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Построение опорного углового движения для обеспечения разгрузки 

маховиков 

 

В работе рассматривается задача бестопливной разгрузки маховичной 

системы управления в режиме солнечной ориентации. Показано, что всегда 

можно подобрать такую ориентацию спутника, чтобы происходила разгрузка 

маховиков как при использовании момента сил давления солнечного излучения, 

так и при использовании гравитационного момента. Получены точные 

выражения для нахождения ориентации КА, обеспечивающей оптимальную 

разгрузку маховиков, а также приведены более простые формулы для 

построения близкой к оптимальной ориентации 
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Reference angular motion synthesis for reaction wheels desaturation 

 

The paper considers the problem of fuelless reaction wheels desaturation for a 

satellite in solar acquisition mode. It is shown that there is always angular motion in 

the vicinity of required one when reaction wheels can be desaturated either with the aid 

of solar pressure torque or gravitational one. Optimal desaturation attitude is found in 

close form. Additionally, near optimal simplified expressions for desaturation attitude 

are also presented. 
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Introduction 

Most of all space missions involve special angular motion. It could be solar 

pointing for spacecraft (SC) battery recharging, remote sensing missions or 

stabilization for data transmitting. Usually gyroscopic actuators such as Reaction 

Wheels (RW) and Control Moment Gyroscopes (CMG) are used to control SC attitude. 

They can offer good accuracy and decent control torque, which allow us to perform 

fast and precise maneuvers. Unfortunately, these systems have substantial drawback: 

under certain conditions they are unable to produce the necessary control torque along 

the specific direction, therefore SC lost controllability. For RW this condition is named 

saturation, and for CMG it is the singularity problem. This paper considers the RW 

saturation problem only.  

The saturation of RW occurs when its angular rate reaches the limit, , thus RW 

will not be able to produce the necessary control torque. In order to desaturate RW one 

can use additional attitude control systems, such as magnetorquers or thrusters. 

Magnetic attitude control systems can be used only in the presence of external magnetic 

field, i.e. only at sufficiently low Earth orbits. Thrusters require propellant, so their 

utilization might greatly affect the SC lifetime and/or maximum payload mass.  

Main reason of RW saturation is the external torques influence, e.g. gravitational 

and solar radiation pressure (SRP) torque. These torques are usually accounted only in 

control algorithm, so RW must compensate them, but during required attitude motion 

construction they are usually omitted. In this paper we suggest an algorithm of angular 

motion synthesis that will allow us to simultaneously provide SC solar pointing and 

RW desaturation using SRP and gravitational torques.  

Notice, that the similar problem has been already investigated in some papers. 

For example, in [1] the algorithm of angular motion synthesis for RW desaturation 

using gravitational torque is investigated, but the suggested technique is essentially 

differs from the one we describe here. In papers [2,3] another algorithm of RW 

desaturation using gravitational torque was suggested, but it requires unconstrained SC 

angular motion, while we consider solar pointed SC. There are also papers that suggest 

to use magnetic [4,5] and reactive [6] attitude control systems for RW desaturation. 

The paper is organized as follows. In the first section, we present detailed 

problem statement. In the second section we obtain simplified expressions for SRP 

torque. The third section is dedicated to reference angular motion construction. In the 

fourth section we describe well-known Lyapunov-based attitude control algorithm. 

Finally, in the fifth section we provide some numerical simulations. 

1. Problem Statement 

 Solar stabilization is one of the most common angular motion modes. It is used 

to recharge batteries installed on the spacecraft. The only constraint to be satisfied 

during this motion is that normal to SC solar panels must be aligned with vector from 

the satellite to the Sun (Sun direction).  



4 

As it was mention earlier, at Low Earth Orbits it is reasonable to use magnetic 

attitude control systems, such as magnetics coils, for desaturation. On the other hand, 

at high altitudes Earth magnetic field is too weak to use it. As an example of such 

missions, we can mention geostationary satellites and the ones that move along highly 

elliptical orbits, which are used for study the interactions between Earth magnetic field 

and solar radiation, e.g. missions Cluster II and Magnetospheric MultiScale [7,8]. At 

such orbits, we either have to use thrusters for desaturation or develop new methods of 

angular motion construction. We will investigate the last approach. 

Consider the following mission: 

 SC moves along highly elliptical keplerian orbit, where we can distinguish 

two different modes of angular motion: near the pericenter, where the 

gravitational torque prevails, and far from the pericenter, where 

gravitational torque is negligible and only SRP torque will affect the SC 

angular motion.  

 There are two identical solar panels installed on the SC. Their parameters, 

such as coefficients of specularity and reflectivity, area and normals are 

supposed to be known. Solar panels are rigidly fixed.  

 We know SC tensor of inertia and center of mass location. 

 It is necessary to provide small angle between normal to solar panel and 

Sun direction for battery recharging. 

 Attitude control system consists of three noncomplanar reaction wheels.  

