
http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2018-225&lg=e
http://library.keldysh.ru/author_page.asp?aid=3724&lg=e
http://library.keldysh.ru/author_page.asp?aid=1306&lg=e
http://doi.org/10.20948/prepr-2018-225-e
http://library.keldysh.ru/preprint.asp?id=2018-225&lg=e

Ордена Ленина
ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ

имени М. В. Келдыша
Российской академии наук

Anastasia Perepelkina, Vadim Levchenko

The DiamondCandy Algorithm for
Maximum Performance Vectorized

Cross-Stencil Computation

Москва
2018

УДК 519.688

Перепёлкина А.Ю., Левченко В.Д.

Алгоритм DiamondCandyV для повышения производительности
конечноразностных вычислений c применением векторизации

На основе поиска оптимальной пространственно-временной декомпозиции
3D1T пространства операций построен новый алгоритм DiamondCandyV для
эффективной реализации конечно-разностных вычислений с использовани-
ем аппаратной векторизации. Базовый элемент разбиения пространства опе-
раций DiamondCandy получен пересечением областей зависимостей и влия-
ния (конусоидов) для схем с шаблоном типа крест. Благодаря этому алго-
ритм характеризуется высокой вычислительной интенсивностью и локали-
зует обрабатываемые данные на верхних уровнях иерархии памяти совре-
менных компьютеров. Ключевой особенностью алгоритма является легко
реализуемая в программном коде поддержка двух основных средств повы-
шения производительности современных процессоров, а именно аппаратной
векторизации (с использованием SIMD расширения AVX) и вычислительных
потоков с общей памятью (many-core CPU). Обсуждаются детали программ-
ной реализации поддержки параллельности различных уровней на примере
численного решения волнового уравнения. Результаты тестирования реали-
зации алгоритма показывают повышение производительности на порядок
по сравнению с традиционными алгоритмами с пошаговой синхронизацией.
Также, в отличие от традиционного подхода, с увеличением размера обра-
батываемых данных производительность не деградирует.

Keywords: конечно-разностные вычисления, LRnLA, волновое уравне-
ние, time skewing, многоядерные процессоры, векторизация
Anastasia Perepelkina, Vadim Levchenko

The DiamondCandy Algorithm for Maximum Performance Vectorized
Cross-Stencil Computation

An advance in the search for the 4D time-space decomposition that leads
to an e�cient vectorized cross-stencil implementation is presented here. The
new algorithm is called DiamondCandy. It is built from the dependency and
in
uence conoids of the scheme stencil. It has high locality in terms of the op-
erational intensity, SIMD parallelism support, and is easy to implement. The
implementation details are shown to illustrate how both instruction and data
levels of parallelism are used for many-core CPU. The test run results show
that it performs an order of magnitude better than the traditional approach,
and that the performance does not decline with the increase of the data size.

Keywords: Stencil, LRnLA, Wave Equation, time skewing, many-core

3

1 Introduction

We focus on the �nite di�erence numerical solution of the Cauchy problem
for the 3D wave equation:

@2u

@t2
= c24u: (1)

The goal is to �nd the most e�cient implementation of the numerical scheme
on a many-core processor with vector processing units. For example, on a
Xeon Phi KNL. The results may be naturally generalized on all similar explicit
stencil based numerical schemes.

The most intuitive way to implement the scheme in code is to write 4 nested
loops:

f o r i t in 0 . . Nt
f o r i x in 0 . . Nx

f o r iy in 0 . . Ny
f o r i z in 0 . . Nz

scheme update . . .
end

end
end

end

This way, �rstly, all �eld data is updated from the initial values to the values
on time step it=1. Then all data is updated from it=1 to it=2. Actually, the
majority of codes are written like this. The algorithms of this kind are called
"stepwise" in this paper since all �eld values are updated in time step by step.

The iteration on each time step is over a rectangular region. It is the easiest
way to write programs. "For" loops are a natural instrument to iterate over
the rectangular domains that is present in any relevant programming language.
Moreover, human brain intuitively perceives the spacetime in Euclidean met-
rics, not as a Minkowski space.

The stepwise order of calculation is not the only correct one. The compu-
tation may be executed in any order which does not con
ict with the data
dependencies. And this order is one of the less e�cient in terms of taking ad-
vantage of the acceleration techniques that are present in the modern computer
hardware.

With the stepwise approach, �eld values all over the domain need to be
loaded, updated and stored to progress each one time step. The data is large
for most relevant applications. Thus, the problem with the stepwise algorithm
that solves has a low arithmetic intensity and it is in the memory-bound cat-
egory [1].

