Keldysh Institute « Publication search

Keldysh Institute preprints « Preprint No. 21, 2018

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

Bruno A.D.

Power geometry and
expansions of solutions to the
Painlevé equations

Recommended form of bibliographic references: Bruno A.D. Power geometry and expansions of
solutions to the Painlevé equations // Keldysh Institute Preprints. 2018. No. 21. 15 p.

d0i:10.20948/prepr-2018-21-e
URL: http://library.keldysh.ru/preprint.asp?id=2018-21&Ig=e



http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2018-21&lg=e
http://library.keldysh.ru/author_page.asp?aid=1428&lg=e
http://doi.org/10.20948/prepr-2018-21-e
http://library.keldysh.ru/preprint.asp?id=2018-21&lg=e

OpanenalJlenuna
UHCTUTYT NPUKJIAJJTHOU MATEMATUKH
umenn M.B.KEJI/IBILIIA
PoccuiickoM aKkageMHMHd HAaYK

A.D.Bruno

Power geometry and expansions
of solutions to the Painlevé equations

Moscow — 2018
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Alexander Dmitrievich Bruno

Power geometry and expansions of solutions to the Painlevé equations.

We consider the complicated and exotic asymptotic expansions of solutions
to a polynomial ordinary differential equation (ODE). They are such series on inte-
gral powers of the independent variable, which coefficients are the Laurent series
on decreasing powers of the logarithm of the independent variable and on its pure
imaginary power correspondingly. We propose an algorithm for writing ODEs for
these coefficients. The first coefficient is a solution of a truncated equation. For
some initial equations, it is a polynomial. Question: will the following coefficients
be polynomials? Here the question is considered for the third (F3), fifth (FP5) and
sixth (Fs) Painlevé equations. We have found that second coefficients in six of eight
families of complicated expansions are polynomials, as well in two of four families of
exotic expansions, but in other four families, polynomiality of the second coefficient
demands some conditions. We give a survey of these results.

Key words: expansions of solutions to ODE, complicated expansions, exotic
expansions, polynomiality of coefficients, Painlevé equations.

Agnexcanap Amurpuesuu bprono

CrerneHHasi reOMETpUs U pa3iokKeHus perieHun ypasaenuu [lennese. [Ipenpunt
NuctutyTa npukinaanoit marematuku uM. M.B. Kenaeiiia PAH, Mocksa, 2018.

PaccmarpuBaroTcs ClOKHBIE U SK30THYECKHE ACUMIITOTHYECKUE PA3JIOKEHUS pe-
IIEHUH TOJTMHOMHAILHOTO OOBIKHOBEHHOTO quddepenunanbioro ypasaenus (O4Y).
DTO Takue psAJbl MO LEIbIM CTEINECHSIM HE3aBUCUMOM IEpEMEHHOM, KO3 (OUITUEHTHI
KOTOPBIX CyTh psizibl JlopaHa ot norapuma 3Toi epeMeHHOM 1 €€ YUCTO MHUMOM CTe-
neHu cooTBeTCTBEHHO. [Ipemmaraercs anroputm coctapnenus OAY nms atux koaddu-
11eHToB. [lepBhIif KOADGUIHEHT IBISETCS PelICHHEM YKOPOUSHHOTO yYpaBHeHus. [1Jis
HEKOTOPBIX UCXOAHBIX YPAaBHEHHH OH siBIIsieTCS MHOrowieHoM. CripamuBaeTcs: OyyT
JM MHOTOUJIEHAMH clieAyronue ko3gphuunenTsi? 31ech 3TOT BOIPOC U3ydaeTCs AJis
TPETHETO, MATOTO U 1ecToro ypasHeHuii [lennese. Oka3anoch, 4TO B IIECTU U3 BOCh-
MU CEMENCTB CJIIOKHBIX PA3JIOKEHUN U B IBYX U3 YETBIPEX CEMENUCTB dK30THYECKUX
pa3NoKeHH BTOpbIe KOADPUIIMEHTH — MHOTrOwWIeHbl. Ho B 4eThIpEX ocTaBIIMXCS
ceMencTBax KO3((ULHUEHTHI SBJISIOTCS MHOTOYJIEHAMU TOJBKO MPU ONPEIeIEHHBIX
YCIIOBUSX. 31€Ch 1aH 0030p ITHX PE3yIbTaTOB.

