

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 135 за 2019 г.</u>

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

Борисов В.Е., Луцкий А.Е., Северин А.В.

Влияние возмущений акустического типа на трехмерное трансзвуковое течение

Рекомендуемая форма библиографической ссылки: Борисов В.Е., Луцкий А.Е., Северин А.В. Влияние возмущений акустического типа на трехмерное трансзвуковое течение // Препринты ИПМ им. М.В.Келдыша. 2019. № 135. 16 с. <u>http://doi.org/10.20948/prepr-2019-135</u> URL: <u>http://library.keldysh.ru/preprint.asp?id=2019-135</u>

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М. В. Келдыша Российской академии наук

В.Е. Борисов, А.Е. Луцкий, А.В. Северин

Влияние возмущений акустического типа на трехмерное трансзвуковое течение

В.Е. Борисов, А.Е. Луцкий, А.В. Северин. Влияние возмущений акустического типа на трехмерное трансзвуковое течение.

Аннотация. Работа посвящена исследованию ряда вопросов, связанных с задачами трансзвукового обтекания аэрокосмических аппаратов. В трехмерной постановке исследовано влияние возмущений набегающего потока на параметры течения при M = 1.038. Рассмотрены режимы с различными углами падения плоской акустической волны.¹

Ключевые слова: трансзвуковое обтекание, область отрыва, замыкающий скачок, акустические возмущения

V.E. Borisov, A.E. Lutsky, A.V. Severin. The influence of the acoustic type perturbations on three-dimensional transonic flow.

Abstract. The work is devoted to the study of issues related to the problems of transonic flow around aerospace vehicles. In a three-dimensional formulation, the influence of freestream disturbances on the flow parameters at M = 1.038 is investigated. The modes with different angles of incidence of a plane acoustic wave are considered.

Key words: transonic flow, separation region, closing jump, acoustic disturbances

Оглавление

Вве	едение	. 3		
1.	Основные уравнения и численный метод	. 3		
2.	Модель надкалиберной головной части ракеты-носителя	. 6		
3.	Результаты расчетов	. 7		
Зак	Заключение12			
Сп	Список литературы14			

¹ Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 17-08-00909

Введение

К настоящему времени выполнен большой объем исследований [1-10], посвященных перестройке течения при трансзвуковом обтекании различных аэрокосмических аппаратов. При сравнительно небольших (~ 0.01 – 0.05) изменениях числа Маха набегающего потока происходит существенное смещение ударной волны, замыкающей внутреннюю сверхзвуковую зону. Соответственно меняются размеры и положение области отрыва пограничного слоя. В ряде работ (например, [11-13]) была выявлена роль нестационарных волновых процессов, обусловленных как внешними возмущениями набегающего потока, так и внутренними источниками акустических колебаний.

Исследование влияния возмущений во входном потоке на параметры течения при трансзвуковом обтекании тел имеет большой теоретический и практический интерес, частности, отношении эксплуатации В В Этот высокоскоростных самолетов. интерес вызван. во-первых, распространением акустических волн или акустических шумов в атмосфере, а во-вторых, наличием акустического фона в камере аэродинамических труб во время испытаний. Многие авторы [14-20] изучали влияние возмущений на пограничный слой. В частности, была проведена обширная работа по изучению влияния возмущений на изменение параметров пограничного слоя на плоской пластине и на клине в сверхзвуковом потоке.

В предыдущей работе авторов [21] исследовались вопросы, связанные с перестройкой структуры решения в диапазоне чисел Маха 1.038–1.095 при обтекании однородным потоком, а также были начаты исследования по анализу влияния акустических возмущений в набегающем потоке на характер обтекания модели. При этом расчеты проводились в двумерной постановке для фиксированного угла падения возмущений. Настоящая работа продолжает изучение процессов трансзвукового обтекания модели, исследования проводятся в трехмерной постановке и для различных углов падения возмущений.