4

In terms of parallelism, the domain decomposition method is the most usual
approach here. With the stepwise approach, the parallel processors need to
be synchronized by exchanging data to continue to each next time step. This
becomes the bottleneck of the parallel e�ciency.

2 Time-space decomposition

The idea to neglect the straightforward loops and, instead, to �nd optimal
schedules from the analysis of data dependencies has appeared long ago [2].
Now, when the high-performance systems are essentially hybrid with many
levels of parallelism and many levels of cache, it receives even more attention.

Locally-Recursive non-Locally Asynchronous (LRnLA) algorithms [3] present
one of the methods to optimize the performance with a time-space decompo-
sition of computations.

Both the real world physics and the explicit numerical schemes have a �nite
speed of information propagation. Thus, with respect to any point, the time-
space domain can be split into the cone of dependence, the cone of in
uence,
and the absolutely asynchronous domain. In case of a numerical scheme, the
cone shape is de�ned by the scheme stencil, so the more general term ’conoid’
is used. For the cross stencil of �nite di�erence schemes, the conoid base is a
diamond.

The general way to construct an LRnLA algorithm is to take two time
instants and a base shape on both of them. Then, plot the area of in
uence
of the bottom one and the area of dependence of the top one, and �nd their
intersection. The shape is called the conoid of dependence-in
uence. The
time-space simulation domain may be subdivided into conoids. The fact that
each conoid can be subdivided into similar conoids to optimize cache use is the
"locally recursive" property of the algorithms. The fact that distant conoids
may be computed without synchronization and data exchanges is the "non-
locally asynchronous" property of the algorithms.

The shape in the time-space can be thought of as a code block for compu-
tation of the points inside it. Then an LRnLA algorithm is de�ned as a shape
with its subdivision rule [4].

To be speci�c about time-space description we use nD1T (e.g., 2D1T, 3D1T)
for the �eld of n spatial dimensions and time, and nD (2D, 3D) for the n-
dimensional slice of it at one time instant. The simulation is nD if it solves
partial di�erential equations in n coordinate axes and time.

Let us take a cubic region in 3D and a point in its center as the conoid
bases. The resulting conoids are pyramids in 3D1T, which correspond to the
Minkowski cone in the real world. The �rst LRnLA algorithms [5, 3] were

5

t

y
x

ConeTur

ConeFold

(a) (b)

Figure 1: Some LRnLA algorithm shapes projected to the 2D1T time-space

built like that. The name of the �rst algorithm was ConeTur (Fig. 1a).
The idea was used in the implementation of the Euler scheme of Vlasov

equation [6], �nite di�erence time domain code [7]. Even the more complex
schemes, like the particle-in-cell simulation, were found to have �nite propaga-
tion speed. Indeed, the particle-in-cell scheme includes particles, which move
freely inside the cells mesh. However the speed of the particles is naturally
limited, so the construction of dependency cones works as well. The 2D and
3D particle-in-cell codes were implemented with LRnLA algorithms and used
for computational heavy research problems [8].

Some recent advances in time-space decomposition by other authors present
the similar decomposition [9, 10].

The ConeTur algorithm had some key aspects. It is easily generalized to
higher dimensions by a superposition of 1D1T shapes. With the recursive
subdivision for 1D simulation, the resulting shapes in 1D1T time-space were
triangles (upright and upside-down) and diamonds, and there were special
cases at the boundaries. In 2D1T the pyramids are tiled along with octahe-
drons and tetrahedrons, and the number of special shapes for the boundaries
increases even more. For 3D1T the programming e�ort becomes unreasonable,
so code generators were used. Even then, the code even for the simple schemes
is too complex. The performance e�ciency is limited since the large code does
not �t the instruction cache. Moreover, the compilation time becomes too
large.

If the conoids of di�erent shapes are combined, it is possible to �nd a uniform
tiling of the time-space. The algorithm that is constructed as a combination
of ConeTur shapes is called ConeFold [11, 12] (Fig. 1b).

With the use of ConeFold the codes for simulation of optics with the FDTD
scheme, seismic waves with the Levander scheme [12], plasma with the particle-
in-cell scheme [11] were implemented and used for real physics problems. The

6

y

x

ConeFold

stencil

domain
DiamondTorre

t

Figure 2: The di�erence between DiamondTorre and ConeFold conoids

conoids with the shape similar to ConeFold, but di�erent decomposition rules,
are used to construct algorithms for various levels of parallelism.

Other ways to construct a uniform time-space tiling are presented by other
authors. For example, the wavefront [13] or time-skewing method [14]. Among
these, the optimum locality is reached when the time-space decomposition
provides blocks, localized in 3D1T [15].

