

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 62 за 2017 г.</u>

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

Тыглиян М. А., Тюрина Н.Н.

Математическая модель прохождения гемодинамического импульса через точки бифуркации

Рекомендуемая форма библиографической ссылки: Тыглиян М. А., Тюрина Н.Н. Математическая модель прохождения гемодинамического импульса через точки бифуркации // Препринты ИПМ им. М.В.Келдыша. 2017. № 62. 18 с. doi:<u>10.20948/prepr-2017-62</u> URL: <u>http://library.keldysh.ru/preprint.asp?id=2017-62</u> Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.Келдыша Российской академии наук

М.А.Тыглиян, Н.Н. Тюрина

Математическая модель прохождения гемодинамического импульса через точки бифуркации

Москва — 2017

М.А.Тыглиян, Н.Н. Тюрина

Математическая модель прохождения гемодинамического импульса через точки бифуркации

В данной работе рассматривается прохождение гемодинамическим импульсом «сложных» участков кровеносной системы, таких как соединение сосудов с разными параметрами, тканевый узел, ветвление сосудов, отражение от стенки сосуда. Строится математическая модель расчета гемодинамических показателей в линеаризованной постановке.

Ключевые слова: гемодинамический импульс, соединение сосудов, ветвление сосудов, фильтрация через ткань, отражение от стенки сосуда

M.A.Tygliyan, N.N.Tyurina

Mathematical model of the hemodynamic pulse passage through the bifurcation points

The hemodynamic pulse passage through the "difficult" areas of the circulatory system such as the link of vessels with different parameters, the tissue node, the branching of blood vessels, the reflection from the vessel wall is considered in this paper. Mathematical model for hemodynamic parameters calculation in the linearized formulation is constructed.

Key words: hemodynamic pulse, connection of blood vessels, branching of blood vessels, filtration through the tissue, the reflection from the vessel wall

Оглавление

I.	Введение	3
II.	Постановка задачи	4
III.	Прохождение импульса через точку соединения сосудов	6
IV.	Прохождение импульса через тканевый узел	8
V.	Прохождение импульса через точку ветвления сосуда	.10
VI.	Отражение от стенки (заглушки)	. 12
VII.	Заключение	. 13
VIII.	Литература	.14
IX.	Приложение. Итоговые таблицы	. 15

І. Введение

Данное исследование начиналось еще под руководством д.ф.-м.н., профессора Антона Павловича Фаворского, ведущего специалиста в области моделирования системы кровообращения, который многие годы являлся нашим учителем и другом, направлял и поддерживал нас в работе. Мы очень любили и безмерно уважали Антона Павловича, и нет таких слов, которые могли бы передать это в полной мере. Мы посвящаем эту работу светлой памяти Антона Павловича, который ушел из жизни четыре года назад, но навсегда остался в наших сердцах.

Задача математического моделирования течения крови по сердечнососудистой системе имеет широкую область научного и практического применения [1].

Изучению распространения волн давления и скорости по системе эластичных сосудов уделялось внимание исследователей уже со времен открытия системы кровообращения. Правильное воспроизведение скорости кровотока по сосудистой сети предоставляет возможность моделировать распространение различных веществ в сердечно-сосудистой системе и влияние этих веществ на гемодинамику в целом [4]. Симптомами ряда заболеваний кровеносной системы служат нарушения в распространении волны давления (пульсовой волны). Эти нарушения могут носить разнообразный характер – от ослабления амплитуды пульсовой волны и ее запаздывания в ряде периферийных артерий до возрастания амплитуды пульсового давления и увеличения скорости распространения пульсовой волны [8].

Таким образом, важным представляется комплексное моделирование системы кровообращения в целом, а также ее детализированных фрагментов, таких, например, как церебральная система сосудов, кровоснабжение легких и др. При этом не меньший практический медицинский интерес представляет собой и исследование течений в зонах бифуркации сосудов [7].

Применение квазиодномерного приближения позволяет рассматривать и численно решать гемодинамические задачи на достаточно разветвленной сети сосудов системы кровообращения (графе сосудов), как незамкнутой, так и замкнутой (см. [4, 5, 6]).

Данная работа представляет собой описание процесса прохождения гемодинамическим импульсом «сложных» участков кровеносной системы таких, как соединение сосудов с разными параметрами, тканевый узел, ветвление сосудов, отражение от стенки сосуда. Строится математическая модель расчета гемодинамических показателей в линеаризованной постановке.

II. Постановка задачи

Обозначения:

Пусть *p*, *u* – малые отклонения давления и скорости крови в сосуде от постоянного течения со среднефоновыми значениями параметров \bar{p} и \bar{u} , $\bar{\rho}$ – плотность крови, $\bar{S} = S(\bar{p})$ – площадь поперечного сечения сосуда, $\bar{\chi} = dS/dp$ – коэффициент жесткости сосуда, *x* и *t* – координаты по пространству и времени.

Когда отклонения от фоновых значений малы, параметры сосуда удовлетворяют уравнениям гемодинамики в линеаризованной постановке [2]:

$$\begin{cases} \frac{\partial p}{\partial t} + \overline{u} \frac{\partial p}{\partial x} + \rho \ \overline{c}^2 \frac{\partial u}{\partial x} = 0\\ \frac{\partial u}{\partial t} + \overline{u} \frac{\partial u}{\partial x} + \frac{1}{\rho} \cdot \frac{\partial p}{\partial x} = 0 \end{cases}$$
(1)

где

$$\bar{c} = \sqrt{\frac{\bar{S}}{\rho \bar{\chi}}}$$
(2)

– скорость распространения малых возмущений в сосуде (скорость звука).

Система уравнений (1) дополняется уравнением состояния:

$$S = \overline{\chi} \cdot p, \tag{3}$$

где S — малое отклонение площади поперечного сечения от фонового значения \overline{S} .

Решение системы уравнений (1) в общем виде является суперпозицией (линейной комбинацией) бегущих волн определенной структуры [3], определяемых инвариантами Римана r^+ и r^- , которые связаны с решением *и* и *р* соотношениями:

$$p(x,t) = \frac{\rho \cdot \overline{c}}{2} \left(r^+ (x - \eta^+ t) - r^- (x - \eta^- t) \right),$$

$$u(x,t) = \frac{1}{2} \left(r^+ (x - \eta^+ t) + r^- (x - \eta^- t) \right).$$
(4)

где $\eta^+ = \overline{u} + \overline{c}$, $\eta^- = \overline{u} - \overline{c}$ – скорости распространения инвариантов Римана по исходному неподвижному фону.

В свою очередь r^+ и r^- выражаются через u и p в начальный момент времени (t = 0):

$$r^{+}(x) = u(x,0) + \frac{1}{\rho c} p(x,0),$$

$$r^{-}(x) = u(x,0) - \frac{1}{\rho c} p(x,0).$$
(5)

Если рассматривать r^+ и r^- как функции x и t:

$$r^{+}(x,t) = r^{+}(x-\eta^{+}t), r^{-}(x,t) = r^{-}(x-\eta^{-}t),$$

то можно убедиться, что эти функции удовлетворяют уравнениям переноса:

$$\frac{\partial r^{+}}{\partial t} + (\overline{u} + \overline{c}) \frac{\partial r^{+}}{\partial x} = 0,$$

$$\frac{\partial r^{-}}{\partial t} + (\overline{u} - \overline{c}) \frac{\partial r^{-}}{\partial x} = 0.$$
(6)

- Фактически, зная, что происходит с r^+ и r^- , можно проследить поведение функций *и* и *p*.
- Расчет r^- аналогичен расчету r^+ , поэтому, не ограничивая общности, сосредоточимся на рассмотрении r^+ .
- Большой импульс сложной формы (исходный импульс) можно разбить на элементарные составляющие и рассматривать движение каждого такого кусочка независимо от других кусочков (см. рис.1).
- В случае наложения импульсов, их амплитуда суммируется. $r^{+} = \sum r_{i}^{+}$

Рис. 1 Разбиение исходного импульса на элементарные составляющие

Будем рассматривать прохождение импульса в следующих предположениях:

- 1) Плотность крови не меняется $\bar{\rho} = const$;
- 2) Поток крови на фоне непрерывен $\overline{Su} = const$;
- 3) В процессе проникновения сохраняется масса крови;
- 4) Импульс дозвуковой $\overline{u} < \overline{c}$;
- 5) Исходный импульс монофазный, то есть содержит только один инвариант $r^+ \neq 0$, тогда как $r^- = 0$;
- 6) Исходный импульс имеет прямоугольную форму;
- 7) Ширина исходного импульса равна λ^{+} .