Knwueswie crosa: paznoxenus pemenuit O/Y, cnoxxHble pa3noKeHus, SK30TH-
YECKHUE Pa30KEHUs, TOJIMHOMUAIIBHOCTh KO3 PuimeHToB, ypaBHeHus llennese.

© A. 1. bptono, 2018
© Wucruryt npuknaaHoit maremMatuku uM. M. B. Kenaeima, 2018



1. Introduction

In 2004 I proposed a method for calculation of asymptotic expansions of solutions
to a polynomial ordinary differential equation (ODE) [1]. It allowed to compute
power expansions and power-logarithmic expansions (or Dulac series) of solutions,
where coefficients of powers of the independent variable x are either constants or
polynomials of logarithm of x. Later it is appeared that such equations have solutions
with other expansions: they can have coefficients of powers of x as Laurent series
either in increasing powers of log x or in increasing and decreasing imaginary powers
of x. They are correspondingly complicated (psi-series) [2] or exotic [3]] expansions.
Methods from [1]] are not suitable for their calculation. Now I have found a method to
writing down ODE for each coefficient of such series (Section 2). The equations are
linear and contain higher and low variations from some parts of the initial equation.
The first coefficient is a solution of the truncated equation, and usually it is a Laurent
series in log x or in z'7. But it is a polynomial or a Laurent polynomial for some
equations.

Question: Will be the following coefficients of the same structure?

I consider this question for three Painlevé equations P3, P; and P, because
among 6 Painlevé equations P,—F; there are 3 equations Ps, Ps, P having complicated
and exotic expansions of solutions ( [4-6]). First coefficients for equations P3, P5; and
P are polynomials in log « in complicated expansions and usual or Laurent polynomi-
als in 27 in exotic expansions [4,6]. Each of the Painlevé equations P, P5 and Ps has
4 complex parameters a, b, ¢, d. Two of them are included into the truncated equation.
These three Painlevé equations have 8 families of complicated expansions and 4
families of exotic expansions. I have calculated several first polynomial coefficients
for all these 12 families, sometimes under some simplifications (Sections [3| and [)).
Second coefficients in 6 of 8 families of complicated expansions are polynomials,
as well in 2 families of exotic expansions, but two families of complicated and two
families of exotic expansions demand some conditions for polynomiality of the second
coefficient. The third coefficient is a polynomial ether always, either under some
restrictions on parameters, or never. We give a survey of these results.

2. Writing ODEs for coefficients
2.1. Algebraic case. Let we have the polynomial

f(z,y) (1)

and the series

y=> era", 2)
k=0
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where coefficients ;. are functions of some quantities. Let we put the series (2)) into
the polynomial (1) and will select all addends with fixed power exponent of x. For
that, we break up the polynomial (1] into the sum

m

f(z,y) = Z fily) 2,

1=0

and we write the series (2)) in the form

0
d
y=@o+» opa I oo + A
k=1

Then o
A = Z i ",
k=j
where coefficients c;; are definite sums of products of j coefficients ¢; and corre-
sponding multinomial coefficients [[7]. At last, each item f;(¢o + A) can be expanded
into the Taylor series
— 1 df;
f 7 — Z - -

AT
|
It dy

Y=%o

So the result of the substitution of series (2)) into the polynomial (1)) can be
written as the sum

Zﬂfi fi(¢o) +Zl dj];yfo ZC

1=0 k=j

of items of the form

djfz(QDO) k:
j' i Cjk X (3)

Here integral indexes i, j, k > 0 are such
k>4, if j=0, then k=0. (4)

Set of such points (i, j, k) € Z? will be denoted as M. At last, all items (3] with
fixed power exponent 2" are selected by the equation 2 + k£ = n. The set M can be
considered as a part of the integer lattice Z3 in R? with points (i, j, k), which satisfy

#)
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If we look for expansion (2)) as a solution of the equation f(z,y) = 0 and want to
use the method of indeterminate coefficients, then we obtain the equation fy(yg) = 0
for the coefficient ¢, and equation

dfo(o) oz + Z xl & fi(p0)

d ot +a" flpo) =0, (5)
Yy

gt dy?

(i,j,k)EN(n
for the coefficient ,, with n > 0, where
Nn)=Mn{j>0,i+k=nandj>1, ifi =0}.
That equation can be canceled by =" and be written in the form

dfo(¢o) 1 & fi(¢o)
dy Pnt Z ]! dy’

ik + fulpo) =0 . (6)
(i,j,k)EN(n

Theorem 1 ([8)]). If dfo(po)/dy # 0, then coefficients o, can be found from equations
(6) successfully with increasing n.

