

ИПМ им.М.В.Келдыша РАН • Электронная библиотека Препринты ИПМ • Препринт № 264 за 2018 г.

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

Борисов В.Е., <u>Кудряшов И.Ю.,</u> Луцкий А.Е.

Численное исследование трансзвукового обтекания модели надкалиберной головной части ракеты– носителя с учетом акустических возмущений в потоке

Рекомендуемая форма библиографической ссылки: Борисов В.Е., Кудряшов И.Ю., Луцкий А.Е. Численное исследование трансзвукового обтекания модели надкалиберной головной части ракеты–носителя с учетом акустических возмущений в потоке // Препринты ИПМ им. М.В.Келдыша. 2018. № 264. 16 с. doi:<u>10.20948/prepr-2018-264</u> URL: <u>http://library.keldysh.ru/preprint.asp?id=2018-264</u> Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М. В. Келдыша Российской академии наук

В.Е. Борисов, И.Ю. Кудряшов, А.Е. Луцкий

Численное исследование трансзвукового обтекания модели надкалиберной головной части ракетыносителя с учетом акустических возмущений в потоке

В.Е. Борисов, И.Ю. Кудряшов, А.Е. Луцкий. Численное исследование трансзвукового обтекания модели надкалиберной головной части ракеты-носителя с учетом акустических возмущений в потоке

Аннотация. Препринт посвящен исследованию ряда вопросов, связанных с задачами трансзвукового обтекания аэрокосмических аппаратов. Определена перестройка структуры решения в диапазоне чисел Маха 1.038–1.095 при обтекании однородным потоком. Исследовано влияние возмущений набегающего потока на параметры течения при M = 1.038.¹

Ключевые слова: трансзвуковое обтекание, область отрыва, замыкающий скачок, акустические возмущения

V.E. Borisov, I.Yu. Kydryashov, A.E. Lutsky. Numerical investigation of the transonic flow around the above-caliber head part model of the carrier rocket taking into account acoustic disturbances in the flow

Abstract. The preprint is devoted to the study of a number of problems associated with transonic flow problems. The solution structure evolution is determined in the range of Mach numbers 1.038 - 1.095 with a uniform incoming flow. The influence of incident flow disturbances on the flow parameters at M = 1.038 has been investigated.

Key words: transonic flow, separation region, closing jump, acoustic disturbances

Оглавление

Вв	едение2
1.	Трансзвуковая перестройка течения в диапазоне чисел Маха 1.038–1.095 4
2.	Математическая модель распространения акустических возмущений
3.	Результаты расчетов обтекания модели для М=1.038 при наличии в набегающем потоке акустических возмущений12
Зан	лючение14
Сп	исок литературы15

¹ Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 17-08-00909

Введение

Исследования особенностей обтекания трансзвукового цилиндроконических тел были начаты в конце 50-х годов прошлого столетия и продолжаются в настоящее время. Прежде всего изучалась трансзвуковая перестройка течения, поскольку этот процесс характеризовался значительным нестационарных аэродинамических нагрузок. В 60-90-е ростом годы наибольшее внимание было уделено исследованиям перестройки течения на цилиндроконическом теле с большим углом полураствора конуса и достаточно большим удлинением цилиндрической части [1-4].

Расширение исследований произошло в конце прошлого и в начале нынешнего столетия при разработке промышленностью, как у нас, так и за рубежом, надкалиберных головных обтекателей ракет, что потребовало рассмотрения особенностей обтекания цилиндроконического тела с задней цилиндрической частью меньшего диаметра. Имеющиеся представления о трансзвуковой перестройке течения за передней угловой кромкой при больших и малых углах излома образующей на этой кромке были углублены и дополнены, в частности, была выяснена физическая сущность возникновения аэродинамического гистерезиса. Новым в этих работах стало также определение характера перестройки течения за задней угловой кромкой, а взаимодействия течений передней также отрывных на задней И цилиндрических частях рассматриваемого тела [5-10].

Существенную роль в развитии автоколебательного процесса при трансзвуковых перестройках течения играют волновые возмущения [10-12]. Благодаря этому процессу становятся возможными возвратные зоны отрыва к первоначальному развитому состоянию. Сам процесс не вполне регулярен и стабилен, близок к релаксационному. Поддержание его существования часто происходит благодаря одновременному протеканию взаимосвязанных процессов разной природы. Различная величина производной по времени

3

изменения коэффициента давления при его росте и уменьшении, а также колебания давления в точках отрыва и присоединения в противофазе подтверждают, что колебания действительно вызваны нестабильностью структурной перестройки течения.