III. Прохождение импульса через точку соединения сосудов Описание

Рассмотрим прохождение импульса через соединение сосудов с разными фоновыми параметрами. Пусть $\overline{p}_1, \overline{u}_1, \overline{S}_1, \overline{\chi}_1, \overline{c}_1$ - фоновые параметры первого сосуда; $\overline{p}_2, \overline{u}_2, \overline{S}_2, \overline{\chi}_2, \overline{c}_2$ - фоновые параметры второго сосуда;

Рис.2 Соединение сосудов

В случае прохождения импульса через точку соединения сосудов резонно допустить постоянность фона давления $\overline{p}_1 = \overline{p}_2 = \overline{p}$ и непрерывность давления на стыке сосудов $p_1 = p_2$.

Качественная картина прохождения импульса

Монофазный импульс r^+ , согласно уравнению (6), будет двигаться по течению крови со скоростью $\eta^+ = \overline{u}_1 + \overline{c}_1$. Дойдя до конца сосуда (точки бифуркации) импульс частично пройдет в другой сосуд с амплитудой \tilde{r}^+ , частично отразится обратно с амплитудой \tilde{r}^- .

Рис.3 Прохождение импульса через точку соединения сосудов

Нахождение амплитуд прошедшего и отраженного импульса

Рассмотрим процесс прохождения импульса. Воспользуемся законом Кирхгофа:

$$(\overline{S}_{1} + S_{1})(\overline{u}_{1} + u_{1}) = (\overline{S}_{2} + S_{2})(\overline{u}_{2} + u_{2}),$$
(7)

где S₁, S₂, u₁, u₂ – отклонения вблизи стыка от фоновых значений площади сечения и скорости крови в сосудах 1 и 2 соответственно. В линеаризованном виде получаем:

$$\overline{S}_1 u_1 + S_1 \overline{u}_1 = \overline{S}_2 u_2 + S_2 \overline{u}_2.$$
(8)

В момент прохождения происходит наложение проходящего и отраженного импульсов (см. рис. 3), и соответствующие амплитуды складываются, то есть:

$$S_1 = S^+ + \widetilde{S}^-, \ u_1 = u^+ + \widetilde{u}^-, \ S_2 = \widetilde{S}^+, \ u_2 = \widetilde{u}^+.$$

Выразим *S* и *и* через инварианты Римана. Для этого воспользуемся уравнением состояния (3) и соотношениями (4). Получим:

$$S^{+} = \overline{\chi}_{1}p^{+} = \frac{\overline{\chi}_{1}\rho\overline{c}_{1}}{2}r^{+}, \quad \widetilde{S}^{-} = \overline{\chi}_{1}\widetilde{p}^{-} = -\frac{\overline{\chi}_{1}\rho\overline{c}_{1}}{2}\widetilde{r}^{-}, \quad \widetilde{S}^{+} = \overline{\chi}_{2}\widetilde{p}^{+} = \frac{\overline{\chi}_{2}\rho\overline{c}_{2}}{2}\widetilde{r}^{+},$$
$$u^{+} = \frac{1}{2}r^{+}, \qquad \widetilde{u}^{-} = \frac{1}{2}\widetilde{r}^{-}, \qquad \widetilde{u}^{+} = \frac{1}{2}\widetilde{r}^{+}.$$

Используем формулу (8), согласно которой $\overline{S} = \rho \overline{\chi c}^2$.

Подставляя полученные выражения в (8), после несложных преобразований имеем:

$$\rho \overline{\chi}_2 \overline{c}_2 (\overline{u}_2 + \overline{c}_2) \cdot \widetilde{r}^+ + \rho \overline{\chi}_1 \overline{c}_1 (\overline{u}_1 - \overline{c}_1) \cdot \widetilde{r}^- = \rho \overline{\chi}_1 \overline{c}_1 (\overline{u}_1 + \overline{c}_1) \cdot \widetilde{r}^+$$
(9)

Теперь воспользуемся условием равенства давлений на стыке сосудов: $p_1 = p_2$, где

$$p_{1} = p^{+} + \tilde{p}^{-} = \frac{\rho \bar{c}_{1}}{2} r^{+} - \frac{\rho \bar{c}_{1}}{2} \tilde{r}^{-}, \quad p_{2} = \tilde{p}^{+} = \frac{\rho \bar{c}_{2}}{2} \tilde{r}^{+},$$

$$\rho \bar{c}_{2} \tilde{r}^{+} + \rho \bar{c}_{1} \tilde{r}^{-} = \rho \bar{c}_{1} r^{+}.$$
(10)

то есть

Таким образом, для определения \tilde{r}^+ и \tilde{r}^- имеем систему уравнений (9), (10):

$$\rho \overline{\chi}_2 \overline{c}_2 (\overline{u}_2 + \overline{c}_2) \cdot \widetilde{r}^+ + \rho \overline{\chi}_1 \overline{c}_1 (\overline{u}_1 - \overline{c}_1) \cdot \widetilde{r}^- = \rho \overline{\chi}_1 \overline{c}_1 (\overline{u}_1 + \overline{c}_1) \cdot r^+;$$
$$\rho \overline{c}_2 \widetilde{r}^+ + \rho \overline{c}_1 \widetilde{r}^- = \rho \overline{c}_1 r^+.$$

Решая эту систему, находим:

$$\widetilde{r}^{+} = \frac{2\overline{\chi}_{1}\overline{c}_{1}^{2}}{\overline{c}_{2}(\overline{\chi}_{2}(\overline{c}_{2}+\overline{u}_{2})+\overline{\chi}_{1}(\overline{c}_{1}-\overline{u}_{1}))}r^{+}, \qquad (11)$$

$$\tilde{r}^{-} = \frac{\bar{\chi}_{2}(\bar{c}_{2} + \bar{u}_{2}) - \bar{\chi}_{1}(\bar{c}_{1} + \bar{u}_{1})}{\bar{\chi}_{2}(\bar{c}_{2} + \bar{u}_{2}) + \bar{\chi}_{1}(\bar{c}_{1} - \bar{u}_{1})}r^{+}.$$
(12)

Заметим, что в формулах (11), (12) знаменатель отличен от нуля, так как в наших предположениях $\overline{u} < \overline{c}$.

Итоговые таблицы для соединения сосудов см. в приложении.

Анализ результатов

<u>Замечание 1</u> Если параметры сосудов *1* и 2 совпадают, то из (11) и (12) следует, что $\tilde{r}^- = 0$, $\tilde{r}^+ = r^+$ - нет отражения, прошедший импульс равен исходному. <u>Замечание 2</u> Отраженный импульс отсутствует, если $\tilde{r}^- = 0$, то есть $\bar{\chi}_2(\bar{c}_2 + \bar{u}_2) = \bar{\chi}_1(\bar{c}_1 + \bar{u}_1)$ - идеальная стыковка (нет отражения) <u>Замечание 3</u> Проходящий импульс существует всегда, но он может быть

ослаблен за счет отражения.

IV. Прохождение импульса через тканевый узел

Описание

Рассмотрим прохождение импульса через тканевый узел с сопротивлением, обусловленным законом Дарси.