2.2. Case of ODE. If f(x,y) is a differential polynomial, i.e. it contains derivatives
& fi L 6f o
d'y/dx', then the job of derivatives d—Jj play variations 6_f" which are derivatives

: o0y’
07 f df . :

of Frechet or Gateaux. Here the j-variation — S0 = i if the polynomial does

Yy’ Y ity i
not contain derivatives, and variation of a derivation is — = ——, and for

oy \ dak dzk
products
o(f-g9) +5f § (dby B dk
sy oy by I Sy \da¥ dzl)  daktl’
Analog of the Taylor formula is correct for variations
— 1V f(y)
A) = — A/
fly+A4) ; Y

Let now we have the differential polynomial f(x,y) and we look for solution of
the equation f(z,y) = 0 in the form of expansion (2]). Here the technique, described
above for algebraic equation, can be used, but with the following refinements.
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1) According to [1], differential polynomial f(x,y) is a sum of differential
monomials a(z,y), which are products of a usual monomial const - z"y* and sev-
eral derivatives d'y/dx'. Each monomial a(z, ) corresponds to its vectorial power
exponent )(a) = (q1, g2) under the following rules:

Q(const) =0, Q(a'y") = (rs), Q(d'y/da') = (~1,1),

vectorial power exponent of a product of differential monomials is a vectorial sum
of their vectorial power exponents Q)(ab) = Q(a) + Q(b). Set S(f) of all vectorial
power exponents ()(a) of all differential monomials a(z,y) containing in f(z,y) is
called as support of f. Its convex hull I'( f) is a Newton polygon of f. Its boundary o'

(1)

consists of vertices Féo) and edges I'; . To each boundary element ng) corresponds

the truncated equation f]@ = 0, where f]@ is a sum of all monomials with power

exponents () € F§d). The first term of solution’s expansion to the full equation is a

solution to the corresponding truncated equation. Now the part f;(z,y) contains all
such differential monomials a(z, y), for which in Q)(a) the first coordinate ¢; = 1.
Besides, we assume that f(z,y) has no monomials with ¢; < 0, and fy(y) # 0. Then
all formula of the algebraic case with variations instead of derivations are correct.

2) Variations are operators, which are not commute with differential polynomials.
So the formulae (3] takes the form

) 18

0 i v > x% Ji ket amfy =0, (7)

oy gl oyl
(i,5,k)e N(n

but in it we cannot cancel by 2" and obtain an analog of formulae (6)). In (7) all
&/ f; /6y’ are taken for y = (.

Theorem 2 ( [8])). In the expansion (2)) coefficient p,, satisfies equation (7).

3) Rules of commutation of variations with functions of different classes exist.
If ¢, is a series in log x, then £ = log x and z° = e*.

Lemma 1 ( [4]).

d" -
gen [€0©)] = ey (Z) s"FeM(e),
k=0

where () are binomial coefficients and ©\¥) is the k-th derivation of p(€) along €.

If ¢, is a series in 2’7, then € = 27 and 2° = &°/(17),



Lemma 2 ( [9]).

dn
d én

n—1
_ es/(i) n\s (s _ S _ (k) ()L (n)
= ¢s/(n [Z(k>w<w 1)...(2,7 n+k+1>gp (f)gnk+90

k=0

e pte)] =

These Lemmas give rules of commutation of an operator with z°. Applying
them in equation (7)), we can cancel the equation by " and obtain an equation without
x, only with &. So the algorithm consists of the following steps.

Step 0. From the initial equation f(x,y) = 0, we select such truncated equation

fl(l) (x,y) = 0, which corresponds to edge F(ll) of the polygon I" of the differential
sum f(x,y) and has a complicated or exotic solution depending from log x or
2", v € R correspondingly.

Step 1. We make a power transformation of the variables y = 'z to make the
truncated equation correspond to the vertical edge.

Step 2. We divide the transformed equation g(x, z) = 0 into parts g;(z, y)z', corre-
sponding to different verticals of its support.

Step 3. In these parts g;(x, y)x’ we change the independent variable by log x or by
x'.

Step 4. We write down equations for several first coefficients .