For this mission we have to obtain the algorithm of angular motion synthesis that 

provide RW desaturation. 

2. Solar Radiation Pressure Torque 

Consider the following model of SRP [9]: 

        0 2
, 2 ,1

3
1 ,s s s sd

c
dS   

   
       

  
F n n nr r r r n   

where 2

0 1367 W / m   is solar constant, c is speed of light, 
sr  is Sun direction, i.e. 

unit vector from SC center of mass to the Sun, n  is normal to the surface element dS , 

,   are reflectivity and specularity respectively. In accordance with this model, we 

can obtain the following expression for the solar radiation pressure torque: 

 

 0 ,

2 ,
2

(1 ) ( ) (1 ) , 1,2,
3

i s i i

s s i i s i

c
S

i   


 

 
    



 
  

 
 
 

r

r r n r n

M n R

n

 (1) 

where 
iR  – is the radius-vector from SC center of mass to the center of i-th solar panel, 

S  is the solar panel area (we consider identical solar panels, so their area, reflectivity 

and specularity are the same), in  is the normal to the i-th solar panel surface. Normals 
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to the solar panels are not necessarily coincide (Fig. 1), so angle between them can be 

arbitrary, but we will consider the case when this angle is rather small. 

 
Fig. 1. Satellite Schematics 

Total SRP torque is 

 
1 2.s  M M M   

Introduce the following notation: 

 

   

   

1 2 1 2

1 2 1 2

, ,

,

1 1

2 2

1 1

2 2
,

  





 

R R R R R

n nνn n n

ρ

  

 0 0 02
3

2
(1 ), (1 ), .a S S S

c c c
b d   

  
        

Take into account that angle between 
1 2,n n  is small: 

 2cos 1 1 ,, sin       νn   (2) 

where 0 / 2    is the angle between n  and 
1n  (the same as the angle between n  

and 
2n ) (see Fig. 2). Further, we will suppose that the constraint implied on the SC 

attitude is  

   cos,s maxr n   (3) 

where 1max   is the maximum acceptable angle between the mean normal n  and Sun 

direction. 



6 

 
Fig. 2. Normals to solar panels surfaces 

Let us rewrite expressions for SRP torque using the introduced notation:  

      ( , ) , ( ) , 1,2,,i s s s sb da i          M R r n n r n νr nρ r ν ν ν   

where “+” is used for the first solar panel ( 1i  ), and “–” for the second one ( 2i  ). 

Notice that 

         2 2

1 2 1 2 1 2 2 1 21 0
1 1

, , , ,
4 4

.     n n n n n n nnν n n n   

Since  , 1s r n , the angle between 
sr  and ν  will be small. Hence,  ,sr ν  is second 

order infinitesimal. Omitting all second order infinitesimals, we obtain the following 

expression for the SRP torque: 

   2 2 .2s s da b    r ρ νM R R n   (4) 

Notice that SRP torque consists of two terms. The first one corresponds to the absorbed 

solar radiation and depends on the SC attitude. The second one will appear only when 

the reflectivity is not equal to zero. Moreover, its direction does not depend on attitude 

and always will be the same in the frame bounded to the SC. We have to mention that 

this result was obtained using tentative assumption that angle between mean normal 

and Sun direction, as well as angle between normal to solar panels, is rather small. 

3. Angular Motion Synthesis 

Before we start developing angular motion construction algorithm, consider the 

following assumptions. Firstly, reaction wheels principle of operation is based on 

angular momentum conservation law. Hence, when there is no external torquesor when 

fast maneuvers are perfomed the total angular momentum of the satellite and reaction 

wheels remains unchanged, even if SC changes its attitude. Secondly, when SC is Sun-

pointed and its angular velocity along Sun vector equals to zero, SC angular momentum 

(without angular momentum stored in RW) is almost equal to zero. Thus, if we ensure 

that total angular momentum of the satellite (including RW) equals to zero, reaction 

wheels will be desaturated during Sun-stabilized motion. 
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Consider the equations that describe the total angular momentum evolution: 

 ,
d

dt


K
M   (5) 

where K  is the total angular momentum of SC and RW, M  is sum of all external 

torques, which corresponds to the SRP torque while SC moves far from pericenter and 

to the gravitational torque near the pericenter. Notice that 

      2 , 2 , .
d d

dt dt
K  K K K M   

Hence, in order to decrease the total angular momentum we have to ensure  , 0M K  .  

As it was mentioned above, SRP torque, as well as gravitational torque, depends 

on SC attitude. We can expect that we will not be always able to ensure  , 0M K , 

but if for every moment  

  , min,M K   (6) 

the total angular momentum at least will increase slower. Problem (6) and restriction 

(3) together allow us to find the necessary attitude.  

