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Boris Vadimovich Rogov 

Dispersive and dissipative properties of the fully discrete bicompact 

schemes of the fourth order of spatial approximation for hyperbolic equations 

The Fourier analysis of fully discrete bicompact fourth-order spatial 

approximation schemes for hyperbolic equations is presented. This analysis is carried 

out on the example of a model linear advection equation. The results of Fourier 

analysis are presented as graphs of the dependence of the dispersion and dissipative 

characteristics of the bicompact schemes on the dimensionless wave number and the 

Courant number. The dispersion and dissipative properties of bicompact schemes are 

compared with those of other widely used difference schemes for hyperbolic 

equations. It is shown that bicompact schemes have one of the best spectral 

resolutions among the difference schemes being compared. 
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Рогов Б.В. 

Дисперсионные и диссипативные свойства полностью дискретных 

бикомпактных схем четвертого порядка пространственной 

аппроксимации для уравнений гиперболического типа 

Представлен Фурье-анализ полностью дискретных бикомпактных схем 

четвертого порядка пространственной аппроксимации для уравнений 

гиперболического типа. Такой анализ проведен на примере модельного 

линейного уравнения переноса. Результаты Фурье-анализа представлены в виде 

графиков зависимости дисперсионных и диссипативных характеристик 

бикомпактных схем от безразмерного волнового числа и числа Куранта. 

Проведено сравнение дисперсионных и диссипативных свойств бикомпактных 

схем с аналогичными свойствами других широко используемых разностных 

схем для уравнений гиперболического типа. Показано, что бикомпактные 

схемы имеют одно из лучших спектральных разрешений среди сравниваемых 

разностных схем. 

Ключевые слова: уравнения гиперболического типа, бикомпактные схемы, 

дисперсия, диссипация 
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1. Introduction 
Numerical modeling of long-time and long-distance propagation of acoustic, 

electromagnetic, and elastic waves requires schemes that have low dissipation and 

low dispersion. Widely used symmetric compact schemes possess such properties. 

Moreover, these schemes have superior spectral resolution compared to classic 

symmetric finite difference schemes of the same order of accuracy [1-3]. However, 

the spatial stencil of well-known symmetric compact schemes contains no less than 

three integer nodes in each space dimension, therefore, these schemes can be used for 

computations only on uniform or weakly non-uniform meshes [1, 4, 5]. 

The semi-discrete bicompact scheme of the fourth order of approximation in 

space was proposed in [6] for numerical solution of quasilinear one-dimensional 

advection equation. The semi-discrete bicompact scheme is constructed by method of 

lines on the spatial stencil that fits one mesh cell and contains two integer and one 

half-integer node. The number of differential-difference equations of the semi-

discrete scheme equals two, thus its effective difference order, defined as the 

difference between the total number of stencil nodes and the number of scheme 

equations, equals one and matches the order of the differential advection equation 

with respect to space variable. As a result of the orders equality, differential and 

numerical problems have the same number of boundary conditions. In addition, in 

case of advection speed of fixed sign the semi-discrete scheme can be solved using 

the space marching method [6]. The high order of approximation of the bicompact 

schemes remains the same even on strongly non-uniform meshes which is guaranteed 

by the construction. Equations of the semi-discrete scheme are proposed to be 

integrated in time by multi-stage A- and L-stable diagonally implicit Runge-Kutta 

(RK) methods that are numerically efficient in comparison with fully implicit RK [7]. 

The scheme [6] was generalized for systems of equations and many space dimensions 

in [8-10]. 

The semi-discrete symmetric bicompact scheme [6] is non-dissipative. Its 

dispersion analysis was done in [11]. In present work, we perform a Fourier analysis 

of the two fully discrete bicompact schemes, one of them is dissipative and the other 

is non-dissipative. These two-layer schemes are obtained by implementing the 

implicit Euler method and the trapezoid rule [7] to the semi-discrete scheme for time 

integration. Both of these schemes consist of two difference equations for values of 

the sought mesh function in integer and half-integer nodes. Prior to the Fourier 

analysis, these two-layer bicompact difference schemes are transformed into three-

layer schemes, each consisting of one difference equation for values of the sought 

mesh function in integer nodes only. Dispersion and dissipation characteristics of the 

considered bicompact schemes are compared to those of well-known numerical 

schemes for hyperbolic equations. 
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2. Semi-discrete symmetric bicompact scheme 
Consider the scalar one-dimensional quasilinear advection equation: 

 1

( ) ( )
0, 0

u f u df u
L u

t x du

 
   
 

. (1) 

The first equation of the semi-discrete bicompact scheme [6] of the fourth order of 

approximation in x is obtained by integrating Eq. (1) along the cell 1[ , ]j jx x   of a non-

uniform spatial mesh and by implementing the Simpson’s rule: 

  1/2

1 1/2 14 0, ( )
6

j

j j j j j j j

h d
u u u f f f f u

dt



        , (2) 

where the spatial step 1/2 1j j jh x x   . The second equation of the scheme [6] 

  1/2

1 1 1/2 1/2 1/22 0, ( )
4

j

j j j j j j j

h d
u u f f f f f u

dt



           (3) 

is obtained by the finite difference approximation of the equation 

 1 1 1( ) ( ) 0j jLu Lu    (4) 

which may be regarded as the result of integrating the differential consequence 

1( ) 0Lu x    of Eq. (1) along the cell 1[ , ]j jx x  . 

