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Kucaunbin A.A., Kozinosa A.b., Mamepos E.JIL., OpJos 1O.H.

AJIFOpI/ITM BBIYMCJIICHUA  COIIAaCOBAHHOI'O  YpOBHA CTAOMOHAPHOCTH  OJIA
MHOT'OMCPHBIX BPCMCHHBLIX PAI0B

B paGore ommchiBaeTCS anropuTM TIOCTPOCHHS CTATHCTHKH, HA3bIBAEMOM
COIJJaCOBAaHHBIM  YpPOBHEM  CTAllMOHApHOCTH, B  CIy4a€  MHOTOMEPHBIX
HECTALIMOHAPHBIX BPEMEHHBIX pAnoB. I[IpakTudeckas 1elb MPUMEHEHUS HTOU
CTaTUCTUKK — B T[OCTPOEHUM HWHIMKATOpA pa3ladKu [ HECTALMOHAPHBIX
BBIOOpPOUHBIX (PyHKIUN pacnpeneneHus. OTinuue OT KJIACCMYECKOW 3ajauu,
CBOJSIICHCS (DAKTUYECKH K TECTY JIBYX BBIOOPOK Ha CTallMOHAPHOCTh, COCTOUT B
TOM, 4TO HaJI0 OOHAPYKUTH MEPEX0]l U3 OJJTHOTO HECTAIMOHAPHOTO PEKUMA B IPYTOMH.
AJTOPUTM TECTUPYETCS Ha JNAaHHBIX JJIEKTpOdHIEdasorpaMm sl pacrno3HABAHUS
MPUCTYIA SMUAJICTICUH.

Kniouegvle cnoea: corinacoBaHHBbI YpPOBEHb HECTALIMOHAPHOCTH, WHAUKATOP
pasnagKu, AMEeKTposHIEedamorpaMmMa, IPUCTYI AUICTICUU

Kislitsyn A.A., Kozlova A.B., Masherov E.L., Orlov Yu.N.

Numerical Algorithm for Self-consistent Stationary Level for Multidimensional
Non-stationary Time-series

In this paper we consider the self-consistent stationary level of
electroencephalogram time series. The practical purpose of this statistics is to
construct the disorder indicator. Unlike the classical problem of stationary test of two
samples, in our case one should construct an indicator to predict the change in the
nonstationary regime. For example, we consider special predictor of an attack of

epilepsy.

Key words: non-stationary index, disorder indicator, electroencephalogram,
epilepsy attack

PaGoTa BrimonHeHa npu noauepxke rpanta PH®, npoekt

Ne 14-21-00025

Contents
1. Self-consistent Stationary leVel............ccoeiiiriiiic e 3
2. Numerical algorithm.........c.oooiiii e 4
T o L DSOS USROS 10
4. Efficiency of disorder PrediCtor ........vovecv e 12
(@] 0Tl 1] [0 o PSSP 14

A T OIALUIE .ottt et et e e e e e e e et eaeeeeeeee e e e et e e eeeeeeeeeeennnnanaens 14



1. Self-consistent stationary level

This paper is devoted to the problem of numerical algorithm construction for
modeling of disorder indicator of non-stationary multi-dimensional time-series. The
central point of theoretical aspect of the model is the so-called self-consistent
stationary level (SCSL), introduced in [1, 2]. In one-dimensional case there is a
software [3, 4] for calculating SCSL in the frame of the problem of generation
ensemble of trajectories. But it is not a convenient instrument to disorder analyze. We
want to construct indicator-predictor for disorder in non-stationary sample
distribution function.

As it is well-known [5, 6], the problem of a sample fit can be solved with the use
of non-parametric statistics of Kolmogorov-Smirnov test

Sy =sup|Fyy (X) = Fon (X)), (1)

for which the following asymptotic representation is valid:

dianP{O<\/§SN <z}—K(z), )

where K(z) is a tabulated Kolmogorov function (see e.g. [7]) and N is a sample
length. The value of Fy (x) is a sample distribution function of a random value of &

with realization values x in a sample window of length N. In formula (2) the
significance level approximately is taken to be equal to 1— K(z). Let us consider a

self-consistent significance level for the sample of N length, defined by formula

1- K(\/ggjzg. (3)

The solution & =&" (N) of this equation (3) was tabulated in [8] (see fig. 1).
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Fig. 1. SCSL for stationary case
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According to non-parametric statistics (3) in stationary case the significance
level & (N) for samples with length N is equal to probability, complementing (1) to

unit. In general non-stationary case we can construct the empirical distribution
function Gy (p) for the distances p(N) between two independent samples with

length N:
P(N) =[N ()= Fon () (@)
The numerical solution with respect to p gives us self-consistent stationary
level from the following equation:

Gn(p)=1-p. ()

Let us designate this level SCSL as p (N). If it appears, that p (N)>& (N),
then the series with analyzing sample distribution functions are non-stationary. The
value of p*(N) is the correct significance level for statistical hypothesis about
properties of these time-series samples.