Рис.4 Фильтрация через ткань

В этом случае фоновые давления не равны $\bar{p}_1 \neq \bar{p}_2$ и связаны соотношением Дарси. Пусть для определенности $\bar{p}_1 > \bar{p}_2$, тогда объемный расход \bar{q}_{12} крови, протекающей из сосуда *1* в сосуд 2, равен:

$$\overline{q}_{12} = \kappa_{12} (\overline{p}_1 - \overline{p}_2). \tag{13}$$

При этом выполняется закон сохранения массы (при условии постоянства плотности крови):

$$q_{12} = \overline{S}_1 \overline{u}_1 = \overline{S}_2 \overline{u}_2. \tag{14}$$

Рис.5 Прохождение импульса через тканевый узел

Пусть из сосуда *1* набегает монофазный импульс r^+ , который проходит в сосуд *2* в виде \tilde{r}^+ и частично отражается обратно в сосуд *1* в виде \tilde{r}^- .

Нахождение амплитуд прошедшего и отраженного импульса

В процессе прохождения импульса расход крови через сечение T_{12} является непрерывным в отсутствии источника или стока (почка):

$$(\overline{S}_1 + S_1)(\overline{u}_1 + u_1) = (\overline{S}_2 + S_2)(\overline{u}_2 + u_2) = \overline{q}_{12} + q_{12} = Q_{12}.$$
 (15)

Расход крови Q_{12} и давления $P_1 = \overline{p}_1 + p_1$ и $P_2 = \overline{p}_2 + p_2$ удовлетворяют закону Дарси:

$$Q_{12} = \overline{q}_{12} + q_{12} = \kappa_{12}(\overline{p}_1 + p_1 - \overline{p}_2 - p_2).$$
(16)

Линеаризуя (9) и (10), с учетом (7), (8) получим:

$$\overline{S}_{1}u_{1} + S_{1}\overline{u}_{1} = \overline{S}_{2}u_{2} + S_{2}\overline{u}_{2} = q_{12}, \qquad (17)$$

$$q_{12} = \kappa_{12}(p_1 - p_2). \tag{18}$$

Здесь $S_1 = S^+ + \widetilde{S}^-$, $S_2 = \widetilde{S}^+$, $u_1 = u^+ + \widetilde{u}^-$, $u_2 = \widetilde{u}^+$, $p_1 = p^+ + \widetilde{p}^-$, $p_2 = \widetilde{p}^+$. Выразим *S*, *p* и *u* через *r*:

$$p^{+} = \frac{\rho \overline{c_{1}}}{2} r^{+}, \ \widetilde{p}^{-} = -\frac{\rho \overline{c_{1}}}{2} \widetilde{r}^{-}, \ \widetilde{p}^{+} = \frac{\rho \overline{c_{2}}}{2} \widetilde{r}^{+}, \ u^{+} = \frac{1}{2} r^{+}, \ \widetilde{u}^{-} = \frac{1}{2} \widetilde{r}^{-}, \ \widetilde{u}^{+} = \frac{1}{2} \widetilde{r}^{+}, S^{+} = \overline{\chi_{1}} p^{+} = \frac{\overline{\chi_{1}} \rho \overline{c_{1}}}{2} r^{+}, \quad \widetilde{S}^{-} = \overline{\chi_{1}} \widetilde{p}^{-} = -\frac{\overline{\chi_{1}} \rho \overline{c_{1}}}{2} \widetilde{r}^{-}, \quad \widetilde{S}^{+} = \overline{\chi_{2}} \widetilde{p}^{+} = \frac{\overline{\chi_{2}} \rho \overline{c_{2}}}{2} \widetilde{r}^{+}.$$

DDE3YEM $\overline{c}^{2} = \frac{\overline{S}}{-} \implies S = \rho \overline{\chi c}^{2}.$

Используем $\overline{c}^2 = \frac{S}{\rho \overline{\chi}} \implies \overline{S} = \rho \overline{\chi} \overline{c}^2$.

Подставляя эти выражения в (11) и (12), после несложных преобразований получаем систему уравнений для определения \tilde{r}^+ и \tilde{r}^- :

$$\rho \overline{\chi}_2 \overline{c}_2 (\overline{u}_2 + \overline{c}_2) \cdot \widetilde{r}^+ + \rho \overline{\chi}_1 \overline{c}_1 (\overline{u}_1 - \overline{c}_1) \cdot \widetilde{r}^- = \rho \overline{\chi}_1 \overline{c}_1 (\overline{u}_1 + \overline{c}_1) \cdot r^+, \qquad (19)$$

$$\left(\rho\overline{\chi}_{2}\overline{c}_{2}(\overline{u}_{2}+\overline{c}_{2})+\kappa_{12}\rho\overline{c}_{2}\right)\cdot\widetilde{r}^{+}+\kappa_{12}\rho\overline{c}_{1}\cdot\widetilde{r}^{-}=\kappa_{12}\rho\overline{c}_{1}\cdot r^{+}.$$
(20)

Отсюда

$$\widetilde{r}^{+} = \frac{2\overline{\chi}_{1}\overline{c}_{1}^{2}\kappa_{12}}{\overline{c}_{2}(\overline{\chi}_{2}\kappa_{12}(\overline{c}_{2}+\overline{u}_{2})+\overline{\chi}_{1}(\overline{c}_{1}-\overline{u}_{1})(\overline{\chi}_{2}(\overline{c}_{2}+\overline{u}_{2})+\kappa_{12}))}r^{+}, \qquad (21)$$

$$\widetilde{r}^{-} = \frac{\overline{\chi}_{2}\kappa_{12}(\overline{c}_{2} + \overline{u}_{2}) - \overline{\chi}_{1}(\overline{c}_{1} + \overline{u}_{1})(\overline{\chi}_{2}(\overline{c}_{2} + \overline{u}_{2}) + \kappa_{12})}{\overline{\chi}_{2}\kappa_{12}(\overline{c}_{2} + \overline{u}_{2}) + \overline{\chi}_{1}(\overline{c}_{1} - \overline{u}_{1})(\overline{\chi}_{2}(\overline{c}_{2} + \overline{u}_{2}) + \kappa_{12})}r^{+}.$$
(22)

Итоговые таблицы для фильтрации через ткань см. в приложении.

Анализ результатов:

Замечание 1 Проходящий импульс существует всегда. Замечание 2 Отраженный импульс равен нулю (идеальное прохождение), если

$$\overline{\chi}_2 \kappa_{12} (\overline{c}_2 + \overline{u}_2) = \overline{\chi}_1 (\overline{c}_1 + \overline{u}_1) \big(\overline{\chi}_2 (\overline{c}_2 + \overline{u}_2) + \kappa_{12} \big).$$

V. Прохождение импульса через точку ветвления

Описание

Рассмотрим разветвление сосуда 1 с фоновыми параметрами $\overline{u}_1, \overline{S}_1, \overline{\chi}_1, \overline{c}_1$ в сосуды 2 и 3 с соответствующими параметрами $\overline{u}_2, \overline{S}_2, \overline{\chi}_2, \overline{c}_2$ и $\overline{u}_3, \overline{S}_3, \overline{\chi}_3, \overline{c}_3$. Фоновое давление предполагается постоянным $\overline{p}_1 = \overline{p}_2 = \overline{p}_3 = \overline{p}$.

Рис. 6 Ветвление сосуда

Импульс r^+ из сосуда *1*, пройдя точку ветвления, разделится на импульс \tilde{r}_2^+ , который пройдет в сосуд *2*, импульс \tilde{r}_3^+ , который пройдет в сосуд *3*, и импульс \tilde{r}^- , который отразится обратно в сосуд *1*.