Исследование влияния возмущений во входном потоке на параметры течения при сверхзвуковом обтекании тел имеет большой теоретический и практический интерес [13-19], особенно отношении В эксплуатации высокоскоростных Этот интерес самолетов. вызван, во-первых, распространением акустических волн или акустических шумов в атмосфере, а во-вторых, наличием акустического фона в камере аэродинамических труб во Многие авторы изучали время испытаний. влияние возмущений на пограничный слой. В частности, была проведена обширная работа по изучению влияния возмущений на изменение параметров пограничного слоя на плоской пластине и на клине в сверхзвуковом потоке.

Таким образом, к настоящему времени был выполнен большой объем исследований по различным аспектам трансзвукового обтекания. Многие вопросы требуют, однако, дальнейших исследований. Настоящая работа направлена на решение некоторых из них.

1. Трансзвуковая перестройка течения в диапазоне чисел Маха 1.038–1.095

Рассматриваемая модель головной части ракеты-носителя схематически изображена на рис. 1. Образующая модели имеет изломы в точках A–G, которые приводят к формированию ударных волн, областей отрыва, волн разрежения. За единицу длины взята величина L = 0.035 м.

Расчеты обтекания модели для чисел Маха М=1.038, 1.052, 1.067, 1.095 и числа Рейнольдса Re = 4.95 · 10⁶ были выполнены в рамках модели нестационарных осредненных по Рейнольдсу уравнений Навье–Стокса

(URANS) с моделью турбулентности Спаларта-Аллмараса с помощью численной методики, представленной в работе [20]. Для расчетов использовалась блочно-структурированная сетка (рис. 2), состоящая из 527200 ячеек (2 блока размерностью 510*501 и 506*541 соответственно).

Рис. 2. Общий вид расчетной сетки.

Рис. 3. Распределение градиента плотности для различных чисел Маха M = 1.038, 1.052, 1.067, 1.097.

Основные элементы структуры течения хорошо визуализируются с помощью распределения модуля градиента плотности, см. рис. 3. Для всех представленных режимов (М = 1.038, 1.052, 1.067, 1.097) течение содержит головную ударную волну 1, замыкающий скачок 2, область разрежения 3 за срезом CD над обратным конусом DE, висячий скачок 4 над точкой присоединения, скачки уплотнения 5, обусловленные изломом образующей в точке F. Наибольшие изменения в структуре решения при увеличении числа Маха наблюдаются вниз по потоку за областью разрежения 3. Для M=1.038 и

6

M=1.052 скачки 4 и 5 пересекаются, образуя λ -конфигурацию. При увеличении числа Маха уплотнение, вызванное изломом F, сопровождается несколькими скачками, смещающимися вниз по потоку. Так, при M=1.067 на участке 11 < x < 15 образуется новая λ -конфигурация (пересечение скачков 5.1 и 5.2). Для M=1.095 над поверхностью модели располагается скачок уплотнения 5 ($x \sim 11$), при переходе к цилиндрическому участку поверхности над точкой F формируется область разрежения 6.

С физической точки зрения, специальный интерес представляет распределение давления поверхности области отрыва. на модели В В рассматриваемой задаче течение имеет фиксированную точку отрыва С (рис. 1). Параметры течения в области отрыва во многом определяются свойствами пограничного слоя перед срезом CD. Как видно на рис. 4, для всех рассмотренных вариантов значения локального числа Маха различаются незначительно. С увеличением скорости набегающего потока наблюдается рост давления. Соответствующий рост давления наблюдается и в области отрыва, см. рис. 5.

Рис. 4. Распределение числа Маха и коэффициента давления в сечении X=5.75 перед отрывом.

7

Рис. 5. Распределение коэффициента давления на поверхности модели для различных чисел Маха.

Интересно отметить, что близки между собой оказываются величины давления для M=1.038 и M=1.052, т.е. для течения с λ-конфигурацией над точкой присоединения. Также близки между собой величины для M=1.067 и M=1.095, когда λ-конфигурация над точкой присоединения отсутствует. Для объяснения этой закономерности необходимы дальнейшие исследования.