We introduce also the value of Non-Stationary Index (NSI) as a ratio p (N)

and & (N):

_P(N) 5
="y (6)

In practice we need to calculate the value of NSI for multi-dimensional time-
series in a real time. The corresponding software is described below.

2. Numerical algorithm

Numerical algorithm is realized with the use of C++ in MSVS 2017. The data
must be presented in ASCII format.

Step 1. The data reading and converting.

If initial data are presented in another format, they must be transformed to
appropriate format. E.g. for EDF format the data reading is carried out with the use of
initial code of the Library Module EDFbrowser to convert the data into ASCII format
(github.com/Teuniz/EDFbrowser).

One should point the dimension of time-series (or the number of assigns), the
volume of the main sample, the volume of tested sample (TailLength) and main
sample step (StepLength).

So the file under analyze must be formatted as follows (fig. 2). The first
coulomb consists of time moments or data consequent numbers and other coulombs
correspond to time-series itself.



1| Time, 1, 2, 3, 4, 5,
2(4113.000000, -216.831233, -237.07588@, -291.786622, -1878.398126, -349.676275,
3(4113.0@1953, 9.540735, 85.332679, 23.929492, -5466.552753, -74.114833,
4/4113.083906, 155.770668, 338.276183, 269.374929, -5482.447311, 148.043421,
5(4113.0@585%, 115.448684, 347.174608, 287.946465, -5482.447311, 146.481244,
6(4113.8@7812, 38.987495, 277.740486, 217.675788, -5482.447311, 81.651834,
714113.889766, -69.430122, 131.51@553, 78.3@5612, -5482.447311, -47.846985,
314113.011719, -296.136711, -192.738429, -239.920169, -5482.447311, -334.618272,
9(4113.013672, -463.113225, -460.93818@, -512.804632, -1837.741520, -565.3408329,
10/4113.015625, -5@3.435209, -563.165284, -624.735783, 212.656454, -648.995897,
11/4113.017578, -441.195466, -516.652789, -574.877064, 189.232895, -602.483401,
12/4113.019531, -260.164817, -297.307889, -362.893854, -1157.287129, -418.608463,

Fig. 2. A fragment of data set

As a result we shall be given a number of vectors VSet for each assign and a
vector vTime for corresponding time moments.

Step 2. The data normalizing.

For each i-th assign the initial data by, =b;(t, ) are transformed to unit interval

by formula

by + |min by,

k

Xix = (7)
min b | + [maxhby,
k k

For the purpose of analysis of indicator efficiency we separate the total data
volume into two part: main and tested. For EEG data the main part consists of 2-10°

data and tested part just before the attack with the length 6-10* data.

Step 3. The construction of distribution function of distances between sample
distribution functions (SDF) in C norm.

Step 4. Determination of the solution of equation (5).

Step 5. Formation of output data.

Now we present corresponding numerical code and block-scheme in fig. 3
below. The numerical algorithm is described according to blocks designation.

+

Input Data & Initial Parameters

const double DATA LENGTH_const = 2000000;

const double Tail _const = 2000000 - DATA LENGTH_const;
const double StepLength_const = 1000;

const double SegmentAmount_const = 2000;

const int ELOCTROD_ AMOUNT = 64;

vector <vector <double>> AllDataSet;

vector <double> TimeSet;

int readfile(double DATA_LENGTH)

{

char* file_name = "data.txt";
ifstream fs(file_name, ios::in);



while (fs)

{
char c;
vector <double> DataRow(ELOCTROD_AMOUNT, 0.0f);
fs >> time;

TimeSet.push_back(time);
Data set formation
for (inti=0; i <ELOCTROD_AMOUNT; i++)

{
fs >> DataRow([i];
}
AllDataSet.push_back(DataRow);
o
fs.close();
return 0O;

Y
Data Normalization
int SetNormalizer(vector <vector <double>> &VectorSet)

{

vector <double> maxSet(ELOCTROD_AMOUNT, 0);
vector <double> minSet(ELOCTROD_AMOUNT, 0);
for (int1=0; i < VectorSet.size(); i++)
for (intj=0; ] <ELOCTROD_AMOUNT; j++)
{
if (VectorSet[i][j] > maxSet[j]) maxSet[j] = VectorSet[i][j];
if (VectorSet[i][j] < minSet[j]) minSet[j] = VectorSet[i][j];
}
for (int i = 0; i < VectorSet.size(); i++)
{
for (intj =0; j <ELOCTROD_AMOUNT; j++)
{

