
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 225, 2018

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

Perepelkina A.Y., Levchenko V.D.

The DiamondCandy Algorithm
for Maximum Performance
Vectorized Cross-Stencil

Computation

Recommended form of bibliographic references: Perepelkina A.Y., Levchenko V.D. The
DiamondCandy Algorithm for Maximum Performance Vectorized Cross-Stencil Computation //
Keldysh Institute Preprints. 2018. No. 225. 23 p. doi:10.20948/prepr-2018-225-e
URL: http://library.keldysh.ru/preprint.asp?id=2018-225&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2018-225&lg=e
http://library.keldysh.ru/author_page.asp?aid=3724&lg=e
http://library.keldysh.ru/author_page.asp?aid=1306&lg=e
http://doi.org/10.20948/prepr-2018-225-e
http://library.keldysh.ru/preprint.asp?id=2018-225&lg=e

Ордена Ленина
ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ

имени М. В. Келдыша
Российской академии наук

Anastasia Perepelkina, Vadim Levchenko

The DiamondCandy Algorithm for
Maximum Performance Vectorized

Cross-Stencil Computation

Москва
2018

УДК 519.688

Перепёлкина А.Ю., Левченко В.Д.

Алгоритм DiamondCandyV для повышения производительности
конечноразностных вычислений c применением векторизации

На основе поиска оптимальной пространственно-временной декомпозиции
3D1T пространства операций построен новый алгоритм DiamondCandyV для
эффективной реализации конечно-разностных вычислений с использовани-
ем аппаратной векторизации. Базовый элемент разбиения пространства опе-
раций DiamondCandy получен пересечением областей зависимостей и влия-
ния (конусоидов) для схем с шаблоном типа крест. Благодаря этому алго-
ритм характеризуется высокой вычислительной интенсивностью и локали-
зует обрабатываемые данные на верхних уровнях иерархии памяти совре-
менных компьютеров. Ключевой особенностью алгоритма является легко
реализуемая в программном коде поддержка двух основных средств повы-
шения производительности современных процессоров, а именно аппаратной
векторизации (с использованием SIMD расширения AVX) и вычислительных
потоков с общей памятью (many-core CPU). Обсуждаются детали программ-
ной реализации поддержки параллельности различных уровней на примере
численного решения волнового уравнения. Результаты тестирования реали-
зации алгоритма показывают повышение производительности на порядок
по сравнению с традиционными алгоритмами с пошаговой синхронизацией.
Также, в отличие от традиционного подхода, с увеличением размера обра-
батываемых данных производительность не деградирует.

Keywords: конечно-разностные вычисления, LRnLA, волновое уравне-
ние, time skewing, многоядерные процессоры, векторизация
Anastasia Perepelkina, Vadim Levchenko

The DiamondCandy Algorithm for Maximum Performance Vectorized
Cross-Stencil Computation

An advance in the search for the 4D time-space decomposition that leads
to an efficient vectorized cross-stencil implementation is presented here. The
new algorithm is called DiamondCandy. It is built from the dependency and
influence conoids of the scheme stencil. It has high locality in terms of the op-
erational intensity, SIMD parallelism support, and is easy to implement. The
implementation details are shown to illustrate how both instruction and data
levels of parallelism are used for many-core CPU. The test run results show
that it performs an order of magnitude better than the traditional approach,
and that the performance does not decline with the increase of the data size.

Keywords: Stencil, LRnLA, Wave Equation, time skewing, many-core

3

1 Introduction

We focus on the finite difference numerical solution of the Cauchy problem
for the 3D wave equation:

∂2u

∂t2
= c24u. (1)

The goal is to find the most efficient implementation of the numerical scheme
on a many-core processor with vector processing units. For example, on a
Xeon Phi KNL. The results may be naturally generalized on all similar explicit
stencil based numerical schemes.

The most intuitive way to implement the scheme in code is to write 4 nested
loops:

f o r i t in 0 . . Nt
f o r i x in 0 . . Nx

f o r iy in 0 . . Ny
f o r i z in 0 . . Nz

scheme update . . .
end

end
end

end

This way, firstly, all field data is updated from the initial values to the values
on time step it=1. Then all data is updated from it=1 to it=2. Actually, the
majority of codes are written like this. The algorithms of this kind are called
”stepwise” in this paper since all field values are updated in time step by step.

The iteration on each time step is over a rectangular region. It is the easiest
way to write programs. ”For” loops are a natural instrument to iterate over
the rectangular domains that is present in any relevant programming language.
Moreover, human brain intuitively perceives the spacetime in Euclidean met-
rics, not as a Minkowski space.

The stepwise order of calculation is not the only correct one. The compu-
tation may be executed in any order which does not conflict with the data
dependencies. And this order is one of the less efficient in terms of taking ad-
vantage of the acceleration techniques that are present in the modern computer
hardware.

With the stepwise approach, field values all over the domain need to be
loaded, updated and stored to progress each one time step. The data is large
for most relevant applications. Thus, the problem with the stepwise algorithm
that solves has a low arithmetic intensity and it is in the memory-bound cat-
egory [1].

4

In terms of parallelism, the domain decomposition method is the most usual
approach here. With the stepwise approach, the parallel processors need to
be synchronized by exchanging data to continue to each next time step. This
becomes the bottleneck of the parallel efficiency.

2 Time-space decomposition

The idea to neglect the straightforward loops and, instead, to find optimal
schedules from the analysis of data dependencies has appeared long ago [2].
Now, when the high-performance systems are essentially hybrid with many
levels of parallelism and many levels of cache, it receives even more attention.