2. Математическая модель распространения акустических возмущений

Рассмотрим для простоты одномерное линеаризованное уравнение акустики для постоянного потока, движущегося со скоростью *u*₀ [21, 22]:

$$\frac{\partial u}{\partial t} + u_0 \frac{\partial u}{\partial x} + \frac{1}{\rho_0} p_x = 0,$$

$$\frac{\partial p}{\partial t} + u_0 \frac{\partial p}{\partial x} + \rho_0 c_0^2 p_x = 0.$$
(1)

Здесь *и* и p – малые отклонения скорости и давления от их значений в невозмущенной среде, вызванные распространением звуковых волн, ρ_0 – плотность среды, c_0 характеризует сжимаемость среды.

Введем следующие обозначения: $a = u_0 + c_0$, $b = u_0 - c_0$, $\beta = (\rho_0 c_0)^{-1}$, $Y = u + \beta p$, $Z = u - \beta p$. Тогда система (1) может быть представлена в виде

$$\frac{\partial Y}{\partial t} + a \frac{\partial Y}{\partial x} = 0,$$
$$\frac{\partial Z}{\partial t} + b \frac{\partial Z}{\partial x} = 0.$$

Общее решение этой системы записывается как [22]

$$Y = f(x - at), \quad Z = g(x - bt),$$

где f и g – произвольные дифференцируемые функции, конкретный вид которых зависит от начальных и граничных условий. Выражая u и p через Y и Z, получим общее решение уравнения распространения звука:

$$u(x,t) = \frac{1}{2} (f(x-at) + g(x-bt)),$$

$$p(x,t) = \frac{1}{2\beta} (f(x-at) - g(x-bt)).$$

Рассмотрим далее следующую начально-краевую задачу для системы (1) в случае сверхзвукового потока $u_0 > c_0$ на отрезке [0, L], на левой границе которого заданы возмущения в виде плоской звуковой волны быстрой моды с частотой ω и амплитудой A:

$$p(x,0) = u(x,0) = 0,$$

$$p(0,t) = A\cos(-\omega t),$$

$$u(0,t) = \beta A\cos(-\omega t).$$
(2)

Подставляя условия (3) в (2), легко получить выражения для f и g:

$$f(x-at) = 2A\beta \cos\left(\frac{\omega}{a}(x-at)\right),$$
$$g(x-bt) = 0.$$

Решение рассматриваемой задачи определяется методом характеристик [22] и имеет следующий вид (см. рис. 6):

• Область 2:
$$t \ge t_1 = L/a$$
: (3)

$$u = \beta A \cos\left(\frac{\omega}{a}(x-at)\right), \ p = A \cos\left(\frac{\omega}{a}(x-at)\right);$$

Таким образом, возмущения проходят область L за время L/a, не меняя свой вид. Аналогичная ситуация наблюдается при задании возмущений в виде плоской звуковой волны медленной моды (в этом случае амплитуда колебаний для скорости в (2) задается как $-\beta A$) с соответствующими изменениями в (3).

Рис. 6. Схематичный вид решения задачи (1) – (2) о распространении акустических колебаний в характеристической плоскости.

Рис. 7. Распространение звуковой волны медленной (слева) и быстрой (справа) мод по расчетной области.

На рис. 7 в иллюстративных целях представлено решение задачи (1)–(2) для звуковой волны медленной и быстрой мод для случая M = 1.5, $\rho_0 = 1.0$, $\rho_0 = 1.0$, $\gamma = 1.4$, L = 1.0, $\omega = 50$, A = 0.05 при $t = 50 > t_1$ (все – в безразмерном виде).

Практически важным случаем является решение аналогичной задачи в двумерной постановке. Соответствующее решение представлено, например, в [21] и используется в виде возмущений, накладываемых на набегающий поток, в работах [17, 19]. Оно имеет следующий вид:

$$\begin{pmatrix} u' \\ v' \\ p' \\ \rho' \end{pmatrix} = A \begin{pmatrix} \pm \beta \cos \theta \\ \mp \beta \sin \theta \\ 1 \\ 1 \end{pmatrix} \cos \left(k_x x + k_y y - \omega t \right),$$
(4)

где u', v', p', ρ' – пульсации продольной и поперечной скорости, давления и плотности соответственно; θ – угол распространения внешней волны; A – амплитуда возмущения; t – время; $k_x = k \cos \theta$, $k_y = -k \sin \theta$ – компоненты

волнового вектора, связанного с частотой $\omega = 2\pi f$ дисперсионным соотношением $k = \omega/(M_{\infty} \cos \theta \pm 1)$; верхний (нижний) знак соответствует быстрой (медленной) акустической волне. Возмущения такого типа далее используются в настоящей работе.