1. Основные уравнения и численный метод

В качестве математической модели используется система нестационарных осредненных по Рейнольдсу уравнений Навье-Стокса (URANS), в декартовой системе координат записываемая в виде:

$$\frac{\partial \mathbf{q}}{\partial t} + \sum_{j} \frac{\partial \mathbf{f}_{j}}{\partial x_{j}} = \sum_{j} \frac{\partial \mathbf{g}_{j}}{\partial x_{j}},\tag{1}$$

где

$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho u_1 \\ \rho u_2 \\ \rho u_3 \\ \rho E \end{pmatrix}, \quad \mathbf{f}_j = \begin{pmatrix} \rho u_j \\ \rho u_j u_1 + \delta_{1,j} p \\ \rho u_j u_2 + \delta_{2,j} p \\ \rho u_j u_3 + \delta_{3,j} p \\ u_j (\rho E + p) \end{pmatrix}, \quad \mathbf{g}_j = \begin{pmatrix} 0 \\ \tau_{1j} \\ \tau_{2j} \\ \tau_{3j} \\ \tau_{ij} u_i + h_j \end{pmatrix}.$$

Здесь **q** – вектор консервативных переменных, **f**_j и **g**_j – векторы конвективных и диссипативных потоков соответственно. Здесь ρ – плотность, u_j – компоненты вектора скорости u, τ_{ij} – компоненты тензора вязких напряжений, δ_{ij} – тензор Кронекера, E – полная энергия турбулентного течения. Термодинамическое давление p вычисляется по уравнению состояния совершенного газа:

$$p = (\gamma - 1)\rho \left(E - \frac{1}{2} \sum_{j=1}^{3} u_{j}^{2} \right).$$

Показатель адиабаты $\gamma = 1.4$ (для воздуха). Компоненты тензора вязких напряжений и вектора теплового потока имеют вид

$$\begin{aligned} \tau_{ij} &= \mu_{eff} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \,\mu_{eff} \,\frac{\partial u_l}{\partial x_l} \,\delta_{i,j}, \\ h_j &= \lambda_{eff} \,\frac{\partial T}{\partial x_j}. \end{aligned}$$

Т – температура газа, определяемая по формуле

$$T = \frac{p}{\rho R},$$

где R – газовая постоянная, для воздуха $R = 287 \, \text{Дж/(кг} \cdot \text{K})$.

«Эффективное» значение коэффициентов вязкости и теплопроводности определяется как

$$\mu_{eff} = \mu + \mu_t, \quad \lambda_{eff} = C_p \left(\frac{\mu}{\Pr} + \frac{\mu_t}{\Pr_t} \right).$$

Здесь C_p – коэффициент удельной теплоемкости газа при постоянном давлении. Рг и \Pr_t – ламинарное и турбулентное числа Прандтля, для воздуха принимается $\Pr = 0.72$, $\Pr_t = 0.9$. Молекулярная вязкость определяется следующей степенной зависимостью:

$$\frac{\mu}{\mu_0} = \left(\frac{T}{T_0}\right)^s$$

где s = 0.76, μ_0 – молекулярная вязкость при опорной температуре T_0 . Величина μ_t обозначает добавочную турбулентную вязкость, которая определяется согласно модели турбулентности Спаларта–Аллмараса.

Начальные и граничные условия ставятся стандартным образом [22]. Для моделирования акустических возмущений [23] на входной границе на фоновое поле набегающего потока накладываются пульсационные значения в виде:

$$\begin{pmatrix} u' \\ v' \\ p' \\ \rho' \end{pmatrix} = A \begin{pmatrix} \pm \beta \cos \theta \\ \mp \beta \sin \theta \\ 1 \\ 1 \end{pmatrix} \cos \left(k_x x + k_y y - \omega t \right),$$
(2)

где u', v', p', ρ' – пульсации продольной и поперечной скорости, давления и плотности соответственно; θ – угол распространения внешней волны; A – амплитуда возмущения; t – время; $k_x = k \cos \theta$, $k_y = -k \sin \theta$ – компоненты волнового вектора, связанного с частотой $\omega = 2\pi f$ дисперсионным соотношением $k = \omega/(M_{\infty} \cos \theta \pm 1)$; верхний (нижний) знак соответствует быстрой (медленной) акустической волне.

Уравнения модели аппроксимируются по пространству с помощью метода конечных объемов со схемами реконструкции 2-го (TVD) или 3-го (WENO3) порядка точности. Для вычисления невязких потоков на гранях расчетных ячеек используется обобщенный метод С.К. Годунова с точным римановским солвером [24]. Для аппроксимации уравнений по времени применяются явная и неявная схемы (на основе метода LU-SGS). Подробно используемый численный метод описан в работе [25].

2. Модель надкалиберной головной части ракеты-носителя

Геометрические параметры модели соответствуют данным из [21], схематично (без соблюдения масштабов) она представлена на рис. 1. Образующая модели имеет изломы в точках A–G, которые приводят к формированию ударных волн, областей отрыва, волн разрежения. За единицу длины взята величина L = 0.035 м.