Locally-Recursive non-Locally Asynchronous (LRnLA) algorithms [3] present
one of the methods to optimize the performance with a time-space decompo-
sition of computations.

Both the real world physics and the explicit numerical schemes have a finite
speed of information propagation. Thus, with respect to any point, the time-
space domain can be split into the cone of dependence, the cone of influence,
and the absolutely asynchronous domain. In case of a numerical scheme, the
cone shape is defined by the scheme stencil, so the more general term ’conoid’
is used. For the cross stencil of finite difference schemes, the conoid base is a
diamond.

The general way to construct an LRnLA algorithm is to take two time
instants and a base shape on both of them. Then, plot the area of influence
of the bottom one and the area of dependence of the top one, and find their
intersection. The shape is called the conoid of dependence-influence. The
time-space simulation domain may be subdivided into conoids. The fact that
each conoid can be subdivided into similar conoids to optimize cache use is the
”locally recursive” property of the algorithms. The fact that distant conoids
may be computed without synchronization and data exchanges is the ”non-
locally asynchronous” property of the algorithms.

The shape in the time-space can be thought of as a code block for compu-
tation of the points inside it. Then an LRnLA algorithm is defined as a shape
with its subdivision rule [4].

To be specific about time-space description we use nD1T (e.g., 2D1T, 3D1T)
for the field of n spatial dimensions and time, and nD (2D, 3D) for the n-
dimensional slice of it at one time instant. The simulation is nD if it solves
partial differential equations in n coordinate axes and time.

Let us take a cubic region in 3D and a point in its center as the conoid
bases. The resulting conoids are pyramids in 3D1T, which correspond to the
Minkowski cone in the real world. The first LRnLA algorithms [5, 3] were

5

t

y
x

ConeTur

ConeFold

(a) (b)

Figure 1: Some LRnLA algorithm shapes projected to the 2D1T time-space

built like that. The name of the first algorithm was ConeTur (Fig. 1a).
The idea was used in the implementation of the Euler scheme of Vlasov

equation [6], finite difference time domain code [7]. Even the more complex
schemes, like the particle-in-cell simulation, were found to have finite propaga-
tion speed. Indeed, the particle-in-cell scheme includes particles, which move
freely inside the cells mesh. However the speed of the particles is naturally
limited, so the construction of dependency cones works as well. The 2D and
3D particle-in-cell codes were implemented with LRnLA algorithms and used
for computational heavy research problems [8].

Some recent advances in time-space decomposition by other authors present
the similar decomposition [9, 10].

The ConeTur algorithm had some key aspects. It is easily generalized to
higher dimensions by a superposition of 1D1T shapes. With the recursive
subdivision for 1D simulation, the resulting shapes in 1D1T time-space were
triangles (upright and upside-down) and diamonds, and there were special
cases at the boundaries. In 2D1T the pyramids are tiled along with octahe-
drons and tetrahedrons, and the number of special shapes for the boundaries
increases even more. For 3D1T the programming effort becomes unreasonable,
so code generators were used. Even then, the code even for the simple schemes
is too complex. The performance efficiency is limited since the large code does
not fit the instruction cache. Moreover, the compilation time becomes too
large.

If the conoids of different shapes are combined, it is possible to find a uniform
tiling of the time-space. The algorithm that is constructed as a combination
of ConeTur shapes is called ConeFold [11, 12] (Fig. 1b).

With the use of ConeFold the codes for simulation of optics with the FDTD
scheme, seismic waves with the Levander scheme [12], plasma with the particle-
in-cell scheme [11] were implemented and used for real physics problems. The

6

y

x

ConeFold

stencil

domain
DiamondTorre

t

Figure 2: The difference between DiamondTorre and ConeFold conoids

conoids with the shape similar to ConeFold, but different decomposition rules,
are used to construct algorithms for various levels of parallelism.

Other ways to construct a uniform time-space tiling are presented by other
authors. For example, the wavefront [13] or time-skewing method [14]. Among
these, the optimum locality is reached when the time-space decomposition
provides blocks, localized in 3D1T [15].

The shapes that arise in this methods present rectangular shapes in each
3D space slice. However, it is not optimal for the computation asynchrony and
for the data locality of cross stencil applications.

The need for more asynchrony which arose with the introduction of GPU
to scientific computing led to the construction of the DiamondTorre LRnLA
algorithm [4].

DiamondTorre is constructed in 2D1T. The conoid bases are 2D diamonds,
shifted by several grid spaces from each other. This way, the conoids are prisms
in the 2D1T space-time. Indeed, they are similar to the 2D1T projection of
ConeFold, but rotated by 45 degrees, so that rectangles become diamonds (Fig.
2). The DiamondTorre prisms in a row along the y axis are asynchronous, with
no dependencies between each other. Thus, the computation in these may be
distributed between streaming multiprocessors.

In addition, it is better localized in memory. The data necessary for the
execution of the operations inside one shape may be estimated as its projec-
tion to spatial coordinates, 2D in case of DiamondTorre. The projection of
DiamondTorre is smaller than the projection of ConeFold-based algorithms
(Fig. 2). Thus, the data for the update of the points inside one shape may fit
into higher levels of cache, while the same number of operations are carried
out.

The algorithm was implemented with the use of GPU. It was used in optics
[16], seismic wave propagation [17], plasma physics [18], gas dynamics [19].