Obtained result can be generalized. For example, if solar stabilization is just 

temporary attitude motion mode and SC have some nominal one, where SC angular 

momentum without RW is 
0 constK  (e.g. inertial stabilization or spin stabilization), 

we can ensure that 
0K K , hence at the start of nominal motion RW angular 

momentum will be equal to zero, i.e. reaction wheels will be desaturated.  

Let us prove that if  0, 0 M K K  we will achieve the nominal angular 

momentum: 

 
    

     

0

2 2

0 0

0 0

0

2 , , 2

2

2 ,

, 2 , 2 , .

d d d
K

dt dt

d
K

dt dt

 
   

 

   

    K K K K K

K M K M M K

K

K

K K
  

Hence, if RW can storе enough angular momentum, we will be able to achieve any 

nominal angular momentum, so at the start of nominal angular motion RW will be 

completely desaturated. 

3.1 Coordinate Systems 

Let us introduce the following right-handed Cartesian coordinate systems: 

1 2 3aO YY Y  – Inertial Frame (IF): its origin 
aO  is located in the Earth center of mass, 

1aO Y  directed to the Vernal equinox of the J2000 epoch, 
3aO Y  is orthogonal to the 

ecliptic;  
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1 2 3Ox x x  – Body Frame (BF): its origin O  is located in the satellite center of mass, 

axes are its principal axes of inertia. We also suppose that mean normal n  is aligned 

with 
3Ox ; 

1 2 3Oz z z  – Solar Frame (SF): 
3Oz  is aligned with Sun direction, 

1Oz  is aligned 

with 
s r K (if 

s  r K 0  then 
1Oz  is aligned with normal to ecliptic plane), thus 

 2 30
T

K KK  in this coordinate system. 

1 2 3Oy y y  – Solar Panel Frame (SPF): 
3Oy  is aligned with n , 

1Oy  is aligned with 

n p  where 2 ap R  (if  n p 0  then SPF coincide with BF), thus  2 30
T

p pp  

in this coordinate system. 

1 2 3OZ Z Z  – Orbital-Solar Frame: 
3OZ  is aligned with the Sun direction, 

2OZ  is 

aligned with 
s satr r , where 

satr  is the radius-vector from the Earth center to the SC 

center of mass (if 
s sat rr 0  then 

2OZ  is aligned with normal to the ecliptic plane), 

thus  1 3 10 , 0
T

sat r r r r  in this coordinate system. 

If we suppose that a vector is written in some specific frame, we will use 

superscript: , , , ,Y x z y Z
a a a a a  for IF, BF, SF, SPF and OSF respectively. Translations 

between these frames are described using rotation matrices ijD  so 

 ,i j

ija D a   

where ,i j  can be Y, x, z, y, Z. 

3.2 Desaturation Using Solar Radiation Pressure Torque 

Let us consider the problem of desaturation at high altitudes, when SC moves 

far from the pericenter and SRP torque prevails. Rotation matrix from SF to SPF zyD  

can be described by Euler angles (sequence 3-1-3 with angles , ,    respectively): 

         

         

   

11

21

31

cos cos - cos sin sin ,

- cos sin  - cos cos sin ,

=sin sin ,

D

D

D

    

    

 



  

 

         

         

   

   

   

 

12 13

22 23

32 33

cos sin + cos cos sin , sin sin ,

cos cos cos  - sin sin , cos sin ,

-cos sin , cos .

D D

D D

D D

      

      

  

 

 

 

 

as we can see, angle between 
sr  and n  equals to  , hence constraint (3) can be 

rewritten: 

 .max max       (7) 

Further we will use only constraint in the form (7).  
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Additionally introduce notation  

   2 2 .b d   ρ νq R n   

Then expression for SRP torque is  

 .s s  rM p q   

Taking into account that 1max  , we can linearize w.r.t.   expressions for 
zyD : 

 

     

     

   

sin

cos

cos sin

-sin cos .

cos cos 1

zy

     

     

   

 
 

  
 
 



 



D   

Now let us return to the  ,sM K . The simplest form vectors K  and 
sr  have in SF, and 

vectors ,p q  – in SPF. Hence, 

        , , , , .z z y z y

s zy s zys       M K K p q Dr D r p K qK   

After simplification  

 
       

          
3 3 2 2 1 2

3 1 2 2 3 3

, cos sin

sin cos sin cos .

s q K K q q

K q q K p q

p   

    

   

   

  M K
  

Thus, we obtain the following minimization problem: 

 
     

          
3 3 2 2 1 2

3 1 2 2 3 3
, ,

cos sin

sin cos minsin cos ,

q K K q q

K q q K q

p

p
  

   

    

  

 







 
  (8) 

 .max max      

In order to solve it we will use Lagrange multipliers method and Karush–Kuhn–Tucker 

conditions [10]. Lagrange function of this system is  

 

     

          
   

3 3 2 2 1 2

3 1 2 2 3 3

1 2 3 3

cos sin

sin cos sin cos

.max max

L q K K q q

K q q K p q

q

p

K

   

    

     

   

  

  



    

  

Where 
i  are Lagrange multipliers. Thus, the necessary conditions for the minimum 

are 
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         

           

           

 

 

3 1 2 2 3 3 2 1

2 1 2 2 3 1 2

2 1 2 2 2 3 3

1

2

sin cos sin cos 0,

cos sin cos sin 0,

cos sin cos sin 0,

0

0,

.