На рис. 2 представлены различные ракурсы используемой расчетной области с выделением поверхности тела модели с помощью визуализации на ней поля давления для одного из расчетов.

Рис. 1. Схематичный вид модели.

Рис. 2. Расчетная область с выделением границы тела (различные ракурсы).

Используемая для расчетов сетка являлась блочно-структурированной со сгущением у поверхности тела и содержала $N = 10\,960\,000$ гексагональных ячеек.

3. Результаты расчетов

Расчеты проводились с помощью разработанного авторами программного комплекса для моделирования трехмерных турбулентных течений вязкого сжимаемого газа в ИПМ им. М.В. Келдыша РАН на суперкомпьютере К–60 с использованием 196 вычислительных ядер на задачу.

Модель надкалиберной части ракеты-носителя во всех случаях обтекалась при числе Маха М=1.038, числе Рейнольдса $4.95 \times 10^6 (L^{-1})$ и нулевом угле атаки.

На рис. 3 представлено распределение давления и градиента плотности в плоскости z=0 и полуплоскости z=0, y>0 соответственно при отсутствии возмущений набегающего потока. Течение содержит головную ударную волну, замыкающий скачок, область разрежения за срезом CD над обратным конусом DE, висячий скачок над точкой присоединения, а также скачки уплотнения, обусловленные изломом образующей в точке F, образующие λ -конфигурацию.

Рис. 3. Распределение давления и градиента плотности в расчете без акустических возмущений.

После достижения квазистационарного режима обтекания на левой (входной) границе области по формуле (2) задавались возмущения акустического типа быстрой моды с параметрами $\omega = 10$, A = 0.1 и углом падения $\theta = 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$ в зависимости от серии расчетов. В условиях эксперимента размерная частота f = 11.86 кГц.

На рис. 4 и 5 в иллюстративных целях показаны изоповерхности давления p = 0.9 и 1.1 в расчете с нулевым углом падения возмущений и давление на поверхности тела при $\theta = 15^{\circ}$ соответственно. Для случая $\theta = 0^{\circ}$ на рис. 6 представлено распределение давления и градиента плотности в плоскости z = 0 и полуплоскости z = 0, y > 0 соответственно. Сравнение рис. 3 и рис. 6 показывает, что возмущения набегающего потока приводят к некоторому «размыванию» основных разрывов течения с общим сохранением их структуры.

На рис. 7 представлено распределение давления в плоскости z = 0 для трех расчетов с углом падения возмущений $\theta = 5^{\circ}, 10^{\circ}, 15^{\circ}$ (слева направо). Видно, что качественно картина течения повторяет случай $\theta = 0^{\circ}$, однако по очевидным соображениям теряет симметрию. Давление у поверхности тела при этом не претерпевает значительных изменений в сравнении с нулевым углом падения возмущений.

Рис. 4. Изоповерхности поля давления p = 0.9 и 1.1.

Рис. 5. Распределение давления на поверхности тела в расчете с акустическими возмущениями при $\theta = 15^{\circ}$.

Рис. 6. Распределение давления и градиента плотности в расчете с акустическими возмущениями при $\theta = 0^{\circ}$.

Рис. 7. Распределение давления в расчетах с акустическими возмущениями при $\theta = 5^{\circ}, 10^{\circ}, 15^{\circ}$.

физической Отдельный интерес с точки зрения представляет давления поверхности В области распределение на модели отрыва, исследовавшееся, в частности, для различных чисел Маха в работе [23]. В рассматриваемой задаче течение имеет фиксированную точку отрыва С (рис. 1). Параметры течения в области отрыва во многом определяются свойствами пограничного слоя перед срезом CD. На рис. 8 показано распределение коэффициента давления с наветренной стороны модели в центральном сечении для всех расчетных вариантов, при наличии возмущений бралось осредненное по времени значение. Усредненные по времени и углу значения коэффициента давления в сечении x = 6.25 приведены в таблице 1. В целом можно наличие возмущений в потоке приводит к снижению заключить, ЧТО коэффициента давления. В наибольшей степени это проявляется для нулевого угла падения акустической волны. Зависимость от угла падения возмущений в диапазоне 5°-15° проявляется менее отчетливо. Отметим, однако, что данные результаты требуют дальнейшего уточнения, в частности на более подробных сетках.

Рис. 8. Распределение коэффициента давления на поверхности модели в зоне CDE.