The drawback of the DiamondTorre is that it is based on a 2D decomposition

7

of the spatial domain. While a 2D plane may be subdivided into diamonds, the
3D space subdivision requires an octahedron and two types of tetrahedrons.
Thus, the complexity of the algorithm description rises. One previous attempt
is reported in [20], however, the overhead for vectorization outweighed the
locality benefits.

The current paper is about our recent find in this research. The new algo-
rithm is based on a conoid that is homogeneous, may be recursively subdivided
into similar shapes, and is based on a diamond (octahedron) shape that pro-
vides high locality for the cross-stencil.

The proposed polyhedral subdivision of the iteration space resembles poly-
hedral compilation techniques [21, 22] in a way. In these, authors aspire to
a more general goal to optimize the loop traversal rule for any computation,
by analyzing the code without the knowledge of the numerical schemes in its
base. These provide the useful terminology and mathematical tools to de-
scribe the complex algorithmic structures, but suffer from the complexity of
the optimization problems for real computation applications.

In LRnLA method the polyhedra are devised from the shape of the depen-
dency conoid. This ensures better locality and correct flow of data depen-
dencies. Another distinction of LRnLA algorithms among other time-space
approaches is the recursivity of subdivision. Each nD1T shape that appears
after the domain subdivision is subdivided again into smaller similar shapes.
The decomposition rules vary on some levels of decomposition to adapt to the
properties of the cache memory and the method of parallelism.

One more important point to think about is SIMD vectorization. On CPU,
the SIMD parallelism may accelerate the computation up to 16 times. The
automatic vectorization in modern compilers is optimized for simple loops,
but not for the complex time-space decomposition algorithms. Vectorization
of localized blocks of data proves to be efficient for stencil computing [23]. In
the construction of the algorithm, the attention to the vectorization options
remains important.

3 The DiamondCandy algorithm

The construction here is carried out for the specific example of the finite
difference scheme for the wave equation with the cross stencil. The time deriva-

8

z

y

x
(a) (b) (c) (d)

Figure 3: (a),(b): the DiamondCandy base shape (candy) construction. (c):
its correspondence with the grid points. (d): f (green) and g (blue) values
combined into one structure

tive uses 3 points, space derivatives use 5 points.

∂2u

∂t2
=

u(t + ∆t)− 2u(t) + u(t−∆t)

∆t2
;

∂2u

∂x2
=

1

∆x2

(
− 1

12
(u(x + 2∆x) + u(x− 2∆x))+

+
4

3
(u(x + ∆x) + u(x−∆x))− 5

2
u(x)

)
.

(2)

Since 3 points in time are used, two data arrays are necessary. These are
called f and g here, so that f = u(t + k∆t) for odd k, and g = u(t + k∆t) for even
k.

The 3D domain may be decomposed into the octahedron and tetrahedron
honeycomb. The shape of the conoid base is chosen as a combination of the
octahedron and the two adjacent tetrahedrons (Fig. 3a,b). The bases on the
two time layers are shifted along the z axis from each other, and the prism is
constructed in 3D1T.

The resulting shape is advantageous in three aspects. Firstly, it closely
encompasses the octahedron that is the base of the natural conoids for the cross
stencil. Thus, it provides high locality and tiles the whole space at the same
time. Secondly, it is isomorphic to a cube, so just as a cube may be subdivided
into 8 smaller cubes, the chosen shape may be recursively decomposed into 8
smaller similar shapes. Thirdly, it is local with respect to all 3 spatial axes.

This shape is called a trigonal trapezohedron in geometry. In the search for
a better word we decided to call the shape ’candy’.

The construction is essentially a generalization of the DiamondTorre algo-
rithm to the 3D1T decomposition. Thus, the reader may refer to [4] for a

9

better understanding of the illustrations.
When placed on a computational grid, the smallest candy encompasses 2

grid points (Fig. 3c). Their relative positions are (0, 0, 0) and (1, 1, 1). This is
called ’the base pair’ hereafter.

The terminology provided for the DiamondTorre algorithm [4] applies here
as well.

The basic element of space-time decomposition is defined by the stencil
spatial size. Stencil half size (ShS) is the parameter of the algorithm and it
defines the candy size. For the chosen scheme it equals 2. Thus, the minimal
element of the data structure is 2× 2× 2 = 8 base pairs combined into a bigger
candy. The candy for the g values is defined shifted up from the candy for f

values for ShS grid steps in the z direction (Fig. 3d). The example of the code
for the structure is

s t r u c t c e l l {
f type gx1y1z2 , gx0y0z2 , gx2y1z3 , gx1y0z3 ,

gx1y2z3 , gx0y1z3 , gx2y2z4 , gx1y1z4 ,
gx2y2z3 , gx1y1z3 , gx3y2z4 , gx2y1z4 ,
gx2y3z4 , gx1y2z4 , gx3y3z5 , gx2y2z5 ;

f type fx1y1z0 , fx0y0z0 , fx2y1z1 , fx1y0z1 ,
fx1y2z1 , fx0y1z1 , fx2y2z2 , fx1y1z2 ,
fx2y2z1 , fx1y1z1 , fx3y2z2 , fx2y1z2 ,
fx2y3z2 , fx1y2z2 , fx3y3z3 , fx2y2z3 ; } ;

The values in the variable names correspond to the relative position on the
x–y–z grid.

The definition of this element is convenient, since it results in a more ho-
mogeneous code. In addition, this data structure ensures local and coalesced
access for the DiamondCandy algorithm. The computation of all f values in
the candy with this size depends on the data from the g values of the 8 candies,
and vice versa.