3. Результаты расчетов обтекания модели для M=1.038 при наличии в набегающем потоке акустических возмущений

Для M=1.038 был проведен расчет обтекания модели с заданием возмущений акустического типа на входной границе с параметрами $\omega = 10$, A = 0.05, $\theta = 90^{\circ}$. В условиях эксперимента размерная частота f = 11.86 кГц.

Черными точками на рис. 8 отмечены положения сенсоров, в которых фиксировалась зависимость давления от времени, представленная на рис. 9.

Рис. 8. Распределение градиента плотности при наличии возмущений в набегающем потоке.

Сравнение рис. 3 и рис. 8 показывает, что возмущения набегающего потока приводят к некоторому «размыванию» основных разрывов течения с общим сохранением их структуры. Средние по времени значения давления в 4 точках оказываются весьма близки к соответствующим стационарным значениям при обтекании невозмущенным потоком, см. рис. 10.

Рис. 9. Зависимость давления от времени в 4 точках на поверхности модели (колебания относительно среднего значения).

Рис. 10. Распределение давления на поверхности модели. Стационарные значения и усредненные по времени в 4 точках.

Рис. 11. Спектры колебаний давления.

Как видно на рис. 11, основная частота колебаний $\omega = 10$ совпадает с частотой возмущений набегающего потока. Наблюдаются также колебания кратных частот значительно меньшей амплитуды.

Заключение

В работе проведено численное исследование трансзвукового обтекания надкалиберной модели головной части ракеты-носителя. Расчеты выполнены в рамках модели нестационарных осредненных по Рейнольдсу уравнений Навье-Стокса с моделью турбулентности Спаларта-Аллмараса в диапазоне чисел Maxa набегающего потока 1.038 - 1.095. Выявлены основные детали перестройки течения при изменении числа Маха, связанные с изменением положения и структуры основных разрывов решения. Исследовано влияние возмущений акустического типа в набегающем потоке. Показано, что при рассмотренных значениях амплитуды и частоты возмущений принципиальных изменений картины течения не происходит. Средние по времени значения давления в контрольных точках оказываются близки к стационарным. Дальнейшие исследования должны быть направлены на уточнение полученных в работе результатов.

Список литературы

- Robertson J.E. and Chevalier H.L. Characteristics of Steady-State Pressures on the Cylindrical Portion of Cone-Cylinder Bodies at Transonic Speeds. Arnold Engineering Development Center, AEDC TDR-63-204, Tullahoma, TN, Aug. 1963.
- [2] Chevalier H.L. and Robertson J.E. Pressure Fluctuations Resulting from Alternating Flow Separation and Attachment at Transonic Speeds. Arnold Engineering Development Center, AEDC TDR-63-204, Tullahoma, TN, Nov. 1963.
- [3] Курьянов А.И., Столяров Г.И., Коробов Я.П., Штейер В.И. О гистерезисных явлениях при обтекании цилиндров малого удлинения с различной формой затупления на околозвуковых скоростях. Труды ЦАГИ, вып. 1442, 1972, с. 1–31.
- [4] Бачманова Н.С., Кирнасов Б.С., Кудрявцев В.В., Липницкий Ю.М. Безотрывное симметричное обтекание трансзвуковым потоком цилиндроконических тел. МЖГ, № 6, 1975, с. 164–167.
- [5] Курьянов А.И., Столяров Г.И. О неединственности структуры обтекания цилиндра малого удлинения с сегментальным затуплением на околозвуковых скоростях. Труды ЦАГИ, вып. 1976, 1979, с. 1–32.
- [6] Бертынь В.Р., Назаренко В.В., Невежина Т.П. Экспериментальное исследование некоторых особенностей отрывного трансзвукового обтекания моделей. Учёные записки ЦАГИ, том XII, № 2, 1981, с. 103–106.
- [7] Ericsson L.E., Pavish D. Aeroelastic Vehicle Dynamics of a Proposed Delta II 7920-10L Launch Vehicle. Journal of Spacecraft and Rockets, Vol. 37, № 1, January–February 2000, p.28–38.
- [8] Даньков Б.Н., Косенко А.П., Куликов В.Н., Отменников В.Н. Особенности трансзвукового обтекания цилиндроконического тела при малом угле излома образующей на передней угловой кромке // Изв. РАН. МЖГ. 2006. №3. С.140–154.
- [9] Даньков Б.Н., Косенко А.П., Куликов В.Н., Отменников В.Н. Особенности трансзвукового течения за задней угловой кромкой надкалиберного цилиндроконического тела // Изв. РАН. МЖГ. 2007. №3. С 155–168.
- [10] Даньков Б.Н., Еремин В.В., Косенко А.П., Липницкий Ю.М. Роль волновых возмущений в трансзвуковых отрывных течениях // Ученые записки ЦАГИ, том XLI № 2, 2010, с. 19–24.