Since further calculations are done for the cell 1[ , ]j jx x   only, let us omit index 

of the step 1/2jh   for brevity. 

System of Eqs. (2), (3) may be derived in another way. In order to do this, let us 

rewrite Eq. (1) in the following form: 

 
( )

( , )
f u

x u
x







, (5) 

where 

 
u

t



 


. (6) 

To integrate Eq. (5) with respect to x at the time level t const  one may use the 

Lobatto IIIA scheme (for instance, see [7]) which is a fully implicit stiffly accurate 

fourth order RK method of collocation type. Its Butcher’s table is 
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0 0 0 0

1 5 1 1

2 24 3 24

1 2 1
1

6 3 6

1 2 1

6 3 6



.  

The Lobatto IIIA integration along 1[ , ]j jx x   yields a system of two difference 

equations: 

  1 1/2 14
6

j j j j j

h
f f         , (7) 

  1/2 1/2 15 8
24

j j j j j

h
f f         , (8) 

where 1/2 1/2 1/2( , ), ( , )j j j j j jx u x u       . Note that the Lobatto IIIA scheme is A-

stable and, therefore, absolute stable. Its stencil includes two integer nodes and one 

half-integer node that are also nodes of the Simpson’s quadrature which, in turn, is a 

special case of the Lobatto quadrature [7]. 

Next, Eq. (8) is replaced by the linear combination of Eqs. (7) and (8): 

  1 1/2 12
4

j j j j j

h
f f f          (9) 

which is obtained by subtracting the doubled Eq. (8) from Eq. (7). Finally, 

substitution of Eq. (6) into Eqs. (7) and (9) transforms them into Eqs. (2) and (3) 

respectively. 

Practically, the Lobatto IIIA scheme for numerical integration of Eq. (1) along 

discrete variable x is incorporated into the semi-discrete implicit bicompact scheme 

of the fourth order of approximation in space. 

In the case of the linear advection equation 

 0, 0
u u

c c const
t x

 
   

   
(10) 

the semi-discrete bicompact scheme (2), (3) is written as 
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 

 

1 1/2 1

1 1 1/2

4 0,
6

2 0
4

j j j j j

j j j j j

h d
u U u u u

c dt

h d
u u u U u

c dt

  

  

    

    

 (11) 

where 1/2 1/2( ) ( )j jU t u t  . Eq. (11) may be considered as a system of equations for two 

time-dependent mesh functions. One of them, ( )ju t , is defined on the set of integer 

nodes and the other, 1/2 ( )jU t , is defined on the set of half-integer nodes [11]. The 

function ( )ju t  may be counted as the main function, while the function 1/2 ( )jU t  takes 

a role of an auxiliary function which makes it possible for the scheme (11) to have 

the fourth order of approximation in x on the minimal spatial stencil consisting of two 

integer nodes. 

In conclusion to this section let us point out that the semi-discrete bicompact 

scheme (2), (3) for Eq. (1) is “nonstandard” in some sense. 

From Eq. (1) we have 

 
( )u f u

t x

 
 

 
. (12) 

Let us formally replace time derivatives by space derivatives in Eqs. (2), (3) 

according to the formula (12). As a result, we obtain 

  1/2 1 1

1 2 1 1
,

6 3 6
j j j j jf f f f f

h
  

       (13) 

  1 1 1/2

1 1 1
2 ,

4 4
j j j j jf f f f f

h
  
      (14) 

where f f x    . Eqs. (13) and (14) may be interpreted as approximate relations 

introduced by Eqs. (2) and (3) that connect values of the function f  and values of its 

derivative f   on the mesh. Clearly, these two relations are different, and none of 

them may be obtained from the other one by shifting all indices by the same number, 

for example, by 1/2. 

To understand how the semi-discrete bicompact scheme (2), (3) is 

“nonstandard”, let us compare it with a semi-discrete compact scheme of the fourth 

order of approximation in space from [12]. This scheme, just like the bicompact one, 

consists of two differential-difference equations 

  1 1 1/2 1/2

1 1
22 ( ) 0

24
j j j j j

d
u u u f f

dt h
        , (15) 
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  3/2 1/2 1/2 1

1 1
22 ( ) 0

24
j j j j j

d
u u u f f

dt h
         (16) 

on the uniform spatial mesh with the step 1 1/2 1/2j j j jh x x x x      . The stencil of the 

scheme (15), (16) includes three integer and three half-integer nodes, while the 

stencil of the bicompact scheme (2), (3) includes two integer and one half-integer 

nodes. Substitution of Eq. (12) into Eqs. (15), (16) yields approximate relations 

between f  and f   values at stencil nodes: 

  1 1 1/2 1/2

1 11 1 1

24 12 24
j j j j jf f f f f

h
   
      , (17) 

  3/2 1/2 1/2 1

1 11 1 1

24 12 24
j j j j jf f f f f

h
   
      . (18) 

Eq. (17) turns into Eq. (18) if the index j  is shifted by 1/2. 