0,

max

max

i

L
K q q K p q

L
q p q K q q

L
q p

K

q qK K p

     


      


      


  

  




     




    




   



  

 
















  

Hence, we obtain the system of equations that allow us to find all extremum of the 

function (8). In general case, it is quite complex problem to solve. Notice, that vector 

q  consists of two terms and one of them ( 2 ( )b d ρ ν  to be exact) is the first order 

infinitesimal because | | 1ν . In order to provide more energy, reflectivity of solar 

panels have to be small. Hence, since ,b d  are proportional to the reflectivity, 

2 ( )b d ρ ν  is the second order infinitesimal and can be omitted. Of course, the 

solution that we obtain using this assumption will not be the exact solution of the 

problem (8), but it will be close to the one.  

Consider vector q  in SPF (without omitted term). In this frame 

    2 30 , 0 0 1 .
T Ty yR R R n   

Hence 

    22 ( )2 0 0 .
Ty y y b d R b d   q nR   

Thus, 
3 2 0q q  . Let  

 
2 1 2 3 1 2 3( ), , .f K q p g K q h K p      

Then minimization problem (8) can be rewritten as 

 
      

, ,
minsin sin sin ,

.max max

f g h
  

    

  

  

  
  (9) 

and the system of equations for the extremum is 
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   

   

   

 

 

2 1

1

2

sin sin 0,

cos cos 0,

cos cos

0

0

0,

,

.

max

max

L
g h

L
f g

L
f h

   


   


   


  

  



 

 


   




 








 

 

   (10) 

The exact solution of this system of algebraic equation presented in the appendix. Here 

we only notice that minima of problem (9) will be achieved at the border of permissible 

region, i.e. when max  . When none of the , ,f g h  is equal to zero the total amount 

of extremum is not greater than twenty-four. Moreover, this function has a symmetry: 

if we replace   by   and ,   by ,      value of the function will not change. 

It is due to the fact that linearized matrix zyD  with the accuracy up to the second order 

infinitesimal does not change after the replacement. Therefore, we can consider only 

the case 
max  , so total amount of extremum is not greater than twelve.  

Notice that if 

   0 0, , 1 sig
2

n
2

max f
 

            ,  (11) 

where 

  
 

 0 02 2 2 2

sign
sin , cos ,

h

g f h

g g h
 




 


   (12) 

function (9) equals to 

 2 2

maxf g h   .  

This value is not optimal, that can be easily verified by substitution (11) and (12) in 

(10), but it shows that (with accuracy up to second order infinitesimal) we can always 

construct the SC attitude that simultaneously provide solar pointing and RW 

desaturation using only SRP torque.  

Let us prove that obtained simple approximate solution is close to the optimal 

one.  

 
      

2 2 2 2

sin smin i
0

s n ni
.

max

max max

f g hf g

g hf

h

hf g

    

 

 








 


   

If 0,f g h   then last expression is equal to 2 . Let us prove that 
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 

2 2
2

max

max

f g h

hf g



 







. 

We can rewrite it: 

  
2 2

max

1
2

2 2 .
2

f g h g h



 
 


 


 

  

Left part of this inequality is obviously nonpositive. Since  

 
2 2

2 2

g hg h



, 

the right part is nonnegative. Hence, we have proved that the approximate solution is 

worse than the optimal one by no more than 2  times. 

3.3 Desaturation Using Gravitational Torque 

Let us consider projection of SRP torque to the Sun direction 
sr : 

          2 2 2, 2 , 2 ,s s s s sb d b da          M r R R n r R ρ νnr ν rρ . 

As it was mentioned above, 2 ( )b d ρ ν  is second order infinitesimal. Since the angle 

between mean normal n  and Sun direction 
sr  is small,  2 ( ), sb dR n r  is also 

second order infinitesimal. Hence, angular momentum along the Sun direction does not 

change when we use SRP torque. Considering this, we will use gravitational torque 

only to desaturate angular momentum along Sun direction. Thus, we obtain the 

following minimization problem: 

 
  5

, ,3 min,

( , ) ,cos

s s sat sat

sat

s max

r





 
 








r Jrr K r

r n

 (13) 

where   is the Earth gravitational parameter, 
satr  is the SC radius-vector, J  is its tensor 

of inertia. The only parameter we can vary is SC attitude, i.e. rotation matrix 
ZxD  from 

OSF to BF. As before, we will describe it using Euler angles (sequence 3-1-3 with 

angles , ,    accordingly). Constraint of the minimization problem then can be 

simplified:  

 max max   .  