Рис.7 Прохождение импульса через точку ветвления

Нахождение амплитуд прошедшего и отраженного импульса Рассмотрим процесс прохождения импульса. Условие сопряжения расходов:

$$(\overline{S}_1+S_1)(\overline{u}_1+u_1)=(\overline{S}_2+S_2)(\overline{u}_2+u_2),$$

в линеаризованном виде получаем:

$$\overline{S}_{1}u_{1} + S_{1}\overline{u}_{1} = \overline{S}_{2}u_{2} + S_{2}\overline{u}_{2} + \overline{S}_{3}u_{3} + S_{3}\overline{u}_{3}.$$
(23)

Условие сопряжения давлений:

$$\overline{p}_1 + p_1 = \overline{p}_2 + p_2 = \overline{p}_3 + p_3,$$

учитывая, что фон давления постоянный, имеем:

$$p_1 = p_2 = p_3. (24)$$

,

Здесь

$$S_1 = S^+ + \widetilde{S}^-, \ u_1 = u^+ + \widetilde{u}^-, \ p_1 = p^+ + \widetilde{p}^-,$$

$$S_{2} = \widetilde{S}_{2}^{+}, \ S_{3} = \widetilde{S}_{3}^{+}, \ u_{2} = \widetilde{u}_{2}^{+}, \ u_{3} = \widetilde{u}_{3}^{+}, \ p_{2} = \widetilde{p}_{2}^{+}, \ p_{3} = \widetilde{p}_{3}^{+}.$$

Выразим *S*, *p* и *u* через *r*:

$$p^{+} = \frac{\rho \overline{c_{1}}}{2} r^{+}, \ \widetilde{p}^{-} = -\frac{\rho \overline{c_{1}}}{2} \widetilde{r}^{-}, \ \widetilde{p}_{2}^{+} = \frac{\rho \overline{c_{2}}}{2} \widetilde{r}_{2}^{+}, \ \widetilde{p}_{3}^{+} = \frac{\rho \overline{c_{3}}}{2} \widetilde{r}_{3}^{+}$$
$$u^{+} = \frac{1}{2} r^{+}, \ \widetilde{u}^{-} = \frac{1}{2} \widetilde{r}^{-}, \ \widetilde{u}_{2}^{+} = \frac{1}{2} \widetilde{r}_{2}^{+}, \ \widetilde{u}_{3}^{+} = \frac{1}{2} \widetilde{r}_{3}^{+}$$
$$S^{+} = \overline{\chi}_{1} p^{+} = \frac{\overline{\chi}_{1} \rho \overline{c_{1}}}{2} r^{+}, \ \widetilde{S}^{-} = \overline{\chi}_{1} \widetilde{p}^{-} = -\frac{\overline{\chi}_{1} \rho \overline{c_{1}}}{2} \widetilde{r}^{-},$$
$$\widetilde{S}_{2}^{+} = \overline{\chi}_{2} \widetilde{p}_{2}^{+} = \frac{\overline{\chi}_{2} \rho \overline{c_{2}}}{2} \widetilde{r}_{2}^{+}, \ \widetilde{S}_{3}^{+} = \overline{\chi}_{3} \widetilde{p}_{3}^{+} = \frac{\overline{\chi}_{3} \rho \overline{c_{3}}}{2} \widetilde{r}_{3}^{+}.$$

Используем $\bar{c}^2 = \frac{S}{\rho \bar{\chi}} \implies \bar{S} = \rho \bar{\chi} \bar{c}^2$.

Подставив в (23) и (24), после несложных преобразований получаем:

$$\overline{\chi}_1 \overline{c}_1 (\overline{u}_1 + \overline{c}_1) \cdot r^+ + \overline{\chi}_1 \overline{c}_1 (\overline{c}_1 - \overline{u}_1) \cdot \widetilde{r}^- = \overline{\chi}_2 \overline{c}_2 (\overline{u}_2 + \overline{c}_2) \cdot \widetilde{r}_2^+ + \overline{\chi}_3 \overline{c}_3 (\overline{u}_3 + \overline{c}_3) \cdot \widetilde{r}_3^+, \qquad (25)$$

$$\begin{cases} \rho \overline{c}_2 r_2 = \rho \overline{c}_1 (r - r^{-}) \\ \rho \overline{c}_3 \widetilde{r}_3^+ = \rho \overline{c}_1 (r^+ - \widetilde{r}^{-}) \end{cases}$$
(26)

Откуда находим:

$$\tilde{r}^{-} = \frac{\bar{\chi}_{2}(\bar{c}_{2} + \bar{u}_{2}) + \bar{\chi}_{3}(\bar{c}_{3} + \bar{u}_{3}) - \bar{\chi}_{1}(\bar{c}_{1} + \bar{u}_{1})}{\bar{\chi}_{2}(\bar{c}_{2} + \bar{u}_{2}) + \bar{\chi}_{3}(\bar{c}_{3} + \bar{u}_{3}) + \bar{\chi}_{1}(\bar{c}_{1} - \bar{u}_{1})}r^{+},$$
(27)

$$\widetilde{r}_{2}^{+} = \frac{2\overline{\chi}_{1}\overline{c}_{1}^{2}}{\overline{c}_{2}(\overline{c}_{2} + \overline{u}_{2}) + \overline{\chi}_{3}(\overline{c}_{3} + \overline{u}_{3}) + \overline{\chi}_{1}(\overline{c}_{1} - \overline{u}_{1}))}r^{+}, \qquad (28)$$

$$\widetilde{r}_{3}^{+} = \frac{2\overline{\chi}_{1}\overline{c}_{1}^{2}}{\overline{c}_{3}\left(\overline{\chi}_{2}\left(\overline{c}_{2}+\overline{u}_{2}\right)+\overline{\chi}_{3}\left(\overline{c}_{3}+\overline{u}_{3}\right)+\overline{\chi}_{1}\left(\overline{c}_{1}-\overline{u}_{1}\right)\right)}r^{+}.$$
(29)

Итоговые таблицы для ветвления сосудов см. в приложении.

Анализ результатов:

Замечание 1: Знаменатель в формулах (27)–(29) всегда отличен от нуля, т.к.

$$0 < \overline{u}_1 < \overline{c}_1.$$

<u>Замечание 2</u>: Отраженный импульс будет отсутствовать (идеальное ветвление), если

$$\overline{\chi}_2(\overline{c}_2 + \overline{u}_2) + \overline{\chi}_3(\overline{c}_3 + \overline{u}_3) = \overline{\chi}_1(\overline{c}_1 + \overline{u}_1).$$
(30)

VI. Отражение от стенки (заглушки)

Описание

Рассмотрим прохождение импульса в закрытом с одного конца сосуде. В этом случае резонно полагать фон покоящимся:

$$\overline{u} = 0. \tag{31}$$

По-прежнему будем рассматривать монофазный импульс $r^+ \neq 0, r^- = 0.$ Напомним, что при этом

$$r^{+} = u^{+} + \frac{p^{+}}{\rho \overline{c}} = 2u^{+} = \frac{2p^{+}}{\rho \overline{c}},$$

$$u^+ = 0.5r^+, \quad \widetilde{u}^- = 0.5\widetilde{r}^-, \quad p^+ = 0.5\rho\overline{c}\cdot r^+, \quad \widetilde{p}^- = -0.5\rho\overline{c}\cdot\widetilde{r}^-.$$

<u>Описание:</u> Импульс доходит до конца сосуда и полностью отражается обратно, проходящего импульса нет.

Рис.8 Отражение импульса от стенки

Нахождение амплитуды отраженного импульса

Рассмотрим процесс отражения импульса. В данном случае из закона Кирхгофа следует, что скорость на границе равна нулю:

$$\overline{S}u + S\overline{u} = 0 \implies \overline{S}u = 0 \implies$$

$$u_{zp} = 0, \qquad (32)$$

где
$$u_{2p} = u^+ + \widetilde{u}^- = 0.5(r^+ + \widetilde{r}^-)$$
.

Отсюда получаем, что амплитуда отраженного импульса равна амплитуде исходного импульса с противоположным знаком:

$$\widetilde{r}^{-} = -r^{+}. \tag{33}$$

Для давления получаем:

$$\widetilde{p}^{-} = p^{+}, \qquad (34)$$

$$p_{zp} = p^{+} + \tilde{p}^{-} = 2p^{+}.$$
(35)

Итоговые таблицы для отражения от стенки см. в приложении.

Анализ результатов:

Замечание: Во время отражения добавочное давление на стенку увеличивается вдвое.

VII. Заключение

Предложенная математическая модель дает возможность качественной и количественной оценки гемодинамических показателей в процессе прохождения импульсом крови «сложных» участков кровеносной системы таких, как соединение сосудов с разными параметрами, тканевый узел, ветвление сосудов, отражение от стенки сосуда.

Данная модель позволяет внести коррективы в расчет движения импульсов крови по графу сосудов [6], а также будет полезна для построения модели развития аневризмы.