The shapes that arise in this methods present rectangular shapes in each
3D space slice. However, it is not optimal for the computation asynchrony and
for the data locality of cross stencil applications.

The need for more asynchrony which arose with the introduction of GPU
to scienti�c computing led to the construction of the DiamondTorre LRnLA
algorithm [4].

DiamondTorre is constructed in 2D1T. The conoid bases are 2D diamonds,
shifted by several grid spaces from each other. This way, the conoids are prisms
in the 2D1T space-time. Indeed, they are similar to the 2D1T projection of
ConeFold, but rotated by 45 degrees, so that rectangles become diamonds (Fig.
2). The DiamondTorre prisms in a row along the y axis are asynchronous, with
no dependencies between each other. Thus, the computation in these may be
distributed between streaming multiprocessors.

In addition, it is better localized in memory. The data necessary for the
execution of the operations inside one shape may be estimated as its projec-
tion to spatial coordinates, 2D in case of DiamondTorre. The projection of
DiamondTorre is smaller than the projection of ConeFold-based algorithms
(Fig. 2). Thus, the data for the update of the points inside one shape may �t
into higher levels of cache, while the same number of operations are carried
out.

The algorithm was implemented with the use of GPU. It was used in optics
[16], seismic wave propagation [17], plasma physics [18], gas dynamics [19].

The drawback of the DiamondTorre is that it is based on a 2D decomposition

7

of the spatial domain. While a 2D plane may be subdivided into diamonds, the
3D space subdivision requires an octahedron and two types of tetrahedrons.
Thus, the complexity of the algorithm description rises. One previous attempt
is reported in [20], however, the overhead for vectorization outweighed the
locality bene�ts.

The current paper is about our recent �nd in this research. The new algo-
rithm is based on a conoid that is homogeneous, may be recursively subdivided
into similar shapes, and is based on a diamond (octahedron) shape that pro-
vides high locality for the cross-stencil.

The proposed polyhedral subdivision of the iteration space resembles poly-
hedral compilation techniques [21, 22] in a way. In these, authors aspire to
a more general goal to optimize the loop traversal rule for any computation,
by analyzing the code without the knowledge of the numerical schemes in its
base. These provide the useful terminology and mathematical tools to de-
scribe the complex algorithmic structures, but su�er from the complexity of
the optimization problems for real computation applications.

In LRnLA method the polyhedra are devised from the shape of the depen-
dency conoid. This ensures better locality and correct
ow of data depen-
dencies. Another distinction of LRnLA algorithms among other time-space
approaches is the recursivity of subdivision. Each nD1T shape that appears
after the domain subdivision is subdivided again into smaller similar shapes.
The decomposition rules vary on some levels of decomposition to adapt to the
properties of the cache memory and the method of parallelism.

One more important point to think about is SIMD vectorization. On CPU,
the SIMD parallelism may accelerate the computation up to 16 times. The
automatic vectorization in modern compilers is optimized for simple loops,
but not for the complex time-space decomposition algorithms. Vectorization
of localized blocks of data proves to be e�cient for stencil computing [23]. In
the construction of the algorithm, the attention to the vectorization options
remains important.

3 The DiamondCandy algorithm

The construction here is carried out for the speci�c example of the �nite
di�erence scheme for the wave equation with the cross stencil. The time deriva-

8

z

y

x
(a) (b) (c) (d)

Figure 3: (a),(b): the DiamondCandy base shape (candy) construction. (c):
its correspondence with the grid points. (d): f (green) and g (blue) values
combined into one structure

tive uses 3 points, space derivatives use 5 points.

@2u

@t2
=

u(t + �t)� 2u(t) + u(t��t)

�t2
;

@2u

@x2
=

1

�x2

�
� 1

12
(u(x + 2�x) + u(x� 2�x))+

+
4

3
(u(x + �x) + u(x��x))� 5

2
u(x)

�
:

(2)

Since 3 points in time are used, two data arrays are necessary. These are
called f and g here, so that f = u(t + k�t) for odd k, and g = u(t + k�t) for even
k.

The 3D domain may be decomposed into the octahedron and tetrahedron
honeycomb. The shape of the conoid base is chosen as a combination of the
octahedron and the two adjacent tetrahedrons (Fig. 3a,b). The bases on the
two time layers are shifted along the z axis from each other, and the prism is
constructed in 3D1T.