VectorSet[i][j] = VectorSet[i][j] + fabs(minSet[j]);
VectorSet[i][j] = VectorSet[i][j] / (fabs(minSet[j]) +
fabs(maxSet[j]));
}
by
return O;
¥
Computing of cumulative distribution function
vector <double> distrib_data_func(vector <double> &Data, int segmentNum, vector
<double> &ExpData)
{

vector <double> counts(StepLength);
int counts_i, counts_j, rec;



7

double start_elem = (segmentNum)*StepLength, end_elem = (segmentNum +
StepLength);
for (int 1 = start_elem; i <end_elem; i++)

{
for (int ] = start_elem; j <end_elem; j++)
{
if (Data[j] < Datali])
{
counts[counts_i] = counts[counts_i] + 1;
by
}
counts_i++;
¥

for (int counts_i = 0; counts_i < counts.size(); counts_i++)
for (int counts_j = 0; counts_j < counts.size(); counts_j++)

{
if (counts[counts_i] <counts[counts_j])
{
rec = counts[counts_i];
counts[counts_i] = counts[counts_j];
counts[counts_j] = rec;
¥
}

for (int counts_i = 0; counts_i < counts.size(); counts_i++)
counts[counts_i] = counts[counts_i] / StepLength;
return counts;
}
The distance between sample distribution functions
int main()

{

int  start_index = Tail_const,

end_index = 2060000,

main_length = DATA_LENGTH,

TWOmin_length = 60000,

Tail_Seg_Amount = TWOmin_length / StepLength_const;
int sort;
double rec;
double rec_2;
for (int rec_ind = 0; rec_ind < Iterations_for_one_file; rec_ind++)
{

vector <double> sample_distance;

vector <double> distrib_distance;

vector <double> testMainV;

vector <double> testTailV;

ostringstream strs;
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strs << Array_Data_size[O][rec_ind];
string str = strs.str();

str = str.insert(str.length(), ".txt");
ofstream fs33(str, i0s_base::app);

for (int iter_main_index = 0; iter_main_index <
ELECTROD_AMOUNT,; iter_main_index++)
{

DATA LENGTH = Array_Data_size[1][rec_ind];

StepLength = Array_Data_size[O][rec_ind];

SegmentAmount = (Array_Data_size[1][rec_ind] /
Array Data_size[O][rec_ind]);

main_length = Array_Data_size[1][rec_ind];

TWOmin_length = 60000;

Tail_Seg_Amount = TWOmin_length / StepLength_const;

start_index = 2000000 - Array_Data_size[1][rec_ind];
The data splitting into the main and test parts

for (int i = start_index; i <= end_index; i++)

{
testMainV.push_back(AllDataSet[i][iter_main_index]);

¥

if (end_index !'=0)

{
for (int 1 =end_index + 1; i <= AllDataSet.size() - 1; i++)
{

testTailV.push_back(AllDataSet[i][iter_main_index]);

}

by

Determining the distance between two nearest distribution  functions
(distance_vector_forming)
sample_distance = distance_vector_forming(testMainV, SegmentAmount);
Computing of cumulative distribution function for g_n(Rho)
distrib_distance = distribFunction(sample_distance);
for (int 1 =0; i <sample_distance.size(); i++)
for (int j = 0; j < sample_distance.size(); j++)

{

if (sample_distance[i] < sample_distance[j])

{
rec = sample_distance[i];
sample_distance[i] = sample_distance[j];
sample_distance[j] = rec;

¥

it (distrib_distance[i] < distrib_distance[j])

{
rec = distrib_distance[i];
distrib_distance[i] = distrib_distancelj];
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distrib_distance[j] = rec;

¥

Solving the equation for Rho

while (sample_distance[ind_i] + distrib_distance[ind_i] < 1)
if (sample_distance[ind_i] + distrib_distance[ind_i] == 1) rec =

distrib_distance[ind_iJ;

else

{

Y3*X4);

}

double X1, X2, X3, X4,Y1,Y2,Y3, Y4,

X1 = distrib_distance[ind_i];

X2 = distrib_distance[ind_i + 1];

Y1 = sample_distance[ind_i];

Y2 = sample_distance[ind_i + 1];

X3=1-Y1,;

X4=1-Y2;

Y3=1-X1,;

Y4=1-X2;

rec = (X1*Y2 - Y1*X2)*(X3 - X4) - (X1 - X2)*(X3*Y4 -

rec=rec/ ((X1-X2)*(Y3-Y4)-(YLl-Y2)*(X3 - X4));
rec=1-rec;

ind_i++;
Output statistics: Rho&NSI

sample_distance.clear();

distrib_distance.clear();

vector <double> tail_distance;