After linearization 
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     

     

   

cos sin

-sin cos

sin

cos

cos co 1s

Zx

     

     

   

 
 

  
 
 

D . 

In OSF Sun direction and SC radius-vector are 

    1 30 0 1 , 0
TTZ Z

s sat r r r r . 

Function to be minimized is 

     5 5
, ,3 3 , ,Z Z T x Z

s s sat sat s s sat Zx Zx sat

sat satr r

  
  

 
r K r K r r D JJ rr Dr r , (14) 

where x
J  is SC tensor of inertia in BF and 

 

0 0

0 0 .

0 0

x

A

B

C

 
 


 
 
 

J   

After simplification, (14) became 

 

   

       

2

15

1 3

3 ,
2

1

sin 2 2

cos 2 cos 2 .
2

s

sat

r

A B
r

r

r A B A B C


   








        


K r

  

Introduce notation 

 

       

   

2

1 1 35 5

1 35

, , , ,
2 2

, 2 ,

3 3

3

2 , .

2

2 2

s s

sat sat

s

sat

F r B A G A B
r r

H A B C
r

rr

r r

 



 
   

    

 

   

 

K r K r

K r   

Then problem (13) can be rewritten as follows 

 
   

, ,
sin( ) sin( )sin

.

min,

max max

F G H
  

   

 

   

 


  

As we can see, the obtained problem is the same as (9), thus we can find solution in 

the same way.  

Let us consider approximate solution (11) in more details. Considering notations, 

we can write exact expressions for 
0  from the previous section: 
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 
       

     

 

   

   

     

   

   

5

5

1 3

0 2 2
2 2

1 3

3

2 2

1 3

0 2 2
2 2

1 3

3

2

5

2

5

3
sign

sign 2
sin

3
2

2

-sign

2

3

, ,

,

,

2
2

3
2

2

-sign

,

cos

,

,
.

2

2

s s

sat

s

sat

s

sat

s

sat

s

r A B
G F r

r A B A B C
r

r B A

A B A B C

r A B C
r

H
r A B A B C

r

r A

r B A

G H
r

r
H

G

B C

B C

r

A B A
















   



   

 




   

 

  



 







 




K r K r

K r

K r

K r

K r

  

Euler angles ,   are defined by 
0 : 

 
   

0 0

2 sign ,

2
,

s B A
     

 
 

K r
. 

Hence, SC attitude relative to OSF is defined by signs of  3 ,sat sr  r r , , sK r  and its 

tensor of inertia. Therefore, if these signs do not change during the motion, the SC 

attitude will be fixed in OSF.  

Let us obtain closed expressions for OSF angular velocity. Its axes are 

 
 

 
1 3 2 3 1

,
,

,
, .sat s sat s

s

sat s sat s


  



r r r r
e r e

r
e e

r
e

r r
  

Angular velocity can be found using Poisson equations for rotation matrices 

 0[ ] ,Z

YZ YZ D Dω   

where 
YZD  is rotation matrix from IF to OSF, 0

Z
ω  OSF angular velocity, and introduced 

notation for skew-symmetric matrix of cross product 

 

3 2

3 1

2 1

0

: 0

0

[ ]

a a

a a

a a



 
 

 
 
  

a . 

Hence, the angular velocity is 

       3 10 1 2 3 2, , ,
TZ  ω e e eee e . 
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Since Sun direction changes slowly, we will neglect it, i.e. 
3 s  0e r . Time derivative 

of the first axis then  

 
    

 

 1 1 2 2

1

, , , ,

,

sat s sat s sat s sat s sat

sat ssat s sat s

 







v r v r e v r v r e e e v

rr r r r
e

r
. 

Here we have taken into account that  

          1 1 2 2 3 1 3 13, , , , , , 0sat sat sat sat s    v e e v e e v e e v r e e e . 

Hence, OSF angular velocity is 

 
 2 2

0

,
0 0 .

T

Z sat

sat s

 
   
  

e v

r r

e
ω   

As we can see, if 
satr  and 

sr  are collinear, OSF angular velocity became infinite. This 

fact have to be taken into account while we construct angular motion near the 

pericenter, i.e. if sat sr r  is small, desaturation using gravity torque will not work 

because RW will not be able to provide required angular velocity. Since Sun direction 

rotates in IF, time period when we can not use gravitational torque will be rather small, 

about several revolutions. Moreover, if pericenter located sufficiently far from the 

ecliptic we will always be able to desaturate RW using gravitational torque since 

sat sr r  will be large enough near the pericenter.  

4. Attitude Control 

In order to control SC attitude we will use well-known Lyapunov-based control 

algorithm [11–13] that provides asymptotic stability of the required (further we will 

call it reference) motion.  