Step 5. Using the rules of commutation, we exclude powers of = from these equations
and we obtain linear ODEs for coefficients with independent variable log x or
2. Their solutions are power expansions and can be computed by known
methods from []1]].

3. Results for complicated expansions

3.1. The third Painlevé equation P;. Written as differential polynomial, it is

d
Flay) ™ —ayy + 2y — gy + ay® + by + cay* + da = 0, (8)

where a, b, ¢, d are complex parameters. Its support and polygon for a, b, ¢, d # 0 are

shown on Fig. . The edge F?) corresponds to the truncated equation

FVE gy 4 ay® — gy + by + da =0, ©)

After the power transformation y = xz and canceling by z, the full equation (&)
became

g Y 202" 4 a2 — g2 4 br+ d+ a2 + extst = 0. (10)
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—1 0 1
Figure 1. Support and polygon of the equation (8)) for a, b, c,d # 0.

Here the truncated equation (9) takes the form

9 def a2 a2 x4 b +d=0. (11)

Support and polygon of equation are shown on Fig. 2| Here the truncated equation
(11]) corresponds to the vertical edge Fgl) at the axis ¢; = 0. Here go = a23, g4 = c2*.

After the logarithmic transformation ¢ = log z, equation takes the form

ho™ —2i4 224 b2 v d=0, (12)

where Z = dz/d¢. Support and polygon of equation ([12)) are shown on Fig. [3|in the
case bd # 0. Here hy = az>, hy = cz*.
Let b # 0. The edge Fgl) of Fig. 3| corresponds to the truncated equation

1551) Y i+ P2 4bz=0.

It has the power solution z = —b¢? /2. According to [1]], extending it as expansion in
decreasing powers of £, we obtain the solution of equation (|11
b d
z = —§(logaz+6)2—2—b = o, (13)

where ¢ is arbitrary constant.
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| | | | >
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0 1 9 3 g 0

Figure 2. Support and polygon of the equation for a,b, c,d # 0.

q2 A
92—+

| | -
1 1

9 -1 o
Figure 3. Support and polygon of the equation (12]) with bd # 0.

Let us consider equation (1I)) in the case b = 0, d # 0. It has solution

z=+v—d(logz + &) = . (14)
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Solutions to equation have the form of expansion
z=00(&) + ) pu(§)a™, (15)
k=1

where  is given by or (T4).
In the first case b # 0, we call family of solutions as main, and in the
second case b = 0, d # 0, we call the family of solutions as additional.
According to Theorem |2} equation for (o is

dhy

5, (@p2) + 2 ha(po) = 0. (16)
According to (12)
dhg d? d
— =—Z—2——=+2—+0.
5 z Zd.§2 + de +
According to hy = az® and according to Lemmall]
Lo = Dpr b ial, n = 2 + 4 +
i BT 2 2+ Q2

So, equation (16), after cancelling %, takes the form
— 2[4y + 4Py + Bo] + 22 205 + Do) + (b— )2 + a2’ = 0,
where z = ( from or (14). In both cases that equation has a polynomial solution:

ab

‘PQZE[

=28 + (24208 — (1 + 206 + X7 ‘”:_%l <£2_€+%>

where A\ = d/?, for the main family, and for the additional family correspondingly.

Hypothesis 1 ( [8]). Coefficients po(§) in expansion of the main family of the
equation P3 are polynomials in log x, if the parameter of the equation d = 0.

Theorem 3 ( [8]). Third p, and fourth g coefficients in expansion of the ad-

ditional family of the equation Ps are polynomials if the parameter of the equation
a = 0. The fifth coefficient pg never is a polynomial, if |a|+]|c|# 0.



—-11 -

q2A
ry)
1__
i)
0 i 0

Figure 4. Support and Newton polygon of the equation F.

3.2. The fifth Painlevé equation P;. It can be written as

3
— 2?2 (4 1) + 222 <§z + 1) — w22 (z4+ 1) +azP(z 4+ 1) + b2+
+erz(z+ 1)+ da?(z +1)*2+2)=0. (17)

It has two different cases of beginning of complicated expansions. Its Newton polygon
I"is on Fig. 4

Two its edges F(ll) (Case I) and FS) (Case II) give truncated equations, which
solutions can be continued as complicated expansions and as exotic expansions. The
truncated equation, corresponding to the edge Fgl) , coincides with considered truncated
equation for equation P; and contains parameters ¢, d. Letv = z/x.

