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Змиевская Г.И. 

Структуры самоорганизации пористости в твердом теле  

 Компьютерное моделирование зарождения пористости при имплантации 

ионов инертного газа проведено на основе уравнений кинетической теории 

начальной стадии фазового перехода — флуктуационной нуклеации. 

Стохастическая молекулярная динамика, использующая систему уравнений Ито 

в смысле Стратоновича, позволяет анализировать образование кластеров 

вакансионно-газовых пор в зависимости от их неравновесных функций 

распределения как по размерам, так и по декартовым координатам объема 

слоев. Самоорганизация в фазовом пространстве стохастических динамических 

переменных возникает при броуновской диффузии вследствие 

дальнодействующего коллективного упругого взаимодействия пор в решетке 

при условии «открытой» физической системы имплантации ионов в решетку за 

короткое время нуклеации (менее 100 микросекунд). Примеры структур 

представлены для условий флуктуационной неустойчивости фазового перехода 

в тонком слое карбида кремния при облучении Хе
++

 с энергией ионов 5 -10 кэВ. 

Ключевые слова: кинетическая теория, стохастическое моделирование, 

пористость, карбид кремния, кластеры пор, структуры самоорганизации. 

 

Galina Ivanovna Zmievskaya 

Structures of Self-Organization of Porosity in Solid 
   

Computer simulations of porosity nucleation under implantation inert gas ions 

carried out on the basis of equations kinetic theory of initial stage of phase transition - 

fluctuation nucleation. Stochastic molecular dynamics, which use set of Ito equation 

in Stratonovich sense, allows to analyze the formation of structures vacancy - gas 

pore clusters in dependence on their non-equilibrium distribution functions from 

both: size and Cartesian coordinates of the volume of the layers. The self-

organization in phase space stochastic dynamical variables appears during Brownian 

diffusion due to long - range collective elastic interaction of pores in lattice under 

condition "open" physical system of ions implantation in the lattice at short time of 

nucleation (less to 100 microsecond). The examples of structures are presented for 

conditions of fluctuation instability of the phase transition in a thin layer of silicon 

carbide upon irradiation with Xe
++

 with an ion energy of 5 -10keV. 

Key words: kinetic theory, stochastic simulation, porosity, silicon carbide, pore 

clusters, self-organization structures. 

Работа выполнена при частичной поддержке Российского фонда 

фундаментальных исследований, грант 18-01-00436. 
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INTRODUCTION 

 

Simulation of phase transition is considered in a numerical experiment based on 

the theory of stochastic dynamic variables [1]. Among the processes that modify the 

functional properties of the surfaces, an important role belongs to the phase 

transitions of the 1st kind [2] such as condensation of vapor in the volume of 

discharge plasma on the surface of the substrate [3], formation of defects consisting 

of vacancies and gas (vacancy gas) pores /VGD/ in the crystal lattice of the material 

[4,5], crystallization, melting, and many other phenomena of the interaction of the 

plasma with the surfaces [6], devices, installations, etc. At the initial stage of phase 

transitions with characteristic times of ~ 100 µsec, nuclei of a new phase have the 

form of melt droplets during vapor condensation or VGD pores when the gas 

implants in the crystal lattice. 

 Implantation of ions into solid is accompanied by the phase transition of the 1-st 

kind which manifests itself as VGD pores in lattice. Studying mechanisms of 

nucleation formation of non-point radiation induced defects (or "blisters") implies 

using the non-stationary kinetic equation (Kolmogorov-Feller and Einstein-

Smolukhowski) with non-linear coefficients describing nucleation processes, 

clustering of nuclei and their Brownian motion in phase space of cluster sizes and 

Cartesian coordinates in lattice. Stable method of solving Ito stochastic differential 

equations /SDEs/ in sense of Stratonovich which is used in the analysis of nucleation 

dynamics was developed earlier. The stochastic dynamic variables of the problem are 

analyzed as the probability density of random processes or as the distribution 

function of kinetic equations in partial derivatives of molecular-kinetic theory. The 
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long-range interaction of vacancy-gas pore nuclei in a unit volume arises due to 

indirect elastic forces in the lattice, of a collective nature which leads to the creation 

of pore cluster structures (“pre-cracks” in the samples). Computer simulation is able 

to be used for non - point defects prediction in lattice.  

Molecular dynamics / MD / is a numerical method for simulating on the atomic 

scale of the movement of implanted particles. Modern ideas about the mechanisms of 

damage to the crystal lattice by cascades of implanted atoms and the formation of 

point defects is based on Monte-Carlo simulation. As a result of integration Newton's 

classical equations analyze the dynamic development of the state system of atoms. A 

numerical method of stochastic molecular dynamics [3 - 6] of the Monte Carlo family 

of methods [7] was developed to solve the problems of kinetic theory (in particular  a 

model of non - equilibrium phase transition stage) which is different from MD since 

it uses stochastic differential equations /SDEs/ as characteristics of motion and the 

derivation of which used  the exact relation of stochastic problem coefficients (a drift 

and a stochastic diffusion in SDEs) with the coefficients of partial differential 

equations of kinetic theory following from considered problems and  models their 

coefficients approximation. The choice of algorithms for the SDEs solution is also 

important. The study of the properties of silicon carbide is relevant [8] in the 

construction of automotive, aerospace and rocket technology, both in terms of 

obtaining nano scale powders during vapor condensation for composites, and in the 

study of  radiation damage to protective coatings, where appearance structures of 

pore leads to micro crakes development. 
 

 

NUMERICAL MODELING OF THE NUCLEATION AND POROSITY IN THE SAMPLE 

 

 The mechanism of porosity formation is considered as a result of a phase 

transition at its initial nonequilibrium stage and is associated with the generation of 

vacancies upon irradiation with inert gas ions, i.e., defects arise in the crystal lattice. 

The process model is represented by a superposition of two random processes: (1) 

diffusion in the phase space {G} of the nuclei sizes [2] or clustering of defects, and 

(2) Brownian diffusion of their centers of mass in a sample consisting of two layers 

(silicon carbide and metal).T The computational domain is shown in Fig.1. Initially 

the pores in the layers are uniformly distributed and several initial distributions over 

sizes are considered (delta - function, equilibrium distribution, et al.)  

 

Defects in the crystal lattice are described by a nonequilibrium size distribution 

function, their motion occurs under the action of a sum of potentials that take into 
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account the interaction of defects with each other, with the boundaries of the layers 

and a number of other interactions, the dependence of the potential on the distance 

between the defects and the elastic properties of the lattice is derived using the 

Feynman diagrams taking into account the properties acoustic phonons of the lattice 

and Friedel oscillations of electron density. Each pore experiences the influence of all 

neighbors through a change in the vibrations of acoustic phonons when defects 

appear, which determines the collective nature of the processes in a solid. This means 

the collective nature of the potential of the interaction between pores. Thus, the 

potential is recalculated when position of VGDs is changes. Distance between pores, 

which is needed for their merging or stopping of their motion, determines spatial 

structures of defects. Conditions of the "open physical system", used in the model, are 

determined via the thermodynamic parameters of the lattice and implanted particles: 

ion energy (~5-10keV), dose of ion flux, and surface temperature of the sample, each 

calculation of porosity formation are kept constant during porosity formation in a 

crystalline lattice [4,5]. Nucleation process is described by the Fokker - Planck - 

Kolmogorov kinetic equations and by their stochastic analogue – the Ito - 

Stratonovich equations. Evaluated are the degree of dispersion of inclusions of gas 

clusters and their structures in layers of thin films, when expose to fluxes of inert 

gases ions, which are neutralized at