To use the AVX vectorization the data from 32 points are combined into 4
vectors of 8 elements so that in each pair the points belong to two different
vectors.

s t r u c t c e l lV { ftypeV g [2] , f [2] ; } ;

The algorithm building block consists of the computation of one f candy
followed by the computation of the g candy ShS mesh steps above it in z

direction. In 3D1T, it is a prism shape slanted in z–t direction, just as Dia-
mondTorre is slanted in x–t. The bottom base of the prism is the f candy; the
upper base of the prism is the g candy. Several more alternating f and g candy
computations may be added to increase the prism height. The number of f

10

z

xs

xa

z

y

x

(a) (b) (c) (d)

Figure 4: (a): A DiamondCandy projection onto the 3D space. (b): an exam-
ple of asynchronous DiamondCadies. (c) and (d): the three DiamondCandies
that depend on the first one.

and g updates in the prism is the algorithm parameter, NT . So the number of
time steps in it is 2NT . This algorithm, and the 3D1T shape corresponding to
it, are called DiamondCandy.

The projections of the DiamondCandy to the 3D space are presented on
Fig. 4.

To perform the computation of the whole 3D1T domain, the 3D space is
tiled with candies. Then the DiamondCandy algorithm should be started
from each of the bases. The appropriate order is defined by the dependencies
between the DiamondCandies. By looking at the data dependencies we find
asynchronous and dependent DiamondCandies.

One example of an asynchronous set of DiamondCandy algorithms is a row,
where their bases are shifted by ShS · (1,−1, 0) (Fig. 4b). For the convenience,
the axis xa (asynchronous axis) is introduced in the direction (1,−1, 0). The
axis that is orthogonal to xa and z is called xs (synchronous axis). Its direction
is (1, 1, 0).

We illustrate the algorithm with the actual code listings here. We used this
specific code for the performance runs. The performance results are studied
in section 5. The code was verified to produce valid simulation results.

The cell data is organized into a 3D array in xs, xa, z axes. In this case,
odd and even rows in z-direction need to be distinguished since the access to
neighboring candies follows a different pattern. In the x–y point of view, odd
an even rows are shifted by (0,ShS,0) with respect to each other.

11

The smallest element of computation is

i n l i n e void c a l c e v e n (i n t i cxs , i n t icxa , i n t i c z){
s t e n c i l (g e t c e l l V (i c x s +0, i cxa +0, i c z +0). f ,

g e t c e l l V (i c x s +0, i cxa +0, i c z −2) . g ,
g e t c e l l V (i cxs −1 , i cxa +0, i c z −2) . g ,
g e t c e l l V (i c x s +0, icxa −1 , i c z −1) . g ,
g e t c e l l V (i cxs −1 , icxa −1 , i c z −1) . g ,
g e t c e l l V (i c x s +0, i cxa +0, i c z −1) . g ,
g e t c e l l V (i cxs −1 , i cxa +0, i c z −1) . g ,
g e t c e l l V (i c x s +1, i cxa +0, i c z +0).g ,
g e t c e l l V (i c x s +0, i cxa +0, i c z +0). g
) ;

s t e n c i l (g e t c e l l V (i c x s +0, i cxa +0, i c z +0).g ,
g e t c e l l V (i c x s +0, i cxa +0, i c z +0). f ,
g e t c e l l V (i cxs −1 , i cxa +0, i c z +0). f ,
g e t c e l l V (i c x s +0, icxa −1 , i c z +1). f ,
g e t c e l l V (i cxs −1 , icxa −1 , i c z +1). f ,
g e t c e l l V (i c x s +0, i cxa +0, i c z +1). f ,
g e t c e l l V (i cxs −1 , i cxa +0, i c z +1). f ,
g e t c e l l V (i c x s +1, i cxa +0, i c z +2). f ,
g e t c e l l V (i c x s +0, i cxa +0, i c z +2). f
) ; }

The stencil(ftypeV* f, ftypeV gB,...) function contains intrinsic vec-
tor operations for the computation of the cross stencil for the vector f. A
similar function is needed when the computation starts from the bases on the
odd rows.

This element is iterated several times for the prism of height NT. The row
in the xa axis is computed asynchronously.

#pragma omp p a r a l l e l f o r
f o r (i n t i cxa =0; icxa<Ncxa ; i cxa++) {

f o r (i n t i t =0; i t<NT; i t ++){
c a l c e v e n (i cxs , icxa , i c z +2∗ i t) ;

}
}

Actually, more DiamondCandies than just one row of them are asynchronous.
The iteration between them would require a bit more complex code, and is
not in the scope of the current work.

The data dependencies from one DiamondCandy are directed to the next
DiamondCandy in the xs axis, and to the two DiamondCandies below it (Fig.

12

4c,d).
Thus, to get the correct simulation results, first of all, the rows of Diamond-

Candies along the top boundary of the domain are computed. Among them,
the row with the smallest xs is started first. Then the simulation progresses
to the lower layer. The next layer is odd in the illustrated case. Omitting the
special cases on the boundary, the example code is:

f o r (i n t i c z = Ncz−2; i c z >=0; i cz −=2){
f o r (i n t i c x s =0; i cxs<Ncxs ; i c x s++)

#pragma omp p a r a l l e l f o r
f o r (i n t i cxa =0; icxa<Ncxa ; i cxa++) {

f o r (i n t i t =0; i t<NT; i t ++){
c a l c e v e n (i cxs , icxa , i c z +2∗ i t) ;

}
}

f o r (i n t i c x s =0; i cxs<Ncxs ; i c x s++)
#pragma omp p a r a l l e l f o r

f o r (i n t i cxa =0; icxa<Ncxa ; i cxa++) {
f o r (i n t i t =0; i t<NT; i t ++){

ca l c odd (i cxs , icxa , i c z +2∗ i t) ;
}

}
}

The boundary rows that are not shown here contain different calculations
since the boundary condition applies. As is, the algorithm forbids periodic
boundary condition in z and xs directions.