SC equations of motion are: 

 
,

[ ] ,

x x x x x x x

ctrl ext

x

Yx Yx

  

 

J M Mω ω J ω

D Dω
  (15) 

where x
J  is SC tensor of inertia, x

ω  is its angular velocity, , x

ctrl

x

ext MM  are external and 

control torques respectively, 
YxD  is rotation matrix from IF to BF. Let reference motion 

be defined by rotation matrix 
YRD  from IF to Reference Frame (RF, further all vectors 

in this coordinate system will be noted with superscript R ) and by reference angular 

velocity 
R

refω , so 

 [ ] .R

YR ref YR  ω DD   (16) 

Attitude control have to ensure that RF and BF are coincide. 

Consider Lyapunov-function candidate 
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    
1

3 tr , const 0,,
2

x x x

rel rel a Rx aV k k    Dω J ω   (17) 

where T

Rx Yx YRD D D  is rotation matrix from RF to BF, 
x x R

rel Rx ref  ωDω ω  is relative 

angular velocity, tr  is trace of the matrix. Time derivative of V , using (15) and (16), 

is  

    1
tr ,,

2
,x x x x x x x R x R

rel rel a Rx rel rel Rx ref Rx ref aV k k


      ω J ω D ω J ω ωJ D Jω ωD S   

where  32 323 121 13 21 ,d d d d d d   S  
ijd  are components of 

RxD . If 

 , const 0,x x x R R x

rel Rx ref Rx ref a relk k k 
        J ω ω ω JD ωD ωJ S   

then 0V  . Control torque in this case is  

 .x x x x x x x R R x

ctrl ext rel Rx ref Rx ref a relk k
       M M ω J ω J ω D ω JD ω S ω  (18) 

Let us show that this control torque ensures asymptotic stability of the reference 

motion. We will use Barbashin-Krasovsky theorem [14], therefore we have to show 

that there exist positive-definite Lyapunov-function and its time derivative is 

nonpositive and equals to zero only at the set that does not contain any trajectories of 

the system except the reference motion.  

First part of this theorem obviously satisfied because (17) is positive definite. Its 

time derivative is nonpositive, and the set   , 0:relRx VM  D ω  consist of all the 

points  , eRx r lD ω  such as x

rel ω 0 . After substitution (18) in equations of motion, we 

obtain 

 
,

[ ] .

x x x

rel rel a

x

Rx rel Rx

k k



  

 

J Sω 0

D ω D

ω
  

We look for the trajectories only at the set M . As we can see, such trajectories are  

 , .x

rel ωS 0 0   

S 0  corresponds either to reference attitude or the one that differs from the reference 

to the rotation along any axis at the angle  . Hence, there are several equilibrium, and 

3,
x

Rx rel E ωD 0  (reference motion) is globally (except other equilibrium) 

asymptotically stable, while other equilibrium are unstable. Detailed analysis of 

attitude accuracy that provides this algorithm presented in [15]. 

As it was mentioned above, we divide SC motion into two modes: motion near 

the pericenter and far from it. Let us take a closer look at expressions for 
YRD  and 

R

refω  

that correspond to each of these modes. 

When SC moves far from pericenter its angular momentum changes very slow 

because SRP torque is rather small. Hence, attitude that ensures RW desaturation will 
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also change slowly. Therefore, when SC moves far from pericenter its angular velocity 

will be almost the same as the inertial stabilization, i.e. its reference attitude will be 

constant and angular velocity will be equal to zero: 

 ,, R

YR yx zy Yz ref ωD D D D 0   

where
YzD  is rotation matrix from IF to SF, 

zyD  corresponds to rotation matrix 

determined by Euler angles that are the solution of the minimization problem (9), 
yxD  

is constant rotation matrix from SPF to BF. 
YRD  changes slowly, so it will be necessary 

to redetermine it only once in several hours.  

During motion near the pericenter assumption of small angular velocity does not 

work since rotation matrix from IF to OSF changes very fast. Since we determine the 

necessary attitude by solving cubic equations, the problem of reference angular 

velocity and acceleration determination is rather complex to be solved analytically, so 

we will determine them numerically using (16). Rotation matrix from IF to RF in this 

case is 

 ,YR Zx YZD D D   

where 
YZD  is rotation matrix from IF to OSF, 

ZxD  is rotation matrix determined by 

Euler angles that were found from minimization problem (13). 

5. Numerical Simulation 

In order to verify obtained results the following mission was simulated: 

 SC moves along highly elliptical orbit with inclination equals to 60 , its 

pericenter is 9 000 km and apocenter is 150 000 km, one revolution is 

about 62.7 h. 

 Tensor of inertia is   2diag 150,120,20 g m0 kx  J . 

 Solar panels area is 23 м . 

    21 0 0.75 0.15 m, 0 0.85 0.15 m
T Tx x  R R . 

    1 20.075 0.075 0.996 , 0.075 0.075 0.996
T Tx x   n n . 

 Reflectivity 0.1,   specularity 0.5  . 

 Earth rotates along Sun with constant angular velocity, changes of Sun 

direction due to SC motion along the orbit is neglected, i.e. Sun direction 

rotates with the constant angular velocity in IF. 