3. Dispersive properties of semi-discrete bicompact 

schemes 
Semi-discrete bicompact schemes of even orders of approximation in space are 

constructed upon symmetric spatial stencil [6, 13, 14], they are symmetric and non-

dissipative. Dispersive properties of the fourth order accurate semi-discrete 

bicompact scheme were investigated in [11], similar properties of higher order semi-

discrete bicompact schemes were studied in [13, 14]. The optimized semi-discrete 

symmetric bicompact scheme of the sixth order of approximation was found in [15], 

its numerical group velocity is least divergent from the exact group velocity. In 

present work, the expression for numerical (modified, effective) wavenumber of the 

fourth order accurate semi-discrete bicompact scheme is obtained using the technique 

from [16]. 

Consider the linear advection equation (10) on the whole x axis. Assume its 

solution is a harmonic with the real wavenumber k: 

 ( , ) ( ) ikxu x t f t e , (19) 

where i is imaginary unit and the function ( )f t  (amplitude) satisfies the ordinary 

differential equation (ODE) 

 df dt ickf  . (20) 

If the spatial derivative in Eq. (10) is approximated by a finite difference 

formula, then Eq. (20) is replaced by the following ODE [16]: 
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 df dt ick f  , (21) 

where k   is the numerical (modified, effective) wavenumber. Integration of Eq. (21) 

yields the general solution for the function f : 

 ( ) ick tf t Ce


, (22) 

where C  is an arbitrary constant. The solution of the semi-discrete finite difference 

scheme corresponding to the function (22) takes the following form at nodes jx x : 

 ( ) jikxick t

ju t Ce e
 . (23) 

Let us find the numerical wavenumber for the semi-discrete bicompact scheme 

consisting of two coupled equations (11). It is natural to presume that the nontrivial 

solution ( )ju t and 1/2 ( )jU t  of Eq. (11) has the form similar to (23): 

 1/2

1 1/2 2 1 2( ) , ( ) , ,j jikx ikxick t ick t

j ju t C e e U t C e e C const C const
 

 

    , (24) 

where 

 
2 2

1 2 0C C  . (25) 

By substituting functions (24) into Eq. (11) we derive the system of two 

homogeneous linear algebraic equations for coefficients 1C  and 2C : 

 

1 2

1 2

1 1 1 1
sin cos 0,

2 6 2 3

1 1 1
sin cos 0,

4 2 2

C C

C C

   

  

 



    
      

    

    
      

    

 (26) 

where kh   and k h   are the exact (physical) and the numerical dimensionless 

wavenumbers respectively. The system of linear algebraic equations (26) has a 

nontrivial solution satisfying Eq. (25) if the system determinant equals zero. This 

equality leads to the following relation between quantities   and 

: 

 2( ) 6cot(0.5 ) 12 0      . (27) 

Earlier, this relation was obtained in [11]. Note that Eq. (27) is quadratic with respect 

to 

, and its discriminant is positive. Therefore, Eq. (27) has only real solutions, 
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i.e. Im( ) 0k  . It means that the semi-discrete bicompact scheme is non-dissipative. 

Let us remind that this property is common for symmetric semi-discrete schemes. 

If Im( ) 0k  , then the numerical wavenumber k 
 is related to the numerical 

phase velocity c


 by the following formula [16]: 

 
c k

c k

 

 . (28) 

The relation (28) together with Eq. (27) defines c
 as a function of the wavenumber 

k  in case of the bicompact scheme (2), (3), i.e. they describe dispersive properties of 

this scheme. 

From Eq. (27) we obtain the explicit formula for   in dependence of 
* : 

 
*

* 2

6
2arctan

12 ( )






 
  

 
. (29) 

The curve described by Eq. (29) goes through the point (0,0) on the ( , )   plane. 

Inverting this dependency in the area [0, ]   yields the formula [11]: 

 
* 2

2

4 tan
4 2

3 cot cot
2 3 2 4

1 1 tan
3 2



 




 
              

           
 

. (30) 

The curve described by Eq. (30) goes through the point (0,0) on the ( , ) 
 plane as it 

is shown on Fig. 1. The figure also depicts curves of 
*  in dependence of   for a 

number of semi-discrete compact schemes from [12, 17], their orders of 

approximation in space vary from four to eight. As it can be seen, the bicompact 

scheme possesses a better spectral resolution not only among schemes of the fourth 

order of approximation, but also among schemes of higher orders of approximation. 

It is also clear from Fig. 1 that the normalized group velocity gc c d d   [18] of 

wave packet energy propagation is greater or equal than one in case of the bicompact 

scheme. In case of the scheme CCS-T4 [12] the normalized group velocity is a 

non-negative quantity and it does not exceed unity. Compact schemes from [17] have 

a negative group velocity in the short-wave area. 
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Fig. 1. Dimensionless effective wavenumber plotted against dimensionless exact 

wavenumber for various symmetric semi-discrete schemes. Curves: 1 – bicompact 

scheme of the fourth order of approximation; 2 – fourth order compact scheme 

CCS-T4 [12]; 3, 4, and 5 – tridiagonal classical fourth, sixth, and eighth order 

compact schemes respectively [17]. Thick straight line represents the ideal 

dependency *  . 