For more data access locality, the DiamondCandies may be combined into
bigger similar shapes. The parameter of the size of the conoid is called DTS
(Diamond Tile Size). By definition, the candies that contain ShS3 basic pairs,
have DTS = 1. Bigger DiamondCandy has DTS3 candies in its base, combined
into a candy shape themselves. In the code above, it would result in sev-
eral calls of calc_odd() and calc_even() instead of one, at the appropriate
coordinates to constitute a bigger candy shape. For example, for even DTS,

f o r (i n t i c z = Ncz−2; i c z >0; i c z −=2∗DTS) {
f o r (i n t i c x s =0; i cxs<Ncxs ; i c x s+=DTS) {

#pragma omp p a r a l l e l f o r
f o r (i n t i cxa =0; icxa<Ncxa ; i cxa+=DTS) {

f o r (i n t i t =0; i t<NT; i t+=DTS){
EVENDTS(icxs , icxa , i c z +2∗ i t) ;

}

13

}
#pragma omp p a r a l l e l f o r

f o r (i n t i cxa =0; icxa<Ncxa ; i cxa+=DTS) {
f o r (i n t i t =0; i t<NT; i t+=DTS){

EVENDTS(icxs −DTS/2 , icxa−DTS/2 , i c z −DTS+2∗ i t) ;
}

}
}

}
void par : :EVENDTS(i n t i cxs , i n t icxa , i n t i c z){

f o r (i n t i t =0; i t<DTS; i t ++){
f o r (i n t i e 1=DTS−1; ie1 >=0; ie1 −−){

f o r (i n t i e 2=DTS−1; ie2 >=0; ie2 −−){
f o r (i n t i e 3=DTS−1; ie3 >=0; ie3 −−){

i n t i x s =((i e 1+i e 2)>>1)− i e 3 ;
i n t ixa =((ie1 − i e 2)>>1);
i n t i z = (i e 1+i e 2) ;
i f (i z%2==0)

c a l c e v e n (i c x s+ixs , i cxa+ixa , i c z+i z +2∗ i t) ;
e l s e

ca l c odd (i c x s+ixs , i cxa+ixa , i c z+iz −1+2∗ i t) ;
}

}
}

}
}

Upper limit of the DTS is determined by the fact that all data needed for
one candy and the halo determined by the stencil dependencies should fit the
L2 (LLC) cache size.

4 Locality

The locality parameter is proportional to the ratio of arithmetic operations
to the data load/store operations. We derive a general formula here. We
consider the DiamondTorre with algorithm decomposition dimension d = 2 and
the DiamondCandy with d = 3 at the same time. Let o be the operation count
per tile update (candy or diamond). o = 2 · 8 · 32 FLOP for the DiamondCandy,
o = 2 · 4 · 32 · Nz for the DiamondTorre. Let s be the data for one candy of
ShS3 base pairs (or diamond of ShS2 in the case of DiamondTorre). The data
structure contains a candy for f and for g, so its size is 2s. In our case, in

14

DiamondCandy, s = 64 byte for single precision and s = 128 bytes for double
precision. In DiamondTorre, s = 32 · Nz single precision, s = 64 · Nz double
precision. For one dD1T shape NT · DTSd · 2o operations are needed. The
loaded values are the following.

• The f and g candy that will be updated on the first step (DTSd · 2s);

• On each time step the data required for computation, but not loaded yet
(NT ((DTS + 1)d −DTSd) · 2s).

Only the data that will no longer be updated in one DiamondCandy needs to
be saved to the lower levels of memory. So we estimate the number of saved
values by considering:

• the f and g candy that were updated on the final step (DTSd · 2s)

• on each step the values that will not be updated anymore ((NT −1)(DTSd−
(DTS − 1)d) · 2s)

The operations to data ratio is

DTS

4 + (2DTS − 2 + 1/DTS)/NT

o

s
(3)

for the DiamondTorre with d = 2 and

DTS

6 + 2/DTS2 + (2DTS − 3 + 3/DTS − 1/DTS2)/NT

o

s
(4)

for the DiamondCandy with d = 3.
Since a row of asynchronous shapes is computed at the same time, the data

traffic is reduced on each time step by one diamond in the DiamondTorre
and by (DTS+1) candies in the DiamondCandy. If we consider a row of NA

asynchronous shapes, the number of operations and the amount of data is
multiplied by NA, then the data for DiamondTorre is reduced by NT ·NA, the
data for DiamondCandy is reduced by NT ·NA · (DTS + 1). The final formula is

DTS

4− 1/DTS + (2DTS − 2 + 1/DTS)/NT

o

s
(5)

for the DiamondTorre and

DTS

6− 1/DTS + 1/DTS2 + (2DTS − 3 + 3/DTS − 1/DTS2)/NT

o

s
(6)

for the DiamondCandy with d = 3.

15

5 Results

The described algorithm was implemented and the performance was tested
on two computers: a desktop computer with Intel Core i5-6400 processor (SKL-
S), and a high-performance node with Intel Xeon Phi 7250 (KNL). To use the
AVX2 instructions on the first one and AVX512 instructions on the second
one, vector length is set equal to 8 in both implementations, but the data type
is changed from float to double.