Авторы с бесконечной благодарностью вспоминают неоценимый вклад и поддержку Антона Павловича Фаворского, который являлся идейным вдохновителем этой работы. Светлая память.

VIII. Литература

- 1. Ашметков И.В., Буничева А.Я., Лукшин В.А., Кошелев В.Б., Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко А.Б.. Математическое моделирование кровообращения. Компьютерные модели и прогресс медицины. М.: Наука, 2001. С. 194-218.
- 2. Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко А.Б.. Линейный анализ волн давления и скорости в системе эластичных сосудов. Препринт. М.: МАКС-Пресс, 2001, 37 с.
- 3. Ландау Л.Д., Лившиц Е.М.: Гидродинамика. М.: Наука, 1988, 736с.
- 4. *Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П.* Вычислительный эксперимент в гемодинамике // Дифференциальные уравнения. 2004. Т.40. № 7. С. 920-935.
- 5. Bunicheva A.Ya., Mukhin S.I., Sosnin N.V., Favorskii A.P., Khrulenko A.B. Mathematical modeling of some applied problems in haemodynamics // Computational Mathematics and Modeling. 2002. Vol.13, No. 4. P. 382-412.
- 6. Ашметков И.В., Буничева А.Я., Мухин С.И., Соколова Т.В., Соснин Н.В., Фаворский А.П. Математическое моделирование гемодинамики в мозге и большом круге кровообращения. Компьютер и мозг. М.: Наука, 2005. С. 39-99.
- Formaggia L., Quarteroni A., Veneziani A. The circulatory system: from case studies to mathematical modeling. Complex Systems in Biomedicine, Springer, Milan. 2006. P. 243-287
- 8. Кошелев В.Б., Мухин С.И., Соснин Н.В., Фаворский А.П. Математические модели квази-одномерной гемодинамики: Методическое пособие. М.: МАКС Пресс, 2010, 114 с.

	п	$u^{+} = 0.5r^{+}$	$\begin{split} \widetilde{u}^{+} &= 0.5\widetilde{r}^{+} \\ \widetilde{u}^{+} &= \frac{\widetilde{\chi}_{1}\widetilde{c}_{1}^{2}}{\widetilde{c}_{2}(\widetilde{\chi}_{2}(\widetilde{c}_{2}+\overline{u}_{2})+\widetilde{\chi}_{1}(\widetilde{c}_{1}-\overline{u}_{1}))}r^{+} \\ \widetilde{u}^{+} &= \frac{2\widetilde{\chi}_{1}\widetilde{c}_{1}^{2}}{\widetilde{c}_{2}(\widetilde{\chi}_{2}(\widetilde{c}_{2}+\overline{u}_{2})+\widetilde{\chi}_{1}(\widetilde{c}_{1}-\overline{u}_{1}))}u^{+} \end{split}$	$\begin{split} \widetilde{u}^{-} &= 0.5\widetilde{r}^{-} \\ \widetilde{u}^{-} &= 0.5\widetilde{r}^{-} \\ \widetilde{u}^{-} &= \frac{0.5(\widetilde{\chi}_{2}(\widetilde{c}_{2} + \widetilde{u}_{2}) - \widetilde{\chi}_{1}(\widetilde{c}_{1} + \widetilde{u}_{1}))}{\widetilde{\chi}_{2}(\widetilde{c}_{2} + \widetilde{u}_{2}) + \widetilde{\chi}_{1}(\widetilde{c}_{1} - \widetilde{u}_{1})} \\ \widetilde{u}^{-} &= \frac{\widetilde{\chi}_{2}(\widetilde{c}_{2} + \widetilde{u}_{2}) - \widetilde{\chi}_{1}(\widetilde{c}_{1} + \widetilde{u}_{1})}{\widetilde{\chi}_{2}(\widetilde{c}_{2} + \widetilde{u}_{2}) + \widetilde{\chi}_{1}(\widetilde{c}_{1} - \widetilde{u}_{1})} u^{+} \end{split}$	$\begin{split} u_1 &= u^+ + \widetilde{u}^- = 0.5(r^+ + \widetilde{r}^-) \\ u_1 &= \frac{\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) - \widetilde{\chi}_1 \overline{u}_1}{\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1)} r^+ \\ u_1 &= \frac{2(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1))}{\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1)} u^+ \\ u_2 &= \frac{2(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1))}{\widetilde{\chi}_1^2 \overline{c}_1^2} u^+ \\ u_2 &= \frac{\widetilde{\chi}_1^- \overline{c}_1^-}{\overline{c}_2(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1))} r^+ \\ u_2 &= \frac{2\widetilde{\chi}_2(\overline{\chi}_2(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1))}{\widetilde{c}_1^2} u^+ \end{split}$	рости крови в сосуде от постоянного ранения малых возмущений в сосуде.
	đ	$p^+ = 0.5 \rho \overline{c}_1 r^+$	$\begin{split} \widetilde{p}^{+} &= 0.5\rho\overline{\varepsilon}_{2}\widetilde{r}^{+} \\ \widetilde{p}^{+} &= \frac{\rho\overline{\chi}_{1}\overline{\varepsilon}_{1}^{2}}{\left(\overline{\chi}_{2}(\overline{\varepsilon}_{2}+\overline{u}_{2})+\overline{\chi}_{1}(\overline{\varepsilon}_{1}-\overline{u}_{1})\right)}r^{+} \\ \widetilde{p}^{+} &= \frac{2\overline{\chi}_{1}\overline{\varepsilon}_{1}}{\left(\overline{\chi}_{2}(\overline{\varepsilon}_{2}+\overline{u}_{2})+\overline{\chi}_{1}(\overline{\varepsilon}_{1}-\overline{u}_{1})\right)}p^{+} \end{split}$	$\begin{split} \widetilde{p}^{-} &= -0.5 \widetilde{\rho} \widetilde{e}_1 \widetilde{r}^{-} \\ \widetilde{p}^{-} &= -0.5 \widetilde{\rho} \widetilde{e}_1 (\widetilde{\chi}_2 (\widetilde{e}_2 + \widetilde{u}_2) - \widetilde{\chi}_1 (\widetilde{e}_1 + \widetilde{u}_1)) \\ \widetilde{p}^{-} &= \frac{-0.5 \widetilde{\rho} \widetilde{e}_1 (\widetilde{\chi}_2 - \widetilde{u}_2) + \widetilde{\chi}_1 (\widetilde{e}_1 - \widetilde{u}_1)) \\ \widetilde{p}^{-} &= \frac{\widetilde{\chi}_1 (\widetilde{e}_1 + \widetilde{u}_1) - \widetilde{\chi}_2 (\widetilde{e}_2 + \widetilde{u}_2) + \widetilde{\chi}_1 (\widetilde{e}_1 - \widetilde{u}_1) }{\widetilde{\chi}_2 (\widetilde{e}_2 + \widetilde{u}_2) + \widetilde{\chi}_1 (\widetilde{e}_1 - \widetilde{u}_1)} p^+ \end{split}$	$p_{1} = p^{+} + \widetilde{p}^{-} = 0.5 \rho \overline{c}_{1} (r^{+} - \widetilde{r}^{-}) =$ $= p_{2} = \widetilde{p}^{+} = 0.5 \rho \overline{c}_{2} \widetilde{r}^{+}$ $p_{1} = p_{2} = \frac{\rho \overline{\chi}_{1} \overline{c}_{1}^{2}}{\left(\overline{\chi}_{2} (\overline{c}_{2} + \overline{u}_{2}) + \overline{\chi}_{1} (\overline{c}_{1} - \overline{u}_{1})\right)} r^{+}$ $p_{1} = p_{2} = \frac{2 \overline{\chi}_{1} \overline{c}_{1}}{\left(\overline{\chi}_{2} (\overline{c}_{2} + \overline{u}_{2}) + \overline{\chi}_{1} (\overline{c}_{1} - \overline{u}_{1})\right)} p^{+}$	 <i>p</i>, <i>u</i> – малые отклонения давления и ско нт жесткости сосуда, <i>c</i> – скорость распрост
	2	$\frac{\lambda^{+}}{\overline{u_{1}}+\overline{c}_{1}}$	$\frac{\lambda^{+}}{\overline{u_{1}+c_{1}}}$	$\overline{u_1} + \overline{c_1}$		ния сосудов коэффицие
	Z	$\overline{\chi}_1$	$\overline{\mathcal{X}}_2$	$\overline{\chi}_1$		- <i>dp</i> –
/дов.	n	\overline{u}_1	\overline{u}_2	\overline{u}_1		cy coelline coellin
DOC RI	U	ē1	\overline{c}_2	c ₁		з точі <u>и</u> , <u>7</u>
очку соединень	Х	\mathcal{X}^+	$\frac{(\overline{u}_2+\overline{c}_2)}{(\overline{u}_1+\overline{c}_1)}\lambda^+$	$\frac{\left(\overline{c_1}-\overline{u_1}\right)}{\left(\overline{u_1}+\overline{c_1}\right)}\chi^+$		хождения чере араметров \overline{P} в
ща1. Прохождение импульса через т	Y	+	$\widetilde{r}^{+} = \frac{2\widetilde{\chi}_{1}\overline{c}_{1}^{2}}{\overline{c}_{2}(\widetilde{\chi}_{2}(\overline{c}_{2} + \overline{u}_{2}) + \widetilde{\chi}_{1}(\overline{c}_{1} - \overline{u}_{1}))}r^{+}$	$\widetilde{\gamma}^{-} = \frac{\overline{\chi}_{2}(\overline{c}_{2} + \overline{u}_{2}) - \overline{\chi}_{1}(\overline{c}_{1} + \overline{u}_{1})}{\overline{\chi}_{2}(\overline{c}_{2} + \overline{u}_{2}) + \overline{\chi}_{1}(\overline{c}_{1} - \overline{u}_{1})}r^{+}$		 6 2 длина импульса, т время про ия со среднефоновыми значениями п.
Табл	эчеликт	<u></u> 119н00хэп	<u></u> nmqəmodu	<i>пุ</i> 19ннәжиðшо	впнәржоходи вмәдә оә	Здес течен