From Eqs. (28) and (30) we obtain the expression for the normalized numerical 

phase velocity of the semi-discrete bicompact scheme: 

 
2

4 tan
2

4
1 1 tan

3 2

c

c





 


 

 
 
  

  
      

. (31) 

4. Fully discrete bicompact schemes 
Finally any computation on a computer is done using a fully discrete scheme. 

Fourier analysis of semi-discrete schemes provides us with estimations of fully 

discrete schemes properties only at the limit of vanishing Courant numbers. The 

importance of fully discrete schemes study, i.e. study of interaction between 

approximations in space and time and their mutual influence on scheme properties, 

was discussed, for example, in [19, 20]. 

Two fully discrete bicompact schemes for the linear advection equation (10) are 

presented below, both in two-layer and three-layer forms. 
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Consider a fully discrete BiC4-BE scheme which is obtained from the semi-

discrete scheme (11) by applying the implicit Euler method for time integration: 

 
 

 

1 1 1 1 1

1 1/2 1 1/2 1

1 1 1 1 1

1 1 1 1/2

( 4 ) ( 4 ) 6 0,

( ) ( ) 4 2 0,

n n n n n n n n

j j j j j j j j

n n n n n n n

j j j j j j j

u U u u U u u u

u u u u u U u





    

    

    

   

       

      
 (32) 

where n is time level number, с h   is Courant number,   is time step. 

The scheme (32) consisting of two difference equations is a two-layer scheme 

for two mesh functions  n

ju ,  1/2

n

jU 
. One may eliminate the function  1/2

n

jU 
 from 

this scheme and get the following three-layer bicompact scheme for the function 

 n

ju : 

 
2 1 2 1 1 1

1 1 1(12 6 1) (12 6 1) 2(3 1) 2(3 1) 0n n n n n n

j j j j j ju u u u u u        

              . (33) 

Now let us consider a fully discrete BiC4-CN scheme [11] which is obtained 

from the semi-discrete scheme (11) by applying the trapezoid rule for time 

integration (the Crank-Nicolson method for time discretization) [7]: 

 

1 1 1 1 1

1 1/2 1 1/2 1 1

1 1 1 1 1

1 1 1 1/2 1 1/2

( 4 ) ( 4 ) 3 ( ) ( ) 0,

( ) ( ) 2 ( 2 ) ( 2 ) 0.

n n n n n n n n n n

j j j j j j j j j j

n n n n n n n n n n

j j j j j j j j j j

u U u u U u u u u u

u u u u u U u u U u





    

     

    

     

           

           

 (34) 

By eliminating the mesh function  1/2

n

jU   from the two-layer scheme (34) one may 

transform it into the three-layer bicompact scheme for the mesh function  n

ju : 

 

2 1 2 1 2 2

1 1

2 1 2 1

1

(3 3 1) (3 3 1) 2(3 1) 2(3 1)

(3 3 1) (3 3 1) 0.

n n n n

j j j j

n n

j j

u u u u

u u

     

   

 

 

 



         

      
 (35) 

It is important to note that difference orders of bicompact schemes (32) and (34) 

in two-layer form are equal to unity in both time and space, i.e. they coincide with 

orders in t and x of the linear advection equation (10). By difference order of a 

scheme in space we mean the difference between the number of stencil nodes in the x 

direction and the number of equations in the scheme. The number of time levels in 

the scheme minus one is called difference order of a scheme in time. The equality 

between difference and differential orders results in the same number of initial and 

boundary conditions required for numerical and differential problems. For instance, if 

an initial/boundary value problem for the scheme (32) is stated in the first quadrant of 

the (x, t) plane, then one should state one initial condition at t = 0 and one boundary 

condition at x = 0. 

The opportunity to transform a two-layer bicompact scheme on the spatial 

stencil of two integer and one half-integer nodes into a three-layer scheme on the 

stencil of two integer nodes is determined by the first difference order of the three-
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layer bicompact scheme with respect to x. However, the three-layer scheme of the 

second difference order in t requires two initial conditions: one of them should be 

stated at the zero time level at t = 0 and the other one should be stated at the first time 

level. For an initial condition at the first time level we propose to use the solution 

provided by the corresponding two-layer bicompact scheme. 

5. Fourier analysis of fully discrete bicompact schemes 
The Fourier analysis [21] may be done for two-layer bicompact schemes (32) 

and (34) straightforward. However, it is much easier to carry out this analysis for 

three-layer schemes (33) and (35). Such an analysis is developed below. 

Following the practical guidelines of L.N. Trefethen [22] we carry out a Fourier 

analysis of bicompact schemes using not some tedious derivations based on Fourier 

transform, but a more handy method based on substituting test mesh functions 

 
   exp( ), exp exp ,

, , ,

n n

ju ij ikc i c c

kh c h

      

    

     

  
 (36) 

into numerical schemes for the advection equation (10). Here   is the so-called 

amplification factor [20-22] which is a complex number in general case,   is the 

absolute value of this factor. Note that the numerical problem for the Eq. (10) is 

considered along the whole x-axis. 

Results for the Fourier analysis of the three-layer bicompact schemes BiC4-BE 

(33) and BiC4-CN (35) are described further. Both schemes are absolute stable: the 

advection equation is integrated with respect to spatial variable by the A-stable 

Lobatto IIIA scheme [7], while the integration with respect to time is done by the L-

stable implicit Euler method and the A-stable trapezoid rule [7]. 