 10max   . 

 Initial attitude 
3Yx D E and angular velocity  0 0 0 rad / s

Tx ω . 

 Maximum control torque is 0.01 N m . 

 Initial angular momentum stored in RW is   N s1 1 1 m
T

 H . 

 Far from pericenter reference attitude redefined every 40 000 s. 
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For the reference motion construction we used equations (4) for SRP torque. Reference 

motion mode changes when SC radius-vector equals to 15 000 km. For the numerical 

simulation more precise expression (1) was used for SRP torque and gravitational 

torque considered to be always affecting SC attitude motion. In Fig. 3-8 results of the 

reference motion construction algorithm work are presented. Here we used exact 

solution of minimization problems (9) and (13). 

 
Fig. 3. Total angular momentum 

 
Fig. 4. RW angular momentum 

 
Fig. 5.Total angular momentum  

along Sun direction 

 
Fig. 6. Total angular momentum 

orthogonal to Sun direction 

 
Fig. 7. SC angular velocity 

 
Fig. 8. Angle between mean normal  

and Sun direction 
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Peaks in Fig. 4 appear due to noticeable variation of the attitude in different 

modes of reference motion. In addition, near the pericenter SC angular velocity is not 

equal to zero, so RW have to store more angular momentum in order to spin the 

satellite. After the sixth revolution there are peaks during the motion far from 

pericenter. They appear as well as peaks in angular velocity because angular 

momentum orthogonal to the Sun direction is almost desaturated and optimal attitude 

changes greatly. Large angle between mean normal and Sun direction appears at small 

periods of time because SC have to be reorientated after switching reference motion 

modes and does not affect SC energy balance.  

In Fig. 9-14 results of another simulation are presented, where we used not the 

exact solutions of minimization problems but their approximate ones (11). 

 

 
Fig. 9. Total angular momentum 

 
Fig. 10. RW angular momentum 

 

 
Fig. 11. Total angular momentum  

along Sun direction 

 
Fig. 12. Total angular momentum 

orthogonal to Sun direction 
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Fig. 13. SC angular velocity 

 
Fig. 14. Angle between mean normal 

and Sun direction 

 

As we can see, angular momentum evolution, as well as other system parameters, 

are almost the same as the ones obtained using the exact solutions of minimization 

problems.  

Conclusion 

In the paper we have investigated the problem of fuelless reaction wheels 

desaturation. We have considered the satellite that moves along highly elliptical 

keplerian orbit with additional constraint: normal to solar panels, which are rigidly 

fixed to the satellite, have to be directed near to the Sun direction. In order to solve this 

problem we have suggested an algorithm of reference angular motion synthesis that 

allow us to use solar radiation pressure and gravitational torques fore desaturation.  

We have obtained simplified model of solar radiation torque for the satellite with 

two identical solar panels in the case when normals to these solar panels are almost 

coincide and satellite is Sun-stabilized. Using this model, we have obtained expressions 

that allow us to find the satellite attitude that ensures reaction wheels desaturation.  

We have shown that for both simplified model of solar radiation pressure torque 

and gravitational torque there is always an attitude that provide simultaneous solar 

pointing and reaction wheels desaturation. The problem of this attitude finding can be 

reduced to the solution of the system of trigonometric equation, which, in turn, can be 

reduced to the solution of one cubic equation. In addition, we have shown that this 

problem have simple approximate solution, which is worse than the exact one no more 

than by 2  times. 

Suggested algorithms have been tested on the model problem. Results of the 

simulation have shown that there is no noticeable difference in reaction wheels angular 

momentum evolution using both the exact solution and approximate one. Hence, 

considering much simpler expressions for approximate solution, it is reasonable to use 

one.  
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Appendix 

Consider the following minimization problem 

 
      

, ,
minsin sin sin ,

.max max

f g h
  

    

  

  

  
  (19) 

Its solution depends on the values of , ,f g h , thus it is reasonable to start looking for 

the solution from some simple special cases. They all are presented in the Table 1.  

Table 1. Solutions for some special cases 

Parameters value  opt  
opt  opt  

Function 

minimum 

value 

0, 0, 0f g h    any max   sign
2

h


 max h  

 any max   -sign
2

h


 max h  

0, 0, 0f g h     -sign
2

g


 max  any max g  

  sign
2

g


 max  any max g  

0, 0, 0f g h     -sign
2

g


 max   sign
2

h


  max g h   

  sign
2

g


 max   -sign
2

h


  max g h   

0, 0, 0f g h    any any  sign
2

optf


   f   

0, 0, 0f g h     sign
2

optf


  max   sign
2

h


 maxf h    

  sign
2

optf


  max   -sign
2

h


 maxf h   

0, 0, 0f g h     -sign
2

g


 max   sign
2

optf


  maxf g   

  sign
2

g


 max   sign
2

optf


  maxf g   

 

There are two more cases to be considered. The first one is trivial and correspond to 

the case when all parameters are equal to zero. In the second case all parameters are 

nonzero. 