Таблица 1 – Усредненные	по времени и углу	значения	коэффициента	давления
	в сечении $x = 6$	5.25		

Вариант	C _p
Невозмущенный поток	-0.431
Угол 0°	-0.454
Угол 5°	-0.443
Угол 10°	-0.445
Угол 15°	-0.446

12

Рис. 9. Распределение давления в сечениях x = 6.25 (слева) и x = 11.0 (справа) в расчете без возмущений

Для дополнительной оценки влияния возмущений и угла их падения на трехмерную картину течения около модели сравнивались поля давления в сечениях x = 6.25 и x = 11.0. На рис. 9 представлены соответствующие распределения для обтекания без возмущений. На рис. 10 последовательно показано распределение давления для x = 6.25 в расчетах с акустическими возмущениями при $\theta = 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$ (слева направо, сверху вниз). На рис. 11 – аналогичные распределения для сечения x = 11.0. Для обоих случаев, как и ожидалось, при ненулевом угле падения возмущений течение теряет осесимметричный характер, однако около тела влияние угла падения не столь существенно, что подтверждает сделанные ранее выводы.

Заключение

В работе проведено численное исследование трансзвукового обтекания модели надкалиберной головной части ракеты-носителя с учетом 3-мерных возмущений набегающего потока. Расчеты выполнены в рамках модели нестационарных осредненных по Рейнольдсу уравнений Навье–Стокса с моделью турбулентности Спаларта–Аллмараса для числа Маха набегающего потока 1.038. Исследовано влияние возмущений акустического типа в набегающем потоке на параметры течения. Показано, что наличие возмущений в потоке приводит к снижению коэффициента давления на обратном конусе модели. В наибольшей степени это проявляется для нулевого угла падения акустической волны. Зависимость от угла падения возмущений в диапазоне 5°–15° проявляется менее отчетливо. Дальнейшие исследования должны быть направлены на уточнение полученных в работе результатов.

Рис. 10. Распределение давления в сечении x = 6.25 в расчетах с акустическими возмущениями при $\theta = 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$.

Рис. 11. Распределение давления в сечении x = 11.0 в расчетах с акустическими возмущениями при $\theta = 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}$.

Список литературы

- Robertson J.E. and Chevalier H.L. Characteristics of Steady-State Pressures on the Cylindrical Portion of Cone-Cylinder Bodies at Transonic Speeds. Arnold Engineering Development Center, AEDC TDR-63-204, Tullahoma, TN, Aug. 1963.
- Chevalier H.L. and Robertson J.E. Pressure Fluctuations Resulting from Alternating Flow Separation and Attachment at Transonic Speeds. Arnold Engineering Development Center, AEDC TDR-63-204, Tullahoma, TN, Nov. 1963.
- 3. Курьянов А.И., Столяров Г.И., Коробов Я.П., Штейер В.И. О гистерезисных явлениях при обтекании цилиндров малого удлинения с различной формой

14

затупления на околозвуковых скоростях // Труды ЦАГИ, вып. 1442, 1972, С. 1–31.