IX. Приложение. Итоговые таблицы

· · · · · ·	1			
1	$\frac{\lambda^{+}}{\overline{u}_{1}+\overline{c}_{1}}$	6 .	$\frac{\lambda^+}{\overline{u}_1+\overline{c}_1}$	
Y	¥+	6.	$\frac{(\overline{\textbf{z}}_{1}-\overline{\textbf{u}}_{1})}{(\overline{\textbf{u}}_{1}+\overline{\textbf{c}}_{1})}\chi$	
п	$u^{+} = 0.5r^{+}$	$\widetilde{u}^+ = 0.5\widetilde{r}^+$	$\widetilde{u}^{-} = 0.5\widetilde{r}^{-}$	$\begin{split} u_1 &= u^+ + \widetilde{u}^+ = 0.\widetilde{S}(r^+ + \widetilde{r}^-) \\ u_1 &= \frac{\widetilde{\chi}_{\mathcal{S}} \kappa_{12}(\overline{c}_2 + \overline{u}_2) - \widetilde{\chi}_1^{\widetilde{u}} \overline{u}_1(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12})}{\widetilde{\chi}_2 \kappa_{12}(\overline{c}_2 + \overline{u}_2) - \widetilde{\chi}_1^{\widetilde{u}} (\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12})} \\ u_1 &= \frac{2\widetilde{\chi}_2 \kappa_{12}(\overline{c}_2 + \overline{u}_2) - \widetilde{\chi}_1^{\widetilde{u}} (\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12})}{\widetilde{\chi}_2 \kappa_{12}(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_{12})} u^+ \\ u_2 &= \widetilde{u}^+ = 0.\widetilde{S}^+ \\ u_2 &= \frac{\widetilde{\chi}_1^{\widetilde{c}} \widetilde{\tau}_1^{\widetilde{c}}}{\widetilde{c}_2 (\widetilde{\chi}_2 + \overline{u}_2) + \widetilde{\chi}_{12}) + \widetilde{\chi}_{12}} u^+ \\ u_2 &= \frac{2\widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}(\overline{c}_1 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1)(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12}))}{\widetilde{\chi}_1^{\widetilde{c}} \widetilde{\tau}_1^{\widetilde{c}} \kappa_{12}} u^+ \\ u_2 &= \frac{2\widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}(\overline{c}_1 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1)(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12}))}{\widetilde{z}_1^{\widetilde{c}} \widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}} u^+ \\ u_2 &= \frac{2\widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}(\overline{c}_1 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1)(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12})}{\widetilde{z}_1^{\widetilde{c}} \widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}} u^+ \\ u_2 &= \frac{2\widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1)(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12})}{\widetilde{z}_1^{\widetilde{c}} \widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}} u^+ \\ u_2 &= \frac{2\widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1(\overline{c}_1 - \overline{u}_1)(\widetilde{\chi}_2(\overline{c}_2 + \overline{u}_2) + \kappa_{12})}}{\widetilde{z}_1^{\widetilde{c}} \widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}} u^+ \\ u_2 &= \frac{2\widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}(\overline{c}_2 + \overline{u}_2) + \widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}}{\widetilde{z}_2 + \widetilde{u}_2} + \widetilde{\chi}_1^{\widetilde{c}} \kappa_{12}} u^+ \\ \end{array}$
d	$p^{+} = 0.5\rho\bar{c}_{1}r^{+}$	$\widetilde{P}^{+} = 0.5 \rho \overline{c}_{2} \widetilde{r}^{+}$	$\widetilde{p}^{-} = -0.5\rho\overline{c_1}\widetilde{r}^{-}$	$\begin{split} P_{1} &= p^{*} + \tilde{p}^{*} = 0.5 \rho \tilde{\pi}_{1}(r^{*} - \tilde{r}^{*}) \\ P_{1} &= \frac{\rho \tilde{\chi}_{1} \tilde{c}_{1}^{2} (\tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})}{\tilde{\chi}_{1} \tilde{c}_{1} (\tilde{c}_{1} - \tilde{u}_{1}) \tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})} r^{+} \\ P_{1} &= \frac{\rho \tilde{\chi}_{1} \tilde{c}_{1} (\tilde{\chi}_{1} (\tilde{c}_{2} + \tilde{u}_{2}) + \tilde{\chi}_{1})}{\tilde{\chi}_{1} \tilde{c}_{1} - \tilde{u}_{1} (\tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})} r^{+} \\ P_{2} &= \tilde{p}^{*} = 0.5 \rho \tilde{\kappa}_{1} \tilde{\chi}^{*} \\ P_{2} &= \frac{\rho \tilde{\chi}_{1} \tilde{c}_{1} (\tilde{c}_{1} - \tilde{u}_{1}) (\tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})}{\tilde{\chi}_{1} \tilde{c}_{1} \tilde{c}_{1} - \tilde{u}_{1} (\tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})} r^{+} \\ P_{2} &= \frac{\rho \tilde{\chi}_{1} \tilde{c}_{1} \kappa_{12}}{\tilde{\chi}_{2} \kappa_{12} (\tilde{c}_{2} + \tilde{u}_{2}) + \tilde{\chi}_{1} (\tilde{c}_{1} - \tilde{u}_{1}) (\tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})} r^{+} \\ P_{2} &= \frac{2 \tilde{\chi}_{1} \tilde{c}_{1} \kappa_{12}}{\tilde{\chi}_{2} \kappa_{12} (\tilde{c}_{2} + \tilde{u}_{2}) + \tilde{\chi}_{1} (\tilde{c}_{1} - \tilde{u}_{1}) (\tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})} r^{+} \\ P_{2} &= \frac{2 \tilde{\chi}_{1} \tilde{c}_{1} \kappa_{12}}{\tilde{\chi}_{2} \kappa_{12} (\tilde{c}_{2} + \tilde{u}_{2}) + \tilde{\chi}_{1} (\tilde{c}_{1} - \tilde{u}_{1}) (\tilde{\chi}_{2} (\tilde{c}_{2} + \tilde{u}_{2}) + \kappa_{12})} r^{+} \\ \end{array}$
	** *	$\tilde{r}^{+} = \frac{2\bar{\chi}_{12}^{2}\kappa_{12}}{\bar{c}_{2}(\bar{\chi}_{2}\kappa_{12}(\bar{c}_{2} + \bar{u}_{2}) + \bar{\chi}_{1}(\bar{c}_{1} - \bar{u}_{1})(\bar{\chi}_{2}(\bar{c}_{2} + \bar{u}_{2}) + \kappa_{12}))}r^{+}$	$\widetilde{r}^{-} = \frac{\widetilde{\chi}_{2} \kappa_{12} (\widetilde{c}_{2} + \widetilde{u}_{2}) - \widetilde{\chi}_{1} (\widetilde{c}_{1} + \widetilde{u}_{1}) (\widetilde{\chi}_{2} (\widetilde{c}_{2} + \widetilde{u}_{2}) + \kappa_{12})}{\widetilde{\chi}_{2} \kappa_{12} (\widetilde{c}_{2} + \widetilde{u}_{2}) + \widetilde{\chi}_{1} (\widetilde{c}_{1} - \widetilde{u}_{1}) (\widetilde{\chi}_{2} (\widetilde{c}_{2} + \widetilde{u}_{2}) + \kappa_{12})} r^{+}$	
วจบลับพร	п уляндохэп	nnmqəmodu	личнн <i>өж</i> рдшО	иннө <i>ржохо</i> ди вмэдэ оэ