Before we start looking for the exact solution, notice that if 
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  sign
2

.f


      

then  

        

 
 

 

2 2

0

0 02 2 2 2

sign cos sin sin ,

sign
sin , cos .

f f h

h

g f h g

g f h

g hg

     

 

    

 
 

   

 

  

Hence, if  

   0 0, , 1 sig
2

n
2

max f
 

              (20) 

function is equal to 

 2 2 .maxf g h     

This value is not minimal, but shows that we always find , ,    to ensure negative 

value of the function.  

Solutions in permissible region 

Firstly, we will look for the solution in permissible region, i.e. max  . Then  

 
   

   

   

1 2

sin sin 0,

cos cos 0,

cos cos

0,

0.

g h

f g

f h

 

 

   

   

 

 



 

 

  (21) 

Let 0  . Thus,  

 
 

   sin

co

sin 0.

s 0,

g h

 

  

 
  

Solution of this system of equations is 

    0 0 0 02 2 2 2
(k n) , cos .

( 1)
, , sin

2

kg
n

g h g h

h
          


 

 


  

where ,k n . Notice that in this case function (19) only depends on sum of   and 

 , and its minimum achieved if  sign
2

f


     and equals to f , which is more 

than the value obtained using (20). Hence, this solution is not the optimal one. 

Let 0.   From (21) we obtain 

 
sin( ) sin( ) 0,

cos( ) cos( ) 0.

g h

g h

 

 

 

 
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Square each of these equations and combine: 

  2 2 2 cos 0.g ghh       

On the other hand, multiply the second equation by  sin  , the first one by  cos   

and combine: 

  sin 0.     

Hence, there will be a solution only if .g h  In this case we can obtain that 

 
2 , if

2 , if

k g h

k g h

 
 



 
  

 
  

This is sufficient to show that investigated function equals to zero, hence this solution 

is also not optimal. Therefore, there is no optimal solution in permissible area.  

Solutions at the border of permissible region 

Let us look for the solution at the border of permissible are, i.e. max  . System 

of equation for extremum then is 

 
   

   

   

2

1

*

*

0,

sin sin 0,

cos cos 0,

cos cos 0,

g h

f g

f h



  

   

   



  



 


  (22) 

where *

max   or *

max   . Thus, 

        
2

2

2
cos cos , sin cos .1

h h

g g
        

Using this expression, rewrite the fourth equation from (22): 

        
2

2 2 *

2
cos sin co1 cos .s

h h
f h

g g
    

 
   
 
 

  

After the mathematics we obtain 

    
*

3 2

* 2 * 2 *

1
cos cos 0

2 2
.

g f fg fg

f g h h


 

  

 
  





   (23) 

We can solve this equation directly using Cardano method.  

Let us prove that there will always be the real root of this equation which 

absolute value is less than one. Introduce notation 
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  
2

* 2

2 * 2 * 2
, 1 , cos

2
.

fg fg h

h f
x

h

h g


  

 

 
 

 

 
    
 
 

  

Thus, we can rewrite this equation: 

     3 2.
2

,
1

q x q x x x      

For clarification purposes, graph of  q x  for some   is presented in Fig. 15.  

 
Fig. 15.  q x  for 1    

Now, the only thing to be proved is that   contained in the range of  q x  at the 

segment  1,1 .  Consider 0  . Then ( )q x  have two extremum 

   31
0 0, .

3 54
q q




 
   

 
  

0x   is local minima, and 13x    is local maxima. It is obvious that range of  q x  

is 

  

3

1 1

1 1 1 1 1
min 0, 1 , max , 1 , 0 3

2 2 54 2 2
Im

1 1 1 1
min 0,

,1 ,1

,1 ,1 , max 1 , 3
2 2

1
2 2

x
q x

     

    
 


    

         
    

 
               

 

  
 

  

As we can see, this expression can be simplified  

  
11

1 1
Im min 1 ,1 ,

2
,

2
0 0

x
q x   

 

  
     

 



. 

Using similar technique for the case 0   we obtain  
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  
1 1

,
1 1

Im 1 max 1 ,0 0,
2 2x

q x   
  

  
     

 



.  

Take into account that  

 

2
* 2

2
2 1

h h

f g


 

 
 

 
  
   
 

. 

Thus, we just have to verify inequations 

 

2
* 2

2

2
* 2

2

1 1, 0,

1 1, 0,

h h

f g

h h

f g


  


  

 
 

 

 


 
    
 
 

 
    
 
 

 
 

  

that are obviously satisfied. Thus, we have shown that cubic equation always have at 

least one real root that belongs to [ 1,1] . We have to notice that for every real root from 

this segment there are four solutions (at the interval [0,2 ) ) of the system (22).  

 