The BiC4-BE scheme. Substituting the test function (36) into the scheme (33) 

yields the characteristic equation for the amplification factor  : 

  2 1
(12 1) 6 cot 1 2 0

2
i


   



 
      

 
. (37) 

By making the following substitution 

 2

1

1

i








 (38) 

into Eq. (37) we obtain a quadratic equation for the quantity  : 

 2 26 cot( 2) 12 0       . (39) 

The discriminant of this equation is greater than zero, thus it has two real roots 
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2 2

1 2

4 4
3 cot cot , 3 cot cot

2 3 2 2 3 2

   
   

          
                             

.  

Let us change  cot 2  for  tan 2  in formulas for these roots: 

 1 2

2 2

4 tan 4 tan
2 2

, .
4 4

1 1 tan 1 tan 1
3 2 3 2

 
 

 
 

   
   
     

   
      

   

 (40) 

The first root in Eq. (40) is physically correct: its normalized numerical phase 

velocity 

 
1 1

arg arctan
c

c
 

 



    (41) 

tends to one if 0  , i.e. if 0h  for a fixed value of the wavenumber k. The 

second root in Eq. (40) is a “parasite” one, its influence on the numerical solution can 

be eliminated by a correct choice of initial and boundary conditions for the numerical 

problem (see [11, 13, 14]). By substitution of the first root into Eqs. (38) and (41) we 

obtain 

 12
21

4 tan
1 1 1 2

, arctan arctan
41

1 1 tan
3 2

c

c




  
  



  
  

     
   

   
  

. (42) 

From Eqs. (40), (42) it follows that 

 

 

2

4 tan 2
1,

4
1 1 tan

3 2

c

c









 
  
      

, 
 

if the Courant number   goes to zero. The last formula exactly matches the Eq. (31) 

for the numerical phase velocity of the semi-discrete bicompact scheme. 

Taking into account Eq. (42) leads us to the normalized group velocity 
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2

2

2 2 2 2

4
2 1 1 1 tan

3 2

4
16 sin cos cos sin

2 2 2 3 2

gc d c

c d c




    





  
          

          
                   

. (43) 

From Eq. (43) we see that the group velocity is a positive value for all Courant 

numbers belonging to the interval [0, ]  . 

Figs. 2 and 3 represent plots of the amplification factor absolute value, numerical 

phase and group velocities as functions of the dimensionless wavenumber for the 

BiC4-BE scheme at different Courant numbers. 

 

Fig. 2. The amplification factor absolute value plotted against the dimensionless 

wavenumber   at different Courant numbers. Curves 1-5 correspond to the Courant 

number   equal to 0.1, 0.2, 0.5, 1.0, and 2.0 respectively. 
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Fig. 3. Numerical phase and group velocities plotted against the dimensionless 

wavenumber   at different Courant numbers. Curves 1-5 correspond to the Courant 

number   equal to 0.1, 0.2, 0.5, 1.0, and 2.0 respectively. Thick curves represent 

dependencies for the semi-discrete bicompact scheme. 

The BiC4-CN scheme. Substitution of the test function (36) into the 

scheme (35) leads to the characteristic equation for the amplification factor  : 

 
2 21 1

(3 1) 3 cot 2(3 1) 0
2

i


    
 

    
          

    
. (44) 

Suggest the amplification factor to be 

 ie   . (45) 

Then Eq. (44) yields the equation for the quantity  : 

 2 2(3 1)cos 3 cot( 2)sin 3 1 0          . (46) 

One may transform this equation into a quadratic equation for cot( 2) : 

 
2 23 cot 3 cot cot 1 0

2 2 2

  
 

     
       

     
. (47) 

The discriminant of this quadratic equation is greater than zero, thus it has two real 

roots 

 
2 21 21 4 1 4

cot cot cot , cot cot cot
2 2 2 2 3 2 2 2 3 2

     

 

              
                                     

. (48) 
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By changing cotangents by tangents in Eq. (48) we obtain 

 
1 2

2 2

2 tan 2 tan
2 2

tan , tan
2 24 4

1 1 tan 1 tan 1
3 2 3 2

 
 

 

 

   
   

           
      

      
   

. (49) 

Because quantities 1  and 2  are real, the absolute value   of the amplification 

factor   equals to one according to Eq. (45). This means that the BiC4-CN scheme is 

non-dissipative. 

The first root in Eq. (49) is physically correct: its normalized numerical phase 

velocity  

 
1

arg
c

c




 



    , (50) 

goes to one as 0  , i.e. as 0h  for a fixed value of the wavenumber k. The other 

root is a “parasite” one, its influence on the numerical solution can be eliminated by a 

correct choice of initial and boundary conditions for the numerical problem (see 

[11, 13, 14]). By substituting the first root 1  into Eq. (50) we obtain 

 
1

2

2 tan
2 2

arctan
4

1 1 tan
3 2

c

c






  



  
  

    
  

   
  

. (51) 

From Eq. (51) it follows that 

 
2

4 tan
2

4
1 1 tan

3 2

c

c








 
 
 

  
      

,  

as the Courant number   tends to zero. The last formula exactly matches the Eq. (31) 

for the numerical phase velocity of the semi-discrete bicompact scheme. 

Using Eq. (51) we obtain the normalized group velocity 
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2

2

2 2 2 2

4
2 1 1 1 tan

3 2

4
4 sin cos cos sin

2 2 2 3 2

gc d c

c d c




    





  
          

          
                   

. (52) 

From Eq. (52) we see that the group velocity is a positive value for all Courant 

numbers belonging to the interval [0, ]  . 