среднефоновыми значениями параметров \overline{p} и \overline{u} , $\overline{\chi} = dS/dp$ – коэффициент жесткости сосуда, \overline{c} – скорость распространения малык возмущений в сосуде.

77	$u^{+} = 0.5r^{+}$	$\begin{split} \widetilde{u}_{2}^{+} &= 0.5\widetilde{r}_{1}^{+} \\ \widetilde{u}_{2}^{+} &= \frac{\widetilde{r}_{2}(\widetilde{r}_{2}(\widetilde{r}_{2}+\widetilde{u}_{2})+\widetilde{r}_{3}(\widetilde{r}_{3}+\widetilde{u}_{3})+\widetilde{r}_{1}(\widetilde{r}_{1}-\widetilde{u}_{1}))}{2\widetilde{r}_{1}^{2}\widetilde{r}_{1}^{2}} \\ &+ \\ \widetilde{u}_{2}^{+} &= \frac{2\widetilde{r}_{1}(\widetilde{r}_{2}(\widetilde{r}_{2}+\widetilde{u}_{2})+\widetilde{r}_{3}(\widetilde{r}_{3}+\widetilde{u}_{3})+\widetilde{r}_{1}(\widetilde{r}_{1}-\widetilde{u}_{1}))}{2\widetilde{r}_{1}^{2}(\widetilde{r}_{3}+\widetilde{u}_{3})+\widetilde{r}_{1}(\widetilde{r}_{1}-\widetilde{u}_{1}))}u^{+} \end{split}$	$\begin{aligned} \widetilde{u}_{3}^{+} &= 0.5\widetilde{r}_{3}^{+} \\ & \widetilde{u}_{3}^{+} &= \frac{\widetilde{v}_{3}(\widetilde{r}_{2})^{2}}{\widetilde{v}_{3}(\widetilde{v}_{2}+\widetilde{u}_{2})+\widetilde{\chi}_{3}(\widetilde{v}_{3}+\widetilde{u}_{3})+\widetilde{\chi}_{1}(\widetilde{v}_{1}-\widetilde{u}_{1}))}r^{+} \\ & + & \widetilde{u}_{3}^{+} &= \frac{2\widetilde{\chi}_{1}\widetilde{v}_{1}^{2}}{\widetilde{v}_{3}(\widetilde{v}_{2}+\widetilde{u}_{2})+\widetilde{\chi}_{3}(\widetilde{v}_{3}+\widetilde{u}_{3})+\widetilde{\chi}_{1}(\widetilde{v}_{1}-\widetilde{u}_{1}))}u^{+} \end{aligned}$	$\begin{split} \widetilde{u}^{-} &= 0.5\widetilde{r}^{-} \\ \widetilde{u}^{-} &= \frac{0.5(\widetilde{\chi}_{2}(\widetilde{c}_{2} + \widetilde{u}_{2}) + \widetilde{\chi}_{3}(\widetilde{c}_{3} + \widetilde{u}_{3}) - \widetilde{\chi}_{1}(\widetilde{c}_{1} + \widetilde{u}_{1}))}{\widetilde{\chi}^{+}} \\ \widetilde{u}^{-} &= \frac{0.5(\widetilde{\chi}_{2}(\widetilde{c}_{2} + \widetilde{u}_{2}) + \widetilde{\chi}_{3}(\widetilde{c}_{3} + \widetilde{u}_{3}) + \widetilde{\chi}_{1}(\widetilde{c}_{1} - \widetilde{u}_{1})}{\widetilde{\chi}^{-}} \\ \widetilde{u}^{-} &= \frac{\widetilde{\chi}_{2}(\widetilde{c}_{2} + \widetilde{u}_{2}) + \widetilde{\chi}_{3}(\widetilde{c}_{3} + \widetilde{u}_{3}) - \widetilde{\chi}_{1}(\widetilde{c}_{1} - \widetilde{u}_{1})}{\widetilde{\chi}^{-}} \\ \end{split}$	$\begin{split} u_1 &= u^+ + \tilde{u}^- = 0.5(r^+ + \tilde{r}^-) \\ u_1 &= \frac{\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) - \tilde{\chi}_1 u_1}{\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1)} r^+ \\ u_1 &= \frac{2(\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))}{\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))} u^+ \\ u_2 &= \frac{2(\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))}{\tilde{\tau}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))} u^+ \\ u_2 &= \frac{2(\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))}{\tilde{\tau}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))} u^+ \\ u_3 &= \tilde{u}_3^+ = 0.5\tilde{\eta}_3^+ \\ u_3 &= \frac{2(\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))}{\tilde{\tau}_3(\tilde{\tau}_1^2} u^+ \\ u_3 &= \frac{2(\tilde{\chi}_2(\tilde{c}_2 + u_2) + \tilde{\chi}_3(\tilde{c}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))}{\tilde{\tau}_3(\tilde{\tau}_3(\tilde{\tau}_3 + u_3) + \tilde{\chi}_1(\tilde{c}_1 - u_1))} u^+ \end{split}$
đ	$p^+ = 0.5\rho\bar{c}_1r^+$	$\begin{split} \widetilde{p}_{2}^{+} &= 0.5 \rho \widetilde{c}_{2} \widetilde{\gamma}_{2}^{+} \\ \widetilde{p}_{2}^{+} &= \frac{\rho \widetilde{\chi}_{1} \widetilde{c}_{1}^{2}}{\left(\widetilde{\chi}_{2}(\widetilde{c}_{2} + \overline{u}_{2}) + \widetilde{\chi}_{3}(\widetilde{c}_{3} + \overline{u}_{3}) + \widetilde{\chi}_{1}(\widetilde{c}_{1} - \overline{u}_{1})\right)} r^{+} \\ \widetilde{p}_{2}^{+} &= \frac{2 \widetilde{\chi}_{1} \widetilde{c}_{1}}{\left(\widetilde{\chi}_{2}(\widetilde{c}_{2} + \overline{u}_{2}) + \widetilde{\chi}_{3}(\widetilde{c}_{3} + \overline{u}_{3}) + \widetilde{\chi}_{1}(\widetilde{c}_{1} - \overline{u}_{1})\right)} p^{-} \end{split}$	$\begin{split} \tilde{p}_{3}^{+} &= 0.5 \rho \tilde{c}_{3} \tilde{\gamma}_{3}^{+} \\ \tilde{p}_{3}^{+} &= \frac{\rho \tilde{\chi}_{1} \tilde{c}_{1}^{2}}{\left(\tilde{\chi}_{2}(\tilde{c}_{2} + \tilde{u}_{2}) + \tilde{\chi}_{3}(\tilde{c}_{3} + \tilde{u}_{3}) + \tilde{\chi}_{1}(\tilde{c}_{1} - \tilde{u}_{1})\right)}{2\tilde{\chi}_{1}^{2} \tilde{c}_{1}} \\ \tilde{p}_{3}^{+} &= \frac{2\tilde{\chi}_{1} \tilde{c}_{1}}{\left(\tilde{\chi}_{2}(\tilde{c}_{2} + \tilde{u}_{2}) + \tilde{\chi}_{3}(\tilde{c}_{3} + \tilde{u}_{3}) + \tilde{\chi}_{1}(\tilde{c}_{1} - \tilde{u}_{1})\right)}{p}^{2} \end{split}$	$\begin{split} \widetilde{p}^{-} &= -0.5\rho \varepsilon_1\widetilde{p}^{-} \\ \widetilde{p}^{-} &= \frac{0.5\rho \varepsilon_1(\widetilde{z}_1(\varepsilon_1 + \overline{u}_1) - \widetilde{z}_2(\varepsilon_2 + \overline{u}_2) - \widetilde{z}_3(\varepsilon_3 + \overline{u}_3)}{\widetilde{z}_2(\varepsilon_2 + \overline{u}_2) + \widetilde{z}_3(\varepsilon_3 + \overline{u}_3) + \widetilde{z}_1(\varepsilon_1 - \overline{u}_1)} \\ \widetilde{p}^{-} &= \frac{\widetilde{z}_1(\varepsilon_1 + \overline{u}_1) - \widetilde{z}_2(\varepsilon_2 + \overline{u}_2) - \widetilde{z}_3(\varepsilon_3 + \overline{u}_3) + \widetilde{z}_1(\varepsilon_1 - \overline{u}_1)}{\widetilde{z}_2(\widetilde{\varepsilon}_2 + \overline{u}_2) + \widetilde{z}_3(\widetilde{\varepsilon}_3 + \overline{u}_3) + \widetilde{z}_1(\widetilde{\varepsilon}_1 - \overline{u}_1)} p^+ \end{split}$	$\begin{split} p_1 &= p_2 = p_3 = 0.5 \rho \tilde{e}_2 \tilde{r}_2^+ = \\ &= \frac{\rho \tilde{\chi}_1 \tilde{e}_1^2}{\tilde{\chi}_2 (\tilde{e}_2 + \tilde{u}_2) + \tilde{\chi}_3 (\tilde{e}_3 + \tilde{u}_3) + \tilde{\chi}_1 (\tilde{e}_1 - \tilde{u}_1))} r^+ = \\ &= \frac{2 \tilde{\chi}_1 \tilde{e}_1}{(\tilde{\chi}_2 (\tilde{e}_2 + \tilde{u}_2) + \tilde{\chi}_3 (\tilde{e}_3 + \tilde{u}_3) + \tilde{\chi}_1 (\tilde{e}_1 - \tilde{u}_1))} p^+ \end{split}$
ь	$\frac{\lambda^+}{n_1+ \varepsilon_1}$	$\frac{\lambda^+}{n_1+c_1}$	$\frac{\lambda^+}{n_1+\sigma_1}$	<i>x</i> ⁺ <i>x</i> ⁺	ления уде от и \overline{u} , нения
122	īž	$\overline{\mathbb{Z}}_2$	$\overline{\mathbb{X}}_3$	\overline{x}_1	⊂ BCIE B COCT OB D OCTD3
n	\overline{u}_1	\overline{u}_2	<u>u</u> 3	<u>n</u>	суда гочку метр заспр
ю	ēı	- <u>c</u> 1	31	5	ия со рез Сть р
r	¥+	$\frac{(\overline{u_1}+\overline{v_1})}{(\overline{u_1}+\overline{v_1})}\overline{\lambda}$	$\frac{(\overline{u}_3+\overline{c}_3)}{(\overline{u}_1+\overline{c}_1)}\chi^*$	$\frac{\left(\vec{c}_1-\vec{u}_1\right)}{\left(\vec{u}_1+\vec{c}_1\right)}\lambda^+$	ку ветвлен ождения ч начениями
b.	+ &	$\widetilde{\gamma}_{2}^{+} = \frac{2\widetilde{\chi}_{1}\tilde{\sigma}_{1}^{2}}{\overline{\sigma}_{2}(\overline{\chi}_{2}(\overline{\sigma}_{2} + \overline{u}_{2}) + \overline{\chi}_{3}(\overline{\sigma}_{3} + \overline{u}_{3}) + \overline{\chi}_{1}(\overline{\sigma}_{1} - \overline{u}_{1}))}r^{+}$	$\tilde{s}_{3}^{+} = \frac{2\bar{x}_{1}\bar{\varepsilon}_{1}^{2}}{\bar{\varepsilon}_{3}(\bar{x}_{2}(\bar{\varepsilon}_{2}+\underline{u}_{2})+\bar{x}_{3}(\bar{\varepsilon}_{3}+\underline{u}_{3})+\bar{x}_{1}(\bar{\varepsilon}_{1}-\underline{u}_{1}))}r^{+}$	$\tilde{\gamma}^{-} = \frac{\overline{Z}_{2}(\overline{c}_{2} + \overline{u}_{2}) + \overline{Z}_{3}(\overline{c}_{3} + \overline{u}_{3}) - \overline{Z}_{1}(\overline{c}_{1} + \overline{u}_{1})}{\overline{Z}_{2}(\overline{c}_{2} + \overline{u}_{2}) + \overline{Z}_{3}(\overline{c}_{3} + \overline{u}_{3}) + \overline{Z}_{1}(\overline{c}_{1} - \overline{u}_{1})}\gamma^{+}$	Таблица3. Прохождение импульса через то Здесь λ - длина импульса, τ - время прох сосудов. p , u – малые отклонения давлен постоянного течения со среднефоновыми з $\overline{\chi} = dS/dp$ – коэффициент жесткости сосуда малых возмущений в сосуде.
		7 Q . (202 9 μητηροποδι	E 6x202 a numéamodu	ทูเจงหอสนเอ	หาเหลอุxcoxodu หางองไอ oo

