = /{%—w2+ui<2—i ai—wQ——Q(ai—wQ)Jr...)
vy 2vy
‘f‘V%(l o eiie,(a++z’0)) . ZW'}/

= D(ay +i0) —iv_(a> —w?)"? + O(|lw — ar]), w— ay +i0.

Here D(ay +1i0) = k2 — a + 202 + 12 (1- eiw—(“r”o)) — ta, 7y, where
36_(a, +140) = 0. Hence, RD(a; +i0) = k2 — &> and

SD(ay £i0) = —ary F 2 sinf_(as + i0)
— (ayyi Wad —k2y\/a? — ai) , if ko >0

—a, (wi%\/aQ—ai), if k. =0

Then, SD(ay + i0) = —ay(y £ 42). Hence, D(ay +i0) # 0. D(ay, —i0) # 0
iff either v # 75 or Ky # k. Hence, condition C implies (5.32). If 75 < 71 and
condition Cy (vii) holds, then (5.33) is true. Similarly, for w — —a4 % 0.

(4.3) Ifay > a_, then €'~ (@) is an analytic function in a small neighborhood
of the points wg = +a.. Using (5.4), we have

~ ) 1
Dw) = /@%—w2—|—ui(2—i ai—uﬂ——2(ai—w2)—|—...>
vy 2vy
+7 (14 e_%*(ia”) — Wy

= D(#ay) —iv_(a> —w)"? + O(lw Far]), w— +ay.



where, by (5.16), D(+a,) = &} — a> + 202 + 12 (14 e 30-Fa)) $jay =
/i% — K_(ay) Fiayy. Therefore, D(+a;) # 0 iff either v # 0 or v = 0 and
k3 # K_(ay). Condition C implies (5.32) with wy = +a,. If condition Cy (ii)

holds, then (5.33) is true with wy = +a. Lemma 5.7 is proved. u
Proof of Theorem 3.4 Using Lemma 5.1, we vary the integration contour in
(3.12):
1 L~
N(t)=—— e N (w)dw, t>0, (5.36)
27 J =R

where R is chosen enough large such that N (w) has no poles in the region C_ N
{|w| > R}. Note that if v = 0, then N(w) has no poles in C_ by Lemma 5.1 (iv).
Denote by o, the poles of N(w) in C_ (if they exist). By Lemmas 5.1 and 5.2,
there exists a 6 > 0 such that N(w) has no poles in the region Sw € (—4,0).
Hence, we can rewrite N(t) as

K
N 1 o
= — E Res,—o, [e_mN(w)} — %/A e ™I'N(w)dw, t>0,
j=1 ;

where ¢ € (0,0), the contour A, surrounds segments of AL and belongs to an
e-neighborhood of A_ U A, (A. is oriented anticlockwise). Passing to a limit as
e — 0, we obtain

1 e .
NEt) = — ot (N(w +i0) — N(w — iO)) dw + o(t™)
2T Ja_uA,
= Z Z / e Y PH(w)dw +o(t™), t— +oo,
21 Ja_un,

with any N > 0. Here Pji( ) —C (W)(N(w +i0) — N(w —i0)), j = 1,2, where

C;t(w) are smooth functions such that ZCi( )=1,w R, supp (i C O(£ky),
+.J

supp ¢ C O(Zax) (O(b) denotes a neighborhood of the point w = b). In the

case ke = 0, instead of ¢§ (P{) we introduce the function (; (respectively, P,)

with supp (s C O(0). Then Lemma 5.7 implies the bound (3.13) with & = 0.

Here we use the following estimate (with j = +1)
‘/( e w )/de <C(1+t)19? as t — 400, jis odd,
((w) is a smooth function, and ((w) = 1 for |w — wy| < § with some § > 0 (see,

for example, |11, Lemma 2|). The bound (3.13) with £ = 1,2 can be proved by a
similar way. m



Below, we show various cases of mutual disposition of segments A.. For
simplicity, we draw only the positive part of the segments A..

A
(P]-) K-;+ ’ FL+ e K- = K4, ap < a-—
K a_
A
A
(P2) f= - A+ Kk =Ky, ap =a_
K a_
A
A
(P3) h+ - Q+  Kk_ =Ky, ay > a_
ooy -
A
(P4) = T a4 Ko < Ky, G_ > ay
K A a_
A
(P5) | he ~ 7 O0v g <k a-=ay
K A a_
A
P6) | Ky —F U+ k. < ky, ky <a_ <a
4y K +
SN a_
A
(PT7) | s - At K- <Ky, a- =Ky
N
A
(P8) Ry T 04 k< kg al < Ky
K a_
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