A comparison between formulae (42), (43) and formulae (51), (52) suggests that 

the plots of numerical phase and group velocities as the functions of the 

dimensionless wavenumber for the BiC4-CN scheme with the fixed Courant 

number 0   are the same as those for the BiC4–BE scheme taken at the Courant 

number 0 2  . 

Fig. 4 represents plots of numerical phase and group velocities as functions of 

the dimensionless wavenumber for the BiC4-CN scheme at different Courant 

numbers. 

  

Fig. 4. Numerical phase and group velocities plotted against the dimensionless 

wavenumber   at different Courant numbers. Curves 1-5 correspond to the Courant 

number   equal to 0.1, 0.2, 0.5, 1.0, and 2.0 respectively. Thick curves represent 

dependencies for the semi-discrete bicompact scheme. 

6. Comparison of bicompact schemes with some known 

numerical schemes for advection equation 
In this section we compare dispersive and dissipative properties of bicompact 

schemes BiC4-BE and BiC4-CN to those properties of two-layer three-point compact 

schemes of the fourth order of approximation in space, the three-layer Leapfrog 
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scheme [23], and the three-layer Iserles scheme [24]. The two-layer “CABARET” 

scheme [25, 26] is reduced to the latter scheme on a uniform space-time mesh 

Three-point compact schemes. If we integrate Eq. (1) at t const  along the 

interval 1 1[ , ]j jx x   and approximate the integral of u using the Simpson’s quadrature 

rule, we obtain the semi-discrete three-point compact scheme of the fourth order of 

approximation in space [17]: 

  1 1 1 14 0
3

j j j j j

h d
u u u f f

dt
        . (53) 

This scheme may be derived by other methods. For example, one may use the finite 

element Galerkin method, as it is done in the monograph [21]. In case of the linear 

advection equation (10) the scheme (53) takes the form of 

    1 1 1 14 0
3

j j j j j

h d
u u u c u u

dt
        . (54) 

Below we present a Fourier analysis of the two fully discrete compact schemes 

C4-BE and C4-CN for the linear advection equation (10). The C4-BE scheme is 

constructed by applying the implicit Euler method for time integration in the semi-

discrete scheme (54), and the C4-CN scheme – by applying the trapezoid rule [7] to 

it. 

(a) The C4-BE scheme. As it is mentioned in the paragraph above, the 

integration of Eq. (54) with respect to time by the implicit Euler method yields the 

fully discrete finite difference scheme C4-BE: 

    1 1 1 1 1

1 1 1 1 1 14 4 3 0n n n n n n n n

j j j j j j j ju u u u u u u u    

             . (55) 

Substitution of the test function (36) into the scheme (55) gives us the linear 

characteristic equation for the amplification factor  . Its solution holds  

 2

1 3 sin
,

1 2 cos

i  
 

 


 

 
. (56) 

From the formula (56) we find  , 
*с с , and gс с : 

 
2

1 1 1 1 3 sin
, arg arctan arctan

2 cos1

c

c

 
   

   

  
       

  
, (57) 

 2 2 2

3(1 2cos )

9 sin (2 cos )

gc d c

c d c




   

  
  

  
. (58) 
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Plots of the amplification factor absolute value, phase and group velocities as 

functions of the dimensionless wavenumber for the C4-BE scheme at different 

Courant numbers are shown on Figs. 5 and 6. These figures also represent the curves 

for the BiC4-BE scheme. The data given on Fig. 5 clearly shows that the dissipative 

C4-BE scheme damps the high wavenumber harmonics around    rather poorly. 

On contrary, the harmonics with the highest wavenumbers    resolvable on the 

mesh are those most strongly damped by the BiC4-BE scheme. This effect coincides 

with the monotonicity property of the BiC4-BE scheme studied in [6, 8]. It follows 

from the plots on Fig. 6 that the BiC4-BE scheme eliminates a substantial 

shortcoming of the C4-BE scheme connected with negative values of group velocity 

at 3 4  . Schemes with such undesired property are very sensitive to mesh 

smoothness. Theses schemes require spatial meshes that are less than 8-10% non-

uniform (see [4]; percentage denotes value of relation between lengths of neighboring 

cells). As the allowed rate of mesh refining/coarsening is exceeded, strong reflected 

parasite waves are generated by such schemes. 

 

Fig. 5. The amplification factor absolute value plotted against the dimensionless 

wavenumber   at different Courant numbers. Curves 1-5 correspond to the Courant 

number   equal to 0.1, 0.2, 0.5, 1.0, and 2.0 respectively. Solid curves correspond to 

the C4-BE scheme, while dashed ones correspond to the BiC4-BE scheme. 
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Fig. 6. Numerical phase and group velocities plotted against the dimensionless 

wavenumber   at different Courant numbers. Curves 1-5 correspond to the Courant 

number   equal to 0.1, 0.2, 0.5, 1.0, and 2.0 respectively. Solid curves correspond to 

the C4-BE scheme, while dashed ones correspond to the BiC4-BE scheme. 