- [11] Абдрашитов Р.Г., Архиреева Е.Ю., Даньков Б.Н., Меньшов И.С., Северин А.В., Семенов И.В., Требунских Т.В., Чучкалов И.Б. Механизмы нестационарных процессов в протяженной каверне // Ученые записки ЦАГИ, 2012, том XLIII, № 4.
- [12] Архиреева Е.Ю., Даньков Б.Н., Коляда Е.О., Косенко А.П. Особенности автоколебательных процессов, возникающих при трансзвуковой перестройке течения за трехмерным уступом поверхности тела // Космонавтика и ракетостроение, 2014, № 4, с. 17–25.
- [13] Kudryavtsev A.N, Mironov S.G., Poplavskaya T.V., Tsyryul'nikov I.S. Experimental study and direct numerical simulation of the evolution of disturbances in a viscous shock layer on a flat plate // Journal of Applied Mechanics and Technical Physics, 2006, v. 47, no. 5, pp. 617–627.
- [14] Боровой В.Я., Скуратов А.С., Столяров Е.П. Пульсации давления в сверхзвуковых аэродинамических трубах кратковременного и длительного действия // Ученые записки ЦАГИ. 2001, том XXXII, № 3–4, с. 3–16.
- [15] Зиновьев В.Н., Лебига В.А. Исследование акустических возмущений в потоке при наличии проницаемых границ с помощью термоанемометра // Ученые записки ЦАГИ. 2010, том 41, № .2, с. 11–18.
- [16] Маслов А.А., Кудрявцев А.Н., Миронов С.Г., Поплавская Т.В., Цырюльников И.С. Численное моделирование восприимчивости гиперзвукового ударного слоя к акустическим возмущениям // Прикл. механика и техн. физика. 2007, т. 48, № 3, с. 84–91.
- [17] Kirilovskiy S.V, Poplavskaya T.V, Tsyryulnikov I.S. Numerical simulation of interaction of long-wave disturbances with a shock wave on a wedge for the problem of mode decomposition of supersonic flow oscillations // AIP Conference Proceedings (18 International Conference on the Methods of Aerophysical Research (ICMAR 2016)). 2016, 1770 030040.
- [18] Егоров И.В., Судаков В.Г., Федоров А.В. Численное моделирование восприимчивости сверхзвукового пограничного слоя к акустическим возмущениям // Изв. РАН. МЖГ. 2006. № 1, с. 42–53.
- [19] Цырюльников И.С., Кириловский С.В., Поплавская Т.В. Коэффициенты преобразования длинноволновых возмущений набегающего потока в пульсации давления на поверхности клина в сверхзвуковом потоке // Письма в ЖТФ. 2016, том 42, вып. 21, с. 70–78.
- [20] Кудряшов И.Ю., Луцкий А.Е., Даньков Б.Н., Коляда Е.О., Липницкий Ю.М. Численные исследования особенностей трансзвуковой перестройки течения на надкалиберной модели // Матем. моделирование, 2015, том 27, номер 10, с. 65–80.
- [21] Блохинцев Д.И. Акустика неоднородной движущейся среды. Издательство: М.: Наука; Издание 2-е. 1981.
- [22] Годунов С.К. [и др.] Численное решение многомерных задач газовой динамики. М.: Наука, 1976.