									ı Å
n	$u^{+} = 0.5r^{+}$	$\widetilde{u}^+ = 0$	$\widetilde{u}^- = 0.5\widetilde{r}^-$	$\widetilde{u}^{-} = -0.5r^{+}$	$\widetilde{u}^{-} = -u^{+}$		$u_{zp} = u^+ + \widetilde{u}^- = 0.5(r^+ + \widetilde{r}^-) = 0$		непет оточнвотоон то еписот в наони н
d	$p^+ = 0.5 \rho \bar{c} r^+$	$\widetilde{p}^+ = 0$	$\widetilde{p}^{-} = -0.5 \rho \overline{c} \widetilde{r}^{-}$	$\widetilde{p}^{-} = 0.5 \rho \overline{c} r^{+}$	$\widetilde{p}^- = p^+$	$p_{zp} = p^+ + \widetilde{p}^- = 0.5\rho \overline{c}(r^+ - \widetilde{r}^-)$	$p_{zp} = \rho \bar{c} r^+$	$p_{zp} = 2 p^+$	гоодомо и винецаец виненопато егном –
1	01 Xt		;	2 1	C				11 11
х	\mathcal{X}^{\dagger}	0		\mathcal{X}^{+}_{+}					BUIDEN-64TO BIVE
r	r++	$\widetilde{r}^+ = 0$		$\widetilde{r}^{-} = -r^{+}$					пушков 7 - Бн
DARYMAD	исходный	иротедтий		отраженный		Q	epena	ирохожоения	3 TAGE 2 - THURS

суда	
õ	
стенки	
OT	
ние импульса	
Отражен	
Таблица4.	

одсер n - диппа пищульса, t - врема отражения, <math>p, u - малыс отмловения давления и скорости крови в сосуде с $со среднефоновыми значениями параметров <math>\overline{p}$ и \overline{u} , \overline{c} – скорость распространения малых возмущений в сосуде.