(b) The C4-CN scheme. Integration of Eq. (54) by the trapezoid rule yields the 

fully discrete numerical scheme C4-CN: 

    1 1 1 1 1

1 1 1 1 1 1 1 1

3
4 4 0

2

n n n n n n n n n n

j j j j j j j j j ju u u u u u u u u u    

                 . (59) 

Once again, we obtain the characteristic equation for the amplification factor   by 

substituting the test function (36) into the scheme (59): 

 
1 3 sin

1 2(2 cos )
i

  

 




 
. (60) 

Given the amplification factor has the following form: 

 ,ie    (61) 

we easily obtain the solution for the quantity   from Eq. (60): 

 
3 sin

2arctan
2(2 cos )

 




 
   

 
. (62) 

Formulae (61), (62) result into the equality 1   , thus the C4-CN scheme is 

stable and non-dissipative. From these formulae we also obtain expressions for 

numerical phase and group velocities: 
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1 2 3 sin

arg arctan
2(2 cos )

c

c

  


   

  
      

 
, (63) 

 2 2 2

3(1 2cos )

9
sin (2 cos )

4

gc d c

c d c




   

  
  

   

. (64) 

A comparison between formulae (63), (64) and formulae (57), (58) suggests that the 

plots of numerical phase and group velocities as the functions of the dimensionless 

wavenumber for the C4-CN scheme with the fixed Courant number 0   are the 

same as those for the C4-BE scheme taken at the Courant number 0 2  . 

Fig. 7 depicts plots of numerical phase and group velocities as functions of the 

dimensionless wavenumber for the C4-CN scheme at different Courant numbers. 

This figure also shows the plots for the BiC4-CN scheme. It is clear from the Fig. 7 

that the BiC4-CN scheme fixes the substantial shortcoming of the C4-CN scheme 

connected with negative values of group velocity at 3 4  . 

  

Fig. 7. Numerical phase and group velocities plotted against the dimensionless 

wavenumber   at different Courant numbers. Curves 1-5 correspond to the Courant 

number   equal to 0.1, 0.2, 0.5, 1.0, and 2.0 respectively. Solid curves correspond to 

the C4-CN scheme, while dashed ones correspond to the BiC4-CN scheme. 

The Leapfrog scheme. This three-layer scheme has the symmetrical cross-like 

space-time stencil on the (x, t) plane. In case of the linear advection equation (10) the 

Leapfrog scheme takes the following form: 

  1 1

1 1 0n n n n

j j j ju u u u 

     . (65) 
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In linear approximation the Leapfrog scheme is stable at Courant numbers less than 

one. 

Substitution of the test function (36) into the scheme (65) leads to the 

characteristic equation for the amplification factor  : 

 2 (2 sin ) 1 0i      . (66) 

Quadratic Eq. (66) has two complex roots: 

 2 2 2 2

1 21 sin sin , 1 sin sini i                . (67) 

Absolute values of these roots are equal to one, therefore the Leapfrog scheme is non-

dissipative. The first root from Eq. (67) is physically correct: its normalized 

numerical phase velocity 

 
1

arg
c

c






   (68) 

goes to one as 0  , i.e. as 0h  for a fixed value of the wavenumber k. The other 

root is a “parasite” one, its influence on the numerical solution can be eliminated by a 

correct choice of initial and boundary conditions for the numerical problem. 

By substituting the root 1  into the formula (68) we find the normalized 

numerical phase velocity 

 1 2 2

1 1 sin
arg arctan

1 sin

c

c

 


   

  
    

  

, (69) 

and then the normalized group velocity 

 
2 2

cos

1 sin

gc d c

c d c




  

 
  

 
. (70) 

Fig. 8 shows plots of numerical phase and group velocities as functions of the 

dimensionless wavenumber for the Leapfrog scheme at different Courant numbers. 

This figure also represents the plots for the BiC4-CN scheme. Fig. 8 makes it clear 

that the Leapfrog scheme has the substantial shortcoming connected with negative 

values of group velocity at 2  . 
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Fig. 8. Numerical phase and group velocities plotted against the dimensionless 

wavenumber   at different Courant numbers. Curves 1-4 correspond to the Courant 

number   equal to 0.1, 0.2, 0.5, and 0.9 respectively. Solid curves correspond to the 

Leapfrog scheme, while dashed ones correspond to the BiC4-CN scheme. 

The Iserles scheme (the “CABARET” scheme). This three-layer finite 

difference scheme was first proposed in [24]. In case of the linear advection 

equation (10) it is written as 

    1 1

1 1 1

1
0

2

n n n n n n

j j j j j ju u u u u u 

        . (71) 

The space-time stencil of the Iserles scheme is not symmetrical. The scheme can be 

classified as an upwind one, i.e. a scheme which depends from advection direction 

(sign of the phase velocity c). The Iserles scheme is stable if Courant number is less 

or equal than one. 

Substitution of the test function (36) into the scheme (71) yields the 

characteristic equation for the amplification factor  : 

  2 (1 2 ) 1 0i ie e         . (72) 

The characteristic equation (72) for the scheme (71) is the same as for the two-layer 

“CABARET” scheme [26]. 