Three algorithms are compared.

• A stepwise algorithm with the support of SIMD and OpenMP paralleliza-
tion

• DiamondTorre algorithm [4] implemented for CPU with the use of SIMD
(instead of CUDA threads) and OpenMP (instead of CUDA blocks).

• DiamondCandy algorithm described in section 3.

For the simulation, a cubic domain with 64 × 64 × 64 mesh points is taken.
Then it is upscaled up to the RAM limit.

The performance is measured in billions of cell updates per second. As for
the algorithm parameters, NT was taken large enough so that the performance
does not change much with the increase in NT. DTS was varied both for
DiamondTorre and DiamondCandy. The best result from the multiple runs is
plotted.

For Xeon Phi processor, the simulation was performed in the flat mode if
the data is less than 16GB, and in the cache mode if it exceeds 16GB.

We see that in general LRnLA algorithms perform better than the stepwise
algorithm for the large data sizes.

5.1 Core i5-6400

On SKL-S the smallest simulation data size fits the LLC cache, so we see
an abrupt drop after the first point for the stepwise and DiamondTorre algo-
rithms.

The DiamondTorre performs better than the DiamondCandy in general
since the implementation uses less SIMD vector rearrange operations. One
axis in the DiamondTorre is not included in the space-time decomposition.
There is a one-dimensional loop in the z axis, and it is easily vectorized with
the built-in compiler tools. A bit more complex intrinsic vector operations
take place in the stencil computation for the DiamondCandy.

For the large data size, the DiamondTorre exhibits a drop in performance,
while the DiamondCandy performance remains stable. This is what is achieved

16

 0

 1

 2

 3

 4

 5

 6

 7

4MB 32MB 256MB 1GB 16GB 64GB

Pe
rf

o
rm

a
n
ce

,
G

ce
lls

/s
e
c

Data size

stepwise
torre DTS=2
torre DTS=4
torre DTS=8

torre DTS=16
candy DTS=1
candy DTS=2
candy DTS=4
candy DTS=8

candy DTS=16

Figure 5: Performance results on Intel Core i5-6400. The lower of the blue
lines shows the performance of the stepwise algorithm without OpenMP par-
allelisation

 0

 2

 4

 6

 8

 10

 12

 14

4MB 64MB 1GB 16GB 96GB

Pe
rf

o
rm

a
n
ce

,
G

ce
lls

/s
e
c

Data size

stepwise
torre DTS=2
torre DTS=4
torre DTS=8

torre DTS=16
candy DTS=1
candy DTS=2
candy DTS=4
candy DTS=8

candy DTS=16

Figure 6: Performance results on KNL

17

by the use of the full 3D1T decomposition. DiamondTorre performs well until
the data of its base fits the higher levels of memory hierarchy. Since there is no
decomposition on the third axis, each DiamondTorre deals with the data that is
scaled by the number of cells in z direction. So DiamondTorre performs well for
the simulations where the number of cells along one axis remains small. This
actually takes place in some physics problems, where the simulation domain
is a flat rectangle, so in other simulation setups DiamondTorre could remain
more efficient than DiamondCandy.

5.2 Xeon Phi

On Xeon Phi the stepwise algorithm performs as expected for a typical
memory-bound problem, showing a rapid performance decrease when switch-
ing to the cache mode.

DiamondTorre performance does not decrease in the cache mode but, gener-
ally, does not show better results than the stepwise algorithm. For small sizes,
the decomposition is not enough to use all available threads. For larger sizes,
the number of cells in the third axis is too large for the data of one Diamond-
Torre to fit higher cache levels. DiamondCandy overcomes the limitation of
both stepwise and DiamondTorre algorithms.

Weak scaling test was performed on the KNL (Fig. 7). The simulation
domain was scaled with the number of threads used in the test. The size is
set to 16 × (DTS · threads) × 1024. The scaling is close to the optimal up to 64
threads, that is, one thread per core.

6 Efficiency

6.1 Parallel efficiency

To see how efficient the DiamondCandy traversal algorithm is, a special
benchmark is created. With a minimal amount of data, the stencil() func-
tion for one candy is run multiple times. No data locality problems arise, so
it is expected to be the maximum performance of the current implementation
of the vectorized computation. When several threads are used, they compute
separate problems without synchronization.

For 1 thread run the performance is ∼ 30% of the peak value on KNL and
∼ 50% on SKL-S. For maximum number of threads, the performance is 50% of
the peak value both on KNL and SKL-S. Since we are dealing with memory
bound problems, for actual simulation no more than 1 thread per core is set
for KNL runs. Thus, the performance results are reduced to 30% efficiency

18

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256

p
e
rf

o
rm

a
n
ce

,
G

ce
lls

/s
e
c

threads

DTS=1
DTS=2
DTS=4
DTS=8
x*0.25

Figure 7: Performance results on KNL

regardless of the traversal algorithm.

6.2 Memory efficiency

The roofline model [1] is a helpful tool to see the limitations of the algorithm.
It shows the limitations of memory bandwidth and computational performance
on one graph.

We develop the estimations of the algorithm performance efficiency based
on this model and compare with the results we got in the performance tests
in section 5 (Fig. 8,9).

The vertical axis is performance, the horizontal axis is the operational in-
tensity. Operational intensity is the number of FLOP per byte of memory
traffic. It is proportional to the locality parameter discussed in section 4.

The basic roofline is composed of two line segments. To the right, the
horizontal line shows the peak compute performance limit of the computer.
To the left, the inclined line shows the memory bandwidth level. We plot it
for several memory levels.