The resulting shape is advantageous in three aspects. Firstly, it closely
encompasses the octahedron that is the base of the natural conoids for the cross
stencil. Thus, it provides high locality and tiles the whole space at the same
time. Secondly, it is isomorphic to a cube, so just as a cube may be subdivided
into 8 smaller cubes, the chosen shape may be recursively decomposed into 8
smaller similar shapes. Thirdly, it is local with respect to all 3 spatial axes.

This shape is called a trigonal trapezohedron in geometry. In the search for
a better word we decided to call the shape ’candy’.

The construction is essentially a generalization of the DiamondTorre algo-
rithm to the 3D1T decomposition. Thus, the reader may refer to [4] for a

9

better understanding of the illustrations.
When placed on a computational grid, the smallest candy encompasses 2

grid points (Fig. 3c). Their relative positions are (0; 0; 0) and (1; 1; 1). This is
called ’the base pair’ hereafter.

The terminology provided for the DiamondTorre algorithm [4] applies here
as well.

The basic element of space-time decomposition is de�ned by the stencil
spatial size. Stencil half size (ShS) is the parameter of the algorithm and it
de�nes the candy size. For the chosen scheme it equals 2. Thus, the minimal
element of the data structure is 2� 2� 2 = 8 base pairs combined into a bigger
candy. The candy for the g values is de�ned shifted up from the candy for f

values for ShS grid steps in the z direction (Fig. 3d). The example of the code
for the structure is

s t r u c t c e l l f
f type gx1y1z2 , gx0y0z2 , gx2y1z3 , gx1y0z3 ,

gx1y2z3 , gx0y1z3 , gx2y2z4 , gx1y1z4 ,
gx2y2z3 , gx1y1z3 , gx3y2z4 , gx2y1z4 ,
gx2y3z4 , gx1y2z4 , gx3y3z5 , gx2y2z5 ;

f type fx1y1z0 , fx0y0z0 , fx2y1z1 , fx1y0z1 ,
fx1y2z1 , fx0y1z1 , fx2y2z2 , fx1y1z2 ,
fx2y2z1 , fx1y1z1 , fx3y2z2 , fx2y1z2 ,
fx2y3z2 , fx1y2z2 , fx3y3z3 , fx2y2z3 ; g ;

The values in the variable names correspond to the relative position on the
x{y{z grid.

The de�nition of this element is convenient, since it results in a more ho-
mogeneous code. In addition, this data structure ensures local and coalesced
access for the DiamondCandy algorithm. The computation of all f values in
the candy with this size depends on the data from the g values of the 8 candies,
and vice versa.

To use the AVX vectorization the data from 32 points are combined into 4
vectors of 8 elements so that in each pair the points belong to two di�erent
vectors.

s t r u c t c e l lV f ftypeV g [2] , f [2] ; g ;

The algorithm building block consists of the computation of one f candy
followed by the computation of the g candy ShS mesh steps above it in z

direction. In 3D1T, it is a prism shape slanted in z{t direction, just as Dia-
mondTorre is slanted in x{t. The bottom base of the prism is the f candy; the
upper base of the prism is the g candy. Several more alternating f and g candy
computations may be added to increase the prism height. The number of f

10

z

xs

xa

z

y

x

(a) (b) (c) (d)

Figure 4: (a): A DiamondCandy projection onto the 3D space. (b): an exam-
ple of asynchronous DiamondCadies. (c) and (d): the three DiamondCandies
that depend on the �rst one.

and g updates in the prism is the algorithm parameter, NT . So the number of
time steps in it is 2NT . This algorithm, and the 3D1T shape corresponding to
it, are called DiamondCandy.

The projections of the DiamondCandy to the 3D space are presented on
Fig. 4.

To perform the computation of the whole 3D1T domain, the 3D space is
tiled with candies. Then the DiamondCandy algorithm should be started
from each of the bases. The appropriate order is de�ned by the dependencies
between the DiamondCandies. By looking at the data dependencies we �nd
asynchronous and dependent DiamondCandies.

One example of an asynchronous set of DiamondCandy algorithms is a row,
where their bases are shifted by ShS � (1;�1; 0) (Fig. 4b). For the convenience,
the axis xa (asynchronous axis) is introduced in the direction (1;�1; 0). The
axis that is orthogonal to xa and z is called xs (synchronous axis). Its direction
is (1; 1; 0).

We illustrate the algorithm with the actual code listings here. We used this
speci�c code for the performance runs. The performance results are studied
in section 5. The code was veri�ed to produce valid simulation results.

The cell data is organized into a 3D array in xs, xa, z axes. In this case,
odd and even rows in z-direction need to be distinguished since the access to
neighboring candies follows a di�erent pattern. In the x{y point of view, odd
an even rows are shifted by (0,ShS,0) with respect to each other.