By applying the Vieta’s formulae to Eq. (72) we obtain two equations for its two 

roots 1  and 2 : 

 1 2 (1 2 )(1 ),ie         (73) 
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 1 2

ie      (74) 

Let us find the solution of Eqs. (73), (74) in the form 

 1 2

1 2,
i ie e   

   . (75) 

Then we substitute Eq. (75) into Eq. (73), set equal real and imaginary parts of left- 

and right-hand sides of Eq. (73), and after some simple calculations obtain the system 

of two equations defining 1  and 2 : 

 
21 2 2 1sin sin (1 2 )sin

2 2 2

    


      
      

    
, (76) 

 2 1 1 2sin cos (1 2 )sin cos
2 2 2 2

     


        
        

      
. (77) 

As we substitute Eq. (75) into Eq. (74), we obtain the third equation for 1  and 2 : 

 1 2    . (78) 

Interestingly, the system of three equations (76)-(78) for 1  and 2  turns out to be 

consistent. If we use Eq. (78) to simplify the left-hand side of Eq. (76) and drop out 

the common factor sin( 2)  from the both sides of the equation, we finally arrive at 

the equation 

 2 1sin (1 2 )sin
2 2

  


   
    

  
. (79) 

Alternatively, if we substitute Eq. (78) into the left-hand side of Eq. (77) and drop out 

the common factor cos( 2)  from left- and right-hand sides of the equation, we 

obtain Eq. (79) again. Thus, there are two independent Eqs. (78) and (79) for two 

sought quantities 1  and 2 . The solution of these equations holds 

 1 2arcsin (1 2 )sin , arcsin (1 2 )sin
2 2 2 2

   
   

      
           

      
. (80) 

From Eqs. (75) and (80) we obtain analytical expressions for roots of characteristic 

Eq. (72): 
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 1 exp arcsin (1 2 )sin
2 2

i
 

 
     

       
     

, (81) 

 2 exp arcsin (1 2 )sin
2 2

i
 

 
     

        
     

. (82) 

These roots have the absolute value of one, therefore the Iserles scheme is non-

dissipative. The first root from Eqs. (81), (82) is physically correct: its normalized 

numerical phase velocity 

 
1

arg
c

c






   (83) 

tends to one as 0  , i.e. as 0h  for a fixed value of the wavenumber k. The other 

root is a “parasite” one, its influence on the numerical solution can be eliminated by 

setting up consistent initial conditions at zero and first time levels in the three-level 

scheme [25, 26]. We find the normalized numerical phase velocity by substituting 1  

into Eq. (83): 

 1
1

1 1 1 1
arg arcsin (1 2 )sin

2 2

c

c

 
 

   

    
        

   
, (84) 

and after that we find the normalized numerical group velocity: 

 
2 2

(1 2 )cos
1 2

1
2

1 (1 2 ) sin
2

gc d c

c d c





  





  
             

     
  

. (85) 

At the limit of zero Courant number we obtain the following formulae for 
*с с  and 

gс с  from Eqs. (84), (85): 

 
 2

2 1
tan ,

2 cos 2

gcc

c c



 


 

  
 

 (86) 

As it follows from these formulae, the Iserles scheme has a singularity at the Courant 

number 0  : phase and group velocities of the scheme go to infinity as   . 

Figs. 9 and 10 represent plots of numerical phase and group velocities as 

functions of the dimensionless wavenumber for the Iserles scheme at different 

Courant numbers. The figures also show the plots for the BiC4-CN scheme. 
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A comparison between graphs from these figures leads to the conclusion that the 

BiC4-CN scheme has a better spectral resolution than the Iserles scheme for Courant 

numbers 0 0.4  , while for 0.5 1.0   a better spectral resolution is possessed 

by the Iserles scheme. This is not surprising since, on the one hand, the Iserles 

scheme has the mentioned above singularity at the Courant number 0   while, on 

the other hand, this scheme provides the exact solution of the advection equation (10) 

for Courant numbers equal to 0.5 and 1 [25, 26]. 

Note that, considering linear hyperbolic equations with variable coefficients and 

quasilinear hyperbolic equations, the condition 0 0.4   for the local Courant 

number   is easier to be maintained on the mesh than the condition 0.5 1.0  . 

7. Conclusion 
In this work, the Fourier analysis of the two fully discrete bicompact scheme of 

the fourth order of approximation in space for hyperbolic equations is presented. The 

analysis is carried out in case of the model linear advection equation. Prior to the 

Fourier analysis the two-level bicompact finite difference schemes each consisting of 

two difference equations for two mesh functions, one defined over integer nodes, the 

other over half-integer nodes, are transformed into the three-level schemes each 

consisting of one difference equation for one mesh function defined over integer 

nodes. The results of the Fourier analysis are supplied with figures of bicompact 

schemes’ dispersion and dissipation characteristics plotted as functions of 

dimensionless wavenumber and Courant numbers. A comparison with dispersive and 

dissipative properties of other widely used numerical schemes for hyperbolic 

equations is done. It is shown that bicompact schemes possess one of the best spectral 

resolutions among the compared numerical schemes. 

In addition, it is explained in what sense bicompact schemes are nonstandard, 

they are compared with other known compact schemes. 
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Fig. 9. Numerical phase velocity plotted against the dimensionless wavenumber   at 

different Courant numbers. Solid curves correspond to the Iserles scheme, while 

dashed ones correspond to the BiC4-CN scheme. 
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Fig. 10. Numerical group velocity plotted against the dimensionless wavenumber   

at different Courant numbers. Solid curves correspond to the Iserles scheme, while 

dashed ones correspond to the BiC4-CN scheme. 
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