We add the estimations of the operational intensity for the studied algo-
rithms to the graph.

19

101

102

 1 10

D
T
,
D

T
S
=

8

D
T
,
D

T
S
=

1
6

 3
D

lo
o
p

 1
D

 l
o
o
p

 n
a
iv

e

L1
, 3

2K

L2
, 2

56K

LL
C, 6

M

DDR4, 6
4G

D
T
,
D

T
S
=

2

D
C

,
D

T
S
=

2

D
T
,
D

T
S
=

4

D
C

,
D

T
S
=

4

D
C

,
D

T
S
=

8

D
C

,
D

T
S
=

1
6

Pa
ra

lle
l
p
e
rf

o
rm

a
n
ce

,
G

Fl
o
p
s

Operational intensity, perf./bandwidth, Flop/byte

Figure 8: Roofline model for SKL-S with algorithm estimations and perfor-
mance results. DC — DimondCandy, DT — DiamondTorre.

101

102

103

 1 10

D
T
,
D

T
S
=

8

D
T
,
D

T
S
=

1
6

 3
D

lo
o
p

 1
D

 l
o
o
p

 n
a
iv

e

L1, 3
2K/4thr

L2, 3
4*1M

MCDRAM, 1
6G

DDR4, 9
6G

D
T
,
D

T
S
=

2

D
C

,
D

T
S
=

2

D
T
,
D

T
S
=

4

D
C

,
D

T
S
=

4

D
C

,
D

T
S
=

8

D
C

,
D

T
S
=

1
6

Pa
ra

lle
l
p
e
rf

o
rm

a
n
ce

,
G

Fl
o
p
s

Operational intensity, perf./bandwidth, Flop/byte

Figure 9: Roofline model for KNL with algorithm estimations and performance
results. DC — DimondCandy, DT — DiamondTorre.

20

We assume that there are 32 FLOP per cell update in the chosen scheme,
s = 8 byte per value on KNL, s = 4 byte per value on SKL-S.

The black arrows show the estimate of the stepwise algorithm with different
ideal implementations.

• Naive is the stepwise algorithm without data reuse. The stencil takes 15
values, so the intensity is estimated as 32/(15s).

• In 1D loop algorithm it is assumed that data is cached when looping over
the z-axis. 4 of the stencil points are already in cache, and the estimate is
32/(11s).

• In the 3D loop it is assumed that all previously loaded data is stored in
the cache, so only 5 new points need to be loaded per cell update.

The high point of the black arrows is at the DDR4 level because the relevant
simulation domain size does not fit the higher levels of memory.

The operational intensity of the LRnLA algorithms is estimated for NT � 1

as
DTS

4− 1/DTS

1

s
[FLOP/byte] (7)

for DiamondTorre [4] and

DTS

6− 1/DTS + 1/DTS2
1

s
[FLOP/byte] (8)

for DiamondCandy.
Another limitation for DiamondCandy is the traversal rule inside it. For

higher DTS it is also a 3D loop on each spatial 3D slice of the candy. Thus,
the stepwise limitation applies. However, since one DiamondCandy uses less
data, the data is localized in higher memory levels. The data required in
one spatial slice is estimated as 2 · 2 · s(ShS(DTS + 1))3 for DiamondCandy and
2 · 2 · s(ShS(DTS + 1))3 for the DiamondTorre. The performance limit is decided
by the 3D loop (z-loop for DiamondTorre) limit for the memory level into
which the required data fits. To show this limitation we plot the horizontal
lines that go to the right from the arrow points for stepwise algorithms.

The markers over the arrows show the results from section 5 for large data
size.

7 Discussion

We have constructed a new LRnLA algorithm DiamondCandy for cross-
stencil scheme implementation.

21

Its novelty among the temporal blocking schemes is that its base follows the
diamond (octahedron) shape, which is the base of the dependency conoid of
the cross-stencil. At the same time, it homogenously tiles the 3D1T domain,
can be recursively subdivided into similar shapes. It results in a better locality,
parallel ability, ease of implementation. It makes use of the AVX2/AVX512
vectorization.

The test performance results showed its advantage over the stepwise algo-
rithm and our previous invention, the DiamondTorre LRnLA algorithm. The
fact that the performance does not decrease for the large data size is the most
important achievement since real physics problems require large computation
domains.

The implementation still has some potential. Namely, the vectorization
method is inferior to that of the DiamondTorre and stepwise algorithms. The
reason is that the compilers and the hardware are better at vectorizing simple
loops, than complex structures. Moreover, DiamondCandy has more ability to
parallelize than was currently used. When one asynchronous row is computed,
three rows may be started after it at the same time. The bases of the two
of them are at the same time step (below in z axis, and ’behind’ in xs axis),
and one is located NT time steps after at the same place where the first
one ended. This may be achieved with mutex-based synchronization in the
implementation. To get even more data access locality, the data storage may
be organized in larger structures, or a Morton curve may be used.

The algorithm is illustrated here for the wave equation, so it may be used,
for example, for problems in acoustic simulation. But the main significance is
that it may be used in any memory-bound cross stencil computation. It also
may be used for other stencils, if they are enclosed by a diamond (octahedron)
shape.

The MPI level of parallelism was not shown in this work. It is expected to be
implemented in a similar way it was done for large-scale DiamondTorre com-
putations [16]. With DiamondTorre, data transfer was concealed completely
by computation with the right parameter choice. The same parameters are
applied in the DiamondCandy description, so good scaling is expected.