SegmentAmount = Tail_Seg_Amount;

StepLength = Tail_Seg_Length;

double rhoBig = rec;

tail_distance = distance_vector_forming(testTailV,

SegmentAmount);

for (inti_ind = 0; i_ind < tail_distance.size(); i_ind++)

{
}

iIf (tail_distance[i_ind] > rhoBig) {rec 2=rec 2+1;}

rec_2 =rec_2 / tail_distance.size();

return O;
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Fig. 3. The Scheme of SCSL and NSI calculation algorithm

3. EEG data

We apply further this algorithm to disorder indicator construction for EEG time-
series of epilepsy attack. The data were accumulated by scientific personal of
Burdenko Institute. We consider several data sets for patients during 1 hour before
epilepsy attack. For each case we analyzed 32 assigns with frequency of data reading
512 Hz. The typical fragment of data is presented in fig. 4.
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Fig. 4. Typical behaviour of EEG synchronous signals by several assigns
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It appears, that signals from various assigns are not coherent. So they can be
studied separately.

One should emphasize, that traditional method of correlation analysis and power
spectrum estimation [8] is correct for stationary process only. So firstly we analyze
Kolmogorov-Smirnov statistics (4) depending on data length and use indicator (6) to
estimate the stationary level of these time-series.

The typical dependences of SCSL and NSI from the sample length of the main
part of data set are presented in fig. 5 and 6. From these figures it follows, that series
are non-stationary. The value of SCSL gives us a typical accuracy of statistical
estimation of sample identity.

0.32 T T T T T T T T T T T T T T T T T T

1 1 L 1 1 1 L 1 1 L 1 1 1 1 L

| —
S ® ® & P D 8 8 N PP PSS
L F & & & O
S P &SSP C

Sample length

Fig. 5. Dependence of SCSL from the sample length

From the next fig. 6 one can see, that stabilization of Non-Stationary Index
occurs approximately at the sample length more than 12000 data points (24-25
seconds). The value of NSI sufficiently more, than unit, so the EEG time-series are
non-stationary.
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Fig. 6. Dependence of NSI from the sample length

4. Efficiency of disorder predictor

Because of non-stationary character of EEG time-series the indicator of
deviation from stationary state is not an indicator of disorder. We have to compare
several non-stationary cases with each other or one sample from the first non-
stationary distribution function and the sample with the same length, following just
after the previous sample, from the second distribution function. Our new indicator of
disorder is constructed in a similar way [1, 2]. We suppose, that there is a normal
non-stationary level of EEG, which can be determined from the main part of data set.
And just before epilepsy attack the deviation of SCSL of some optimal sample
volume in a small but statistical sufficient time period from SCSL in normal state can
be treated as predictor of disorder.

We define the value of predictor index K as a ratio of SCSL of tested part and
the main part of data set:

K = st ®)
‘]main
Here J is defined in (6).
The value of (8) was calculated for all assigns. It was found, that there are
several assigns (consisting approximately 30 % from the total number of electrodes),
which have reliable exceeding the value of J.,. Corresponding results for 10

electrodes are presented in fig. 7.
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Fig. 7. Dependence of Predictor Index from the sample length

One can see, that predictor index grows from increasing of sample length. But
it is interesting to obtain minimal length to reliable prediction of disorder (see fig. 8).
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Fig. 8. Statistic properties of Predictor Index depending on the sample length

From the results presented above it follows, that sufficient number of assigns for
indication of disorder can be obtained in the window more then 5500 data. The
stability of the deviation K is approximately constant (the value of ratio between
average deviation value over this amount of assigns and corresponding standard
deviation). The value of median of deviation K is also approximately equal to
constant. So the time period of 11-12 seconds is minimal for disorder indication.
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Conclusion

In this work we demonstrated the efficiency of new statistical method of
disorder indication — the so-called self-consistent stationary level deviation. The
principal aspect of this method is the analysis of distribution function of distances
between the sample distribution functions in C-norm. Multidimensional time-series is
a natural object for testing of non-stationary random process analytical framework,
one block of which was presented in this paper.

EEG data set may allows sufficiently complete information for construction
various indicators: patterns of the typical quasi-stationary states, patterns of
corresponding distribution functions, a lot of materials for testing various stochastic
control operators and also a lot of problems with construction of disorder indicators.

The aim of our future researches is to construct software specifically for
medicine problems in the frame of statistical analysis of electroencephalography. The
application of new non-stationary statistics, presented in this paper, may be rather
fruitful.
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