To study Case I, in equation we make transformation z = 1/w and obtain
equation

e 1
h(z,w) «f 22w’ (1 + w) — 22w (5 + w) + zww' (1 +w) + a(l +w)*+

+ bw? + czw?(w + 1) + do*w*(w + 1)*(1 + 2w) = 0.

If write
h(x,w) = ho(z,w) + zhy(z,w) + *hs(z, W),
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then
ho(z, w) =z?wuw” (w + 1) — 22w <w + %) + zww'(w + 1)+
+ a(w + 1) + bw?, (18)
hi(z, w) =cw?(1 + w)?,
ho (2, w) =dw*(w + 1)*(2w + 1)..
Expansions of solutions to the full equation P; have the form

vorw = @o(§) + > er(§)a", (19)
k=1

where o belongs to two families (main and additional) in each of both Cases I, II and
are polynomials.

Theorem 4 ([10]). For the equation Ps, the second coefficients () are polynomials
for 3 complicated expansions (19), but for the main family in Case 1, it is true iff the
parameter d = .

3.3. The sixth Painlevé equation F;. Its Newton polygon is on Fig. .

0 i 0 q

Figure 5. Support and Newton polygon of the equation Fj.

We consider the truncated equation corresponding to left vertical edge. It has 2
parameters a, ¢ and after the power transformation y = —1/w it coincides with the
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truncated equation of equation P; in the Case I1, i.e. ho(x,w) = 0 from with —c

instead of b. If a & ¢ — ¢ # 0, the truncated equation has solutions

o _ a
w=(E+"+— =, (20)
o
where ¢ is an arbitrary constant. If & = 0, a # 0, then it has solutions

po(§) =w = £V2a(§ +6). 1)

Here we look for expansions of solutions to the full equation P in the form (19),
where () is either or (21)), then forms the main family, or the additional
family correspondingly.

Theorem 5. In the complicated expansions for the equation P, the second
coefficient 1 is a polynomial for the additional family, but it is so for the main family

iff a = 2a.

4. Results for exotic expansions

i

Exotic expansions can give real functions. For example, z° + 7% = 2 cos log .
For beginning of exotic expansions, equations 3, P5; and F; have the same truncated
equations as it was for complicated expansions. Each of the truncated equations of P,
of P; in Case I, of P;5 in Case II and of F; has one big family of solutions in the form

po(§) = AE+ B+ C¢ Y, (22)

where A, B,C = const € C, £ = 27, v = const € R, v # 0. Exotic expansions for
equations P3, P; and P have the form (19)), where all ¢y, (§) are convergent Laurent
series, and k are even for equation Ps.

Theorem 6 ( [9]]). In the exotic expansion for equation P, the second coefficient
©2(€) is a Laurent polynomial.

Theorem 7 ( [10]). In the exotic expansion for the Case I of equation Ps, the
second coefficient p1(&) is always Laurent polynomial, but for the Case Il of equation
P, it is a Laurent polynomial only under two conditions

2AC+B(B+1)=0, ARB+1)C(y*—1)=0
on parameters of the solution pq in (22)).

Theorem 8. In the exotic expansion for equation Py, the second coefficient p1(§)
is a Laurent polynomial only under three conditions:

2AC+B(B+1)=0, AQ2B+1)C(H*-1)(b—d) =0,
AC [6B* — B —3] =0.
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Usually the equation for ¢ (£) has two solutions: with increasing and with
decreasing powers of £&. But they coincide if the solution is an usual or Laurent
polynomial. If all coefficients p;(£) are polynomials then there is one family of
expansions (19). In another case there are two different families. Details see in [10].

5. Conclusion

In both cases: complicated and exotic expansions we have its own alternative.
In complicated expansion the coefficient (&) is either a polynomial or a divergent
Laurent series. In exotic expansion the coefficient y(€) is either a Laurent polynomial,
in that case it is unique, or a Laurent series, then there are two different coefficients
both in form of convergent series.
In all considered cases, when coefficient ¢y (§) = DE™ + EE™ L + F¢m—2 +
. of the complicated or exotic expansion is an usual or Laurent polynomial, its
coefficients D, F/, F', . . ., satisfy to a system of linear algebraic equations. And number
of equations is more then number of these coefficients. Such linear systems have
solutions only in degenerated cases when rank of the extended matrix of the system is
less then the maximal possible. Existence of such situations in the Painlevé equations
shows their degeneracy or their inner symmetries.
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