
Keldysh Institute  •  Publication search

Keldysh Institute preprints  •  Preprint No. 21, 2018

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

Bruno A.D.

Power geometry and
expansions of solutions to the

Painlevé equations

Recommended form of bibliographic references:  Bruno A.D. Power geometry and expansions of
solutions to the Painlevé equations // Keldysh Institute Preprints. 2018. No. 21. 15 p. 
doi:10.20948/prepr-2018-21-e 
URL: http://library.keldysh.ru/preprint.asp?id=2018-21&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2018-21&lg=e
http://library.keldysh.ru/author_page.asp?aid=1428&lg=e
http://doi.org/10.20948/prepr-2018-21-e
http://library.keldysh.ru/preprint.asp?id=2018-21&lg=e


Орд е н аЛ енин а

ИНСТИТУТ ПРИКЛАДНОЙМАТЕМАТИКИ

имени М.В.КЕЛДЫША

Ро с с и й с к о й а к а д емии н а у к

A.D. Bruno

Power geometry and expansions

of solutions to the Painlevé equations

Moscow — 2018



УДК 517.925

Alexander Dmitrievich Bruno

Power geometry and expansions of solutions to the Painlevé equations.

We consider the complicated and exotic asymptotic expansions of solutions

to a polynomial ordinary differential equation (ODE). They are such series on inte-

gral powers of the independent variable, which coefficients are the Laurent series

on decreasing powers of the logarithm of the independent variable and on its pure

imaginary power correspondingly. We propose an algorithm for writing ODEs for

these coefficients. The first coefficient is a solution of a truncated equation. For

some initial equations, it is a polynomial. Question: will the following coefficients

be polynomials? Here the question is considered for the third (P3), fifth (P5) and

sixth (P6) Painlevé equations. We have found that second coefficients in six of eight

families of complicated expansions are polynomials, as well in two of four families of

exotic expansions, but in other four families, polynomiality of the second coefficient

demands some conditions. We give a survey of these results.

Key words: expansions of solutions to ODE, complicated expansions, exotic

expansions, polynomiality of coefficients, Painlevé equations.

Александр Дмитриевич Брюно

Степенная геометрия и разложения решений уравнений Пенлеве. Препринт

Института прикладной математики им. М.В. Келдыша РАН, Москва, 2018.

Рассматриваются сложные и экзотические асимптотические разложения ре-

шений полиномиального обыкновенного дифференциального уравнения (ОДУ).

Это такие ряды по целым степеням независимой переменной, коэффициенты

которых суть ряды Лорана от логарифма этой переменной и её чисто мнимой сте-

пени соответственно. Предлагается алгоритм составления ОДУ для этих коэффи-

циентов. Первый коэффициент является решением укороченного уравнения. Для

некоторых исходных уравнений он является многочленом. Спрашивается: будут

ли многочленами следующие коэффициенты? Здесь этот вопрос изучается для

третьего, пятого и шестого уравнений Пенлеве. Оказалось, что в шести из вось-

ми семейств сложных разложений и в двух из четырёх семейств экзотических

разложений вторые коэффициенты — многочлены. Но в четырёх оставшихся

семействах коэффициенты являются многочленами только при определённых

условиях. Здесь дан обзор этих результатов.

Ключевые слова: разложения решений ОДУ, сложные разложения, экзоти-

ческие разложения, полиномиальность коэффициентов, уравнения Пенлеве.
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1. Introduction

In 2004 I proposed amethod for calculation of asymptotic expansions of solutions

to a polynomial ordinary differential equation (ODE) [1]. It allowed to compute

power expansions and power-logarithmic expansions (or Dulac series) of solutions,

where coefficients of powers of the independent variable x are either constants or

polynomials of logarithm of x. Later it is appeared that such equations have solutions
with other expansions: they can have coefficients of powers of x as Laurent series
either in increasing powers of log x or in increasing and decreasing imaginary powers
of x. They are correspondingly complicated (psi-series) [2] or exotic [3] expansions.
Methods from [1] are not suitable for their calculation. Now I have found a method to

writing down ODE for each coefficient of such series (Section 2). The equations are

linear and contain higher and low variations from some parts of the initial equation.