We plan to use DiamondCandy in our future wave modeling applications,
such as optic and elastic wave propagation. We expect that the advance in
time-space approach to the numerical solution of the systems of partial differ-
ential equations will help to raise the efficiency of the supercomputer use, and
conquer new frontiers in technological and scientific progress.

The authors that Colfax Intl. for providing access to the computers with
Xeon Phi processors, education on its use, helpful tips on code implementation
and execution.

22

References

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[2] R. M. Karp, R. E. Miller, and S. Winograd, “The organization of compu-
tations for uniform recurrence equations,” Journal of the ACM (JACM),
vol. 14, no. 3, pp. 563–590, 1967.

[3] V. D. Levchenko, “Asynchronous parallel algorithms as a way to archive
effectiveness of computations (in russian),” J. of Inf. Tech. and Comp.
Systems, no. 1, p. 68, 2005.

[4] V. Levchenko, A. Perepelkina, and A. Zakirov, “DiamondTorre algorithm
for high-performance wave modeling,” Computation, vol. 4, no. 3, p. 29,
2016.

[5] V. D. Levchenko, “Simulation of super-large-size plasma physics problems
on cheap computational sytems using.local schemes taking into account
the dependence region,” in 16th International Conference on the Numer-
ical Simulation of Plasmas, pp. 147–150, 1998.

[6] L. In’kov and V. D. Levchenko, “Optimization of PIC method in the
SUR code via object-oriented plasma model,” Keldysh Institute Preprints,
no. 133, 1995.

[7] A. V. Zakirov and V. D. Levchenko, “The effective algorithm for 3D mod-
eling of electromagnetic waves’ propagation through photonic crystals,”
Keldysh Institute Preprints, p. 21, 2008.

[8] N. Elkina and V. D. Levchenko, “SUR/MP: Parallel PIC 3D code. I.
Maxwell equations,” Keldysh Institute Preprints, pp. 48–1, 2000.

[9] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. Keyes,
“Multicore-optimized wavefront diamond blocking for optimizing stencil
updates,” SIAM Journal on Scientific Computing, vol. 37, pp. C439–C464,
jan 2015.

[10] U. Bondhugula, V. Bandishti, and I. Pananilath, “Diamond tiling: Tiling
techniques to maximize parallelism for stencil computations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1285–
1298, 2017.

23

[11] A. Y. Perepelkina, V. D. Levchenko, and I. A. Goryachev, “Implementa-
tion of the kinetic plasma code with Locally Recursive non-Locally Asyn-
chronous Algorithms,” in Journal of Physics: Conference Series, vol. 510,
p. 012042, IOP Publishing, 2014.

[12] A. Zakirov, Application of the Locally Recursive non-Locally Asynchronous
algorithms in the full wave modeling (in Russian). PhD thesis, MIPT,
Moscow, 2012.

[13] L. Lamport, “The parallel execution of DO loops,” Communications of
the ACM, vol. 17, no. 2, pp. 83–93, 1974.

[14] D. Wonnacott, “Achieving scalable locality with time skewing,” Interna-
tional Journal of Parallel Programming, vol. 30, no. 3, pp. 181–221, 2002.

[15] T. Muranushi and J. Makino, “Optimal temporal blocking for stencil com-
putation,” Procedia Computer Science, vol. 51, pp. 1303–1312, 2015.

[16] A. Zakirov, V. Levchenko, A. Perepelkina, and Y. Zempo, “High per-
formance FDTD algorithm for GPGPU supercomputers,” in Journal of
Physics: Conference Series, vol. 759, p. 012100, IOP Publishing, 2016.

[17] A. Zakirov, V. Levchenko, A. Ivanov, A. Perepelkina, T. Levchenko, and
V. Rok, “High-performance 3D modeling of a full-wave seismic field for
seismic survey tasks,” Geoinformatika, no. 3, pp. 34–45, 2017.

[18] A. Y. Perepelkina, V. D. Levchenko, and I. A. Goryachev, “3D3V plasma
kinetics code DiamondPIC for modeling of substantially multiscale pro-
cesses on heterogenous computers,” in 41st EPS Conference on Plasma
Physics, ser. Europhysics Conference Abstracts, PO Scholten, Ed, no. 38F,
p. O2.304, 2014.

[19] B. Korneev and V. Levchenko, “Detailed numerical simulation of shock-
body interaction in 3D multicomponent flow using the RKDG numeri-
cal method and ”DiamondTorre” GPU algorithm of implementation,” in
Journal of Physics: Conference Series, vol. 681, p. 012046, IOP Publish-
ing, 2016.

[20] V. Levchenko and A. Perepelkina, “The DiamondTetris algorithm for
maximum performance vectorized stencil computation,” in International
Conference on Parallel Computing Technologies, pp. 124–135, Springer,
Cham, 2017.

[21] P. Feautrier, “Some efficient solutions to the affine scheduling problem:
Part I. one-dimensional time,” International Journal of Parallel Program-
ming, vol. 21, pp. 313–348, October 1992.

24

[22] F. Quilleré, S. Rajopadhye, and D. Wilde, “Generation of efficient nested
loops from polyhedra,” International journal of parallel programming,
vol. 28, no. 5, pp. 469–498, 2000.

[23] C. Yount and A. Duran, “Effective use of large high-bandwidth memory
caches in HPC stencil computation via temporal wave-front tiling,” in
Proceedings of the 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems,
PMBS ’16, (Piscataway, NJ, USA), pp. 65–75, IEEE Press, 2016.