- 4. Бачманова Н.С., Кирнасов Б.С., Кудрявцев В.В., Липницкий Ю.М. Безотрывное симметричное обтекание трансзвуковым потоком цилиндроконических тел // МЖГ, № 6, 1975, С. 164–167.
- 5. Курьянов А.И., Столяров Г.И. О неединственности структуры обтекания цилиндра малого удлинения с сегментальным затуплением на околозвуковых скоростях // Труды ЦАГИ, вып. 1976, 1979, С. 1–32.
- 6. Бертынь В.Р., Назаренко В.В., Невежина Т.П. Экспериментальное исследование некоторых особенностей отрывного трансзвукового обтекания моделей // Учёные записки ЦАГИ, том XII, № 2, 1981, С. 103–106.
- Ericsson L.E., Pavish D. Aeroelastic Vehicle Dynamics of a Proposed Delta II 7920-10L Launch Vehicle // Journal of Spacecraft and Rockets, Vol. 37, № 1, January–February 2000, p.28–38.
- Даньков Б.Н., Косенко А.П., Куликов В.Н., Отменников В.Н. Особенности трансзвукового обтекания цилиндроконического тела при малом угле излома образующей на передней угловой кромке // Изв. РАН. МЖГ. 2006. №3. С.140–154.
- 9. Даньков Б.Н., Косенко А.П., Куликов В.Н., Отменников В.Н. Особенности трансзвукового течения за задней угловой кромкой надкалиберного цилиндроконического тела // Изв. РАН. МЖГ. 2007. №3. С. 155–168.
- Кудряшов И.Ю., Луцкий А.Е., Даньков Б.Н., Коляда Е.О., Липницкий Ю.М. Численные исследования особенностей трансзвуковой перестройки течения на надкалиберной модели // Матем. моделирование, 2015, том 27, номер 10, С. 65–80.
- 11. Даньков Б.Н., Еремин В.В., Косенко А.П., Липницкий Ю.М. Роль волновых возмущений в трансзвуковых отрывных течениях // Ученые записки ЦАГИ, том XLI № 2, 2010, С. 19–24.
- 12. Абдрашитов Р.Г., Архиреева Е.Ю., Даньков Б.Н., Меньшов И.С., Северин А.В., Семенов И.В., Требунских Т.В., Чучкалов И.Б. Механизмы нестационарных процессов в протяженной каверне // Ученые записки ЦАГИ, 2012, том XLIII, № 4.
- 13. Архиреева Е.Ю., Даньков Б.Н., Коляда Е.О., Косенко А.П. Особенности автоколебательных процессов, возникающих при трансзвуковой перестройке течения за трехмерным уступом поверхности тела // Космонавтика и ракетостроение, 2014, № 4, С. 17–25.
- 14. Kudryavtsev A.N, Mironov S.G., Poplavskaya T.V., Tsyryul'nikov I.S. Experimental study and direct numerical simulation of the evolution of

disturbances in a viscous shock layer on a flat plate // Journal of Applied Mechanics and Technical Physics, 2006, v. 47, no. 5, pp. 617–627.

- 15. Боровой В.Я., Скуратов А.С., Столяров Е.П. Пульсации давления в сверхзвуковых аэродинамических трубах кратковременного и длительного действия // Ученые записки ЦАГИ. 2001, том XXXII, № 3–4, С. 3–16.
- 16. Зиновьев В.Н., Лебига В.А. Исследование акустических возмущений в потоке при наличии проницаемых границ с помощью термоанемометра // Ученые записки ЦАГИ. 2010, том 41, № .2, С. 11–18.
- Маслов А.А., Кудрявцев А.Н., Миронов С.Г., Поплавская Т.В., Цырюльников И.С. Численное моделирование восприимчивости гиперзвукового ударного слоя к акустическим возмущениям // Прикл. механика и техн. физика. 2007, т. 48, № 3, С. 84–91.
- Kirilovskiy S.V, Poplavskaya T.V, Tsyryulnikov I.S. Numerical simulation of interaction of long-wave disturbances with a shock wave on a wedge for the problem of mode decomposition of supersonic flow oscillations // AIP Conference Proceedings (18 International Conference on the Methods of Aerophysical Research (ICMAR 2016)). 2016, 1770 030040.
- 19. Егоров И.В., Судаков В.Г., Федоров А.В. Численное моделирование восприимчивости сверхзвукового пограничного слоя к акустическим возмущениям // Изв. РАН. МЖГ. 2006. № 1, С. 42–53.
- 20. Цырюльников И.С., Кириловский С.В., Поплавская Т.В. Коэффициенты преобразования длинноволновых возмущений набегающего потока в пульсации давления на поверхности клина в сверхзвуковом потоке // Письма в ЖТФ. 2016, том 42, вып. 21, С. 70–78.
- 21. Борисов В.Е., Кудряшов И.Ю., Луцкий А.Е. Численное исследование трансзвукового обтекания модели надкалиберной головной части ракеты– носителя с учетом акустических возмущений в потоке // Препринты ИПМ им. М.В. Келдыша. 2018. № 264. 16 с.
- 22. Быков Л.В., Молчанов А.М., Щербаков М.А., Янышев Д.С. Вычислительная механика сплошных сред в задачах авиационной и космической техники. М.: ЛЕНАНД, 2015, 688 с.
- 23. Блохинцев Д.И. Акустика неоднородной движущейся среды. Издательство: М.: Наука; Издание 2-е. 1981.
- 24. Годунов С.К. и др. Численное решение многомерных задач газовой динамики. М.: Наука, 1976.
- Borisov V.E., Davydov A.A., Kudryashov I.Y., Lutsky A.E., Men'shov I.S. Parallel implementation of an implicit scheme based on the LU-SGS method for 3D turbulent flows // Mathematical Models and Computer Simulations, 2015, Vol. 7, No. 3, pp. 222-232.