The first coefficient is a solution of the truncated equation, and usually it is a Laurent

series in log x or in xiγ. But it is a polynomial or a Laurent polynomial for some
equations.

Question: Will be the following coefficients of the same structure?

I consider this question for three Painlevé equations P3, P5 and P6, because

among 6 Painlevé equationsP1–P6 there are 3 equationsP3, P5, P6 having complicated

and exotic expansions of solutions ( [4–6]). First coefficients for equations P3, P5 and

P6 are polynomials in log x in complicated expansions and usual or Laurent polynomi-
als in xiγ in exotic expansions [4,6]. Each of the Painlevé equations P3, P5 and P6 has

4 complex parameters a, b, c, d. Two of them are included into the truncated equation.

These three Painlevé equations have 8 families of complicated expansions and 4

families of exotic expansions. I have calculated several first polynomial coefficients

for all these 12 families, sometimes under some simplifications (Sections 3 and 4).

Second coefficients in 6 of 8 families of complicated expansions are polynomials,

as well in 2 families of exotic expansions, but two families of complicated and two

families of exotic expansions demand some conditions for polynomiality of the second

coefficient. The third coefficient is a polynomial ether always, either under some

restrictions on parameters, or never. We give a survey of these results.

2. Writing ODEs for coefficients

2.1. Algebraic case. Let we have the polynomial

f(x, y) (1)

and the series

y =
∞∑
k=0

ϕk x
k , (2)
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where coefficients ϕk are functions of some quantities. Let we put the series (2) into

the polynomial (1) and will select all addends with fixed power exponent of x. For
that, we break up the polynomial (1) into the sum

f(x, y) =
m∑
i=0

fi(y)x
i,

and we write the series (2) in the form

y = ϕ0 +
∞∑
k=1

ϕk x
k def
= ϕ0 +∆.

Then

∆j =
∞∑
k=j

cjk x
k,

where coefficients cjk are definite sums of products of j coefficients ϕl and corre-

sponding multinomial coefficients [7]. At last, each item fi(ϕ0+∆) can be expanded
into the Taylor series

fi =
∞∑
j=0

1

j!

djfi
dyj

∣∣∣
y=ϕ0

∆j .

So the result of the substitution of series (2) into the polynomial (1) can be

written as the sum

m∑
i=0

xi

fi(ϕ0) +
∞∑
j=1

1

j!

djfi(ϕ0)

dyj

∞∑
k=j

cjk x
k


of items of the form

xi
1

j!

djfi(ϕ0)

dyj
cjk x

k . (3)

Here integral indexes i, j, k > 0 are such

k > j; if j = 0, then k = 0 . (4)

Set of such points (i, j, k) ∈ Z3 will be denoted as M. At last, all items (3) with

fixed power exponent xn are selected by the equation i+ k = n. The setM can be

considered as a part of the integer lattice Z3 in R3 with points (i, j, k), which satisfy
(4).
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If we look for expansion (2) as a solution of the equation f(x, y) = 0 and want to
use the method of indeterminate coefficients, then we obtain the equation f0(ϕ0) = 0
for the coefficient ϕ0, and equation

df0(ϕ0)

dy
ϕnx

n +
∑

(i,j,k)∈N(n)

xi
1

j!

djfi(ϕ0)

dyj
cjk x

k + xnfn(ϕ0) = 0 , (5)

for the coefficient ϕn with n > 0, where

N(n) = M ∩ {j > 0, i+ k = n and j > 1, if i = 0}.

That equation can be canceled by xn and be written in the form

df0(ϕ0)

dy
ϕn +

∑
(i,j,k)∈N(n)

1

j!

djfi(ϕ0)

dyj
cjk + fn(ϕ0) = 0 . (6)

Theorem 1 ( [8]). If df0(ϕ0)/dy 6= 0, then coefficientsϕn can be found from equations

(6) successfully with increasing n.

2.2. Case of ODE. If f(x, y) is a differential polynomial, i.e. it contains derivatives

dly/dxl, then the job of derivatives
djfi
dyj

play variations
δjfi
δyj

, which are derivatives

of Frechet or Gateaux. Here the j-variation
δjf

δyj
=

djf

dyj
, if the polynomial does

not contain derivatives, and variation of a derivation is
δ

δy

(
dky

dxk

)
=

dk

dxk
, and for

products

δ(f · g)
δy

= f
δg

δy
+

δf

δy
· g ,

δ

δy

(
dky

dxk
· dl

dxl

)
=

dk+l

dxk+l
.

Analog of the Taylor formula is correct for variations

f(y +∆) =
∞∑
j=0

1

j!

δjf(y)

δyj
∆j .

Let now we have the differential polynomial f(x, y) and we look for solution of
the equation f(x, y) = 0 in the form of expansion (2). Here the technique, described

above for algebraic equation, can be used, but with the following refinements.
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1) According to [1], differential polynomial f(x, y) is a sum of differential

monomials a(x, y), which are products of a usual monomial const · xrys and sev-
eral derivatives dly/dxl. Each monomial a(x, y) corresponds to its vectorial power
exponent Q(a) = (q1, q2) under the following rules:

Q(const) = 0, Q(xrys) = (r, s), Q(dly/dxl) = (−l, 1),

vectorial power exponent of a product of differential monomials is a vectorial sum

of their vectorial power exponents Q(ab) = Q(a) +Q(b). Set S(f) of all vectorial
power exponents Q(a) of all differential monomials a(x, y) containing in f(x, y) is
called as support of f . Its convex hull Γ(f) is a Newton polygon of f . Its boundary ∂Γ

consists of vertices Γ
(0)
j and edges Γ

(1)
j . To each boundary element Γ

(d)
j corresponds

the truncated equation f̂
(d)
j = 0, where f̂

(d)
j is a sum of all monomials with power

exponents Q ∈ Γ
(d)
j . The first term of solution’s expansion to the full equation is a

solution to the corresponding truncated equation. Now the part fi(x, y) contains all
such differential monomials a(x, y), for which in Q(a) the first coordinate q1 = i.
Besides, we assume that f(x, y) has no monomials with q1 < 0, and f0(y) 6≡ 0. Then
all formula of the algebraic case with variations instead of derivations are correct.

2) Variations are operators, which are not commute with differential polynomials.

So the formulae (5) takes the form

δf0
δy

xnϕn +
∑

(i,j,k)∈N(n)

xi
1

j!

δjfi
δyj

xkcjk + xnfn = 0 , (7)

but in it we cannot cancel by xn and obtain an analog of formulae (6). In (7) all
δjfi/δy

j are taken for y = ϕ0.

Theorem 2 ( [8]). In the expansion (2) coefficient ϕn satisfies equation (7).

3) Rules of commutation of variations with functions of different classes exist.

If ϕk is a series in log x, then ξ = log x and xs = esξ.

Lemma 1 ( [4]).

dn

dξn
[
esξϕ(ξ)

]
= esξ

n∑
k=0

(
n

k

)
sn−kϕ(k)(ξ) ,

where
(
n
k

)
are binomial coefficients and ϕ(k) is the k-th derivation of ϕ(ξ) along ξ.

If ϕk is a series in x
iγ, then ξ = xiγ and xs = ξs/(iγ).
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Lemma 2 ( [9]).

dn

dξn

[
ξs/(iγ)ϕ(ξ)

]
=

= ξs/(iγ)

[
n−1∑
k=0

(
n

k

)
s

iγ

(
s

iγ
− 1

)
. . .

(
s

iγ
− n+ k + 1

)
ϕ(k)(ξ)

1

ξn−k
+ ϕ(n)

]
.

These Lemmas give rules of commutation of an operator with xs. Applying
them in equation (7), we can cancel the equation by xn and obtain an equation without
x, only with ξ. So the algorithm consists of the following steps.

Step 0. From the initial equation f(x, y) = 0, we select such truncated equation

f̂
(1)
1 (x, y) = 0, which corresponds to edgeΓ

(1)
1 of the polygonΓ of the differential

sum f(x, y) and has a complicated or exotic solution depending from log x or
xiγ, γ ∈ R correspondingly.

Step 1. We make a power transformation of the variables y = xlz to make the

truncated equation correspond to the vertical edge.

Step 2. We divide the transformed equation g(x, z) = 0 into parts gi(x, y)x
i, corre-

sponding to different verticals of its support.

Step 3. In these parts gi(x, y)x
i we change the independent variable x by log x or by

xiγ.
Step 4. We write down equations for several first coefficients ϕk.

Step 5. Using the rules of commutation, we exclude powers of x from these equations

and we obtain linear ODEs for coefficients with independent variable log x or
xiγ. Their solutions are power expansions and can be computed by known
methods from [1].

3. Results for complicated expansions

3.1. The third Painlevé equation P3. Written as differential polynomial, it is

f(x, y)
def
= −xyy′′ + xy′

2 − yy′ + ay3 + by + cxy4 + dx = 0, (8)

where a, b, c, d are complex parameters. Its support and polygon for a, b, c, d 6= 0 are

shown on Fig. 1. The edge Γ
(1)
1 corresponds to the truncated equation

f̂
(1)
1

def
= −xyy′′ + xy′

2 − yy′ + by + dx = 0. (9)

After the power transformation y = xz and canceling by x, the full equation (8)
became

g
def
= −x2zz′′ + x2z′

2 − xzz′ + bz + d+ ax2z3 + cx4z4 = 0. (10)
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2

4

q2

−1 0 1

Γ
(0)
1

q1

Γ
(1)
1

Figure 1. Support and polygon of the equation (8) for a, b, c, d 6= 0.

Here the truncated equation (9) takes the form

g0
def
= −x2zz′′ + x2z′

2 − xzz′ + bz + d = 0 . (11)

Support and polygon of equation (10) are shown on Fig. 2. Here the truncated equation

(11) corresponds to the vertical edge Γ̃
(1)
1 at the axis q1 = 0. Here g2 = az3, g4 = cz4.

After the logarithmic transformation ξ = log x, equation (11) takes the form

h0
def
= −zz̈ + ż2 + bz + d = 0, (12)

where ż = dz/dξ. Support and polygon of equation (12) are shown on Fig. 3 in the
case bd 6= 0. Here h2 = az3, h4 = cz4.

Let b 6= 0. The edge Γ̃
(1)
1 of Fig. 3 corresponds to the truncated equation

ĥ
(1)
1

def
= −zz̈ + ż2 + bz = 0.

It has the power solution z = −bξ2/2. According to [1], extending it as expansion in
decreasing powers of ξ, we obtain the solution of equation (11)

z = −b

2
(log x+ c̃)2 − d

2b
= ϕ0, (13)

where c̃ is arbitrary constant.
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2

4

q2

0 1 2 3 4

˜
Γ
(1)
1

q1

Figure 2. Support and polygon of the equation (10) for a, b, c, d 6= 0.

1

2

q2

−2 −1 0

˜
Γ
(1)
1

˜
Γ
(1)
2

q1

Figure 3. Support and polygon of the equation (12) with bd 6= 0.

Let us consider equation (11) in the case b = 0, d 6= 0. It has solution

z = ±
√
−d (log x+ c̃) = ϕ0. (14)
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Solutions to equation (10) have the form of expansion

z = ϕ0(ξ) +
∞∑
k=1

ϕ2k(ξ)x
2k, (15)

where ϕ0 is given by (13) or (14).

In the first case b 6= 0, we call family of solutions (15) as main, and in the
second case b = 0, d 6= 0, we call the family of solutions (15) as additional.

According to Theorem 2, equation for ϕ2 is

δh0

δz
(x2ϕ2) + x2h2(ϕ0) = 0. (16)

According to (12)
δh0

δz
= −z̈ − z

d2

dξ2
+ 2ż

d

dξ
+ b.

According to (10) h2 = az3 and according to Lemma 1

d

dξ
x2ϕ2 = x2 [2ϕ2 + ϕ̇2] ,

d2

dξ2
x2ϕ2 = x2 [4ϕ2 + 4ϕ̇2 + ϕ̈2] .

So, equation (16), after cancelling x2, takes the form

− z [4ϕ2 + 4ϕ̇2 + ϕ̈2] + 2ż [2ϕ2 + ϕ̇2] + (b− z̈)ϕ2 + az3 = 0,

where z = ϕ0 from (13) or (14). In both cases that equation has a polynomial solution:

ϕ2 =
ab

16

[
ξ4 − 2ξ3 + (2 + 2λ)ξ2 − (1 + 2λ)ξ + λ2

]
, ϕ2 = −ad

4

(
ξ2 − ξ +

1

2

)
where λ = d/b2, for the main family, and for the additional family correspondingly.

Hypothesis 1 ( [8]). Coefficients ϕ2k(ξ) in expansion (15) of the main family of the

equation P3 are polynomials in log x, if the parameter of the equation d = 0.

Theorem 3 ( [8]). Third ϕ4 and fourth ϕ6 coefficients in expansion (15) of the ad-

ditional family of the equation P3 are polynomials if the parameter of the equation

a = 0. The fifth coefficient ϕ8 never is a polynomial, if |a|+|c|6= 0.
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q2

q1

Γ
(1)
1

Γ
(1)
2

0 1

1

Figure 4. Support and Newton polygon of the equation P5.

3.2. The fifth Painlevé equation P5. It can be written as

− x2zz′′(z + 1) + x2z′
2

(
3

2
z + 1

)
− xzz′(z + 1) + az3(z + 1)2 + bz3+

+ cxz(z + 1)2 + dx2(z + 1)2(2 + z) = 0 . (17)

It has two different cases of beginning of complicated expansions. Its Newton polygon

Γ is on Fig. 4.

Two its edges Γ
(1)
1 (Case I) and Γ

(1)
2 (Case II) give truncated equations, which

solutions can be continued as complicated expansions and as exotic expansions. The

truncated equation, corresponding to the edgeΓ
(1)
1 , coincides with considered truncated

equation for equation P3 and contains parameters c, d. Let v = z/x.
To study Case II, in equation (17) we make transformation z = 1/w and obtain

equation

h(x,w)
def
= x2ww′′(1 + w)− x2w′2

(
1

2
+ w

)
+ xww′(1 + w) + a(1 + w)2+

+ bw2 + cxw2(w + 1)2 + dx2w2(w + 1)2(1 + 2w) = 0.

If write

h(x,w) = h0(x,w) + xh1(x,w) + x2h2(x,w) ,
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then

h0(x,w) =x2ww′′(w + 1)− x2w′2
(
w +

1

2

)
+ xww′(w + 1)+

+ a(w + 1)2 + bw2 ,

h1(x,w) =cw2(1 + w)2 ,

h2(x,w) =dw2(w + 1)2(2w + 1) .

(18)

Expansions of solutions to the full equation P5 have the form

v or w = ϕ0(ξ) +
∞∑
k=1

ϕk(ξ)x
k, (19)

where ϕ0 belongs to two families (main and additional) in each of both Cases I, II and

are polynomials.

Theorem 4 ( [10]). For the equation P5, the second coefficients ϕ1(ξ) are polynomials
for 3 complicated expansions (19), but for the main family in Case I, it is true iff the

parameter d = 0.

3.3. The sixth Painlevé equation P6. Its Newton polygon is on Fig. 5.

q2

q1Q1

Q2

Q3

Q4

Γ
(1)
1

Γ
(1)
2

Γ
(1)
3

Γ
(1)
4

0 1

1

Figure 5. Support and Newton polygon of the equation P6.

We consider the truncated equation corresponding to left vertical edge. It has 2

parameters a, c and after the power transformation y = −1/w it coincides with the
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truncated equation of equation P5 in the Case II, i. e. h0(x,w) = 0 from (18) with −c

instead of b. If α
def
= a− c 6= 0, the truncated equation has solutions

w =
α

2
(ξ + c̃)2 +

a

α
= ϕ0, (20)

where c̃ is an arbitrary constant. If α = 0, a 6= 0, then it has solutions

ϕ0(ξ) = w = ±
√
2a(ξ + c̃). (21)

Here we look for expansions of solutions to the full equation P6 in the form (19),

where ϕ0(ξ) is either (20) or (21), then (19) forms themain family, or the additional
family correspondingly.

Theorem 5. In the complicated expansions (19) for the equation P6, the second

coefficient ϕ1 is a polynomial for the additional family, but it is so for the main family

iff α = 2a.

4. Results for exotic expansions

Exotic expansions can give real functions. For example, xi + x−i = 2 cos log x.
For beginning of exotic expansions, equations P3, P5 and P6 have the same truncated

equations as it was for complicated expansions. Each of the truncated equations of P3,

of P5 in Case I, of P5 in Case II and of P6 has one big family of solutions in the form

ϕ0(ξ) = Aξ +B + Cξ−1, (22)

where A,B,C = const ∈ C, ξ = xiγ, γ = const ∈ R, γ 6= 0. Exotic expansions for
equations P3, P5 and P6 have the form (19), where all ϕk(ξ) are convergent Laurent
series, and k are even for equation P3.

Theorem 6 ( [9]). In the exotic expansion (19) for equation P3, the second coefficient

ϕ2(ξ) is a Laurent polynomial.

Theorem 7 ( [10]). In the exotic expansion (19) for the Case I of equation P5, the

second coefficient ϕ1(ξ) is always Laurent polynomial, but for the Case II of equation
P5, it is a Laurent polynomial only under two conditions

2AC +B(B + 1) = 0, A(2B + 1)C(γ2 − 1) = 0

on parameters of the solution ϕ0 in (22).

Theorem 8. In the exotic expansion (19) for equation P6, the second coefficient ϕ1(ξ)
is a Laurent polynomial only under three conditions:

2AC +B(B + 1) = 0, A(2B + 1)C(γ2 − 1)(b− d) = 0,

AC
[
6B2 −B − 3

]
= 0.
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Usually the equation for ϕk(ξ) has two solutions: with increasing and with
decreasing powers of ξ. But they coincide if the solution is an usual or Laurent
polynomial. If all coefficients ϕk(ξ) are polynomials then there is one family of
expansions (19). In another case there are two different families. Details see in [10].

5. Conclusion

In both cases: complicated and exotic expansions we have its own alternative.

In complicated expansion the coefficient ϕk(ξ) is either a polynomial or a divergent
Laurent series. In exotic expansion the coefficientϕk(ξ) is either a Laurent polynomial,
in that case it is unique, or a Laurent series, then there are two different coefficients

both in form of convergent series.

In all considered cases, when coefficient ϕk(ξ) = Dξm + Eξm−1 + Fξm−2 +
. . . of the complicated or exotic expansion is an usual or Laurent polynomial, its
coefficientsD,E, F, . . . , satisfy to a system of linear algebraic equations. And number

of equations is more then number of these coefficients. Such linear systems have

solutions only in degenerated cases when rank of the extended matrix of the system is

less then the maximal possible. Existence of such situations in the Painlevé equations

shows their degeneracy or their inner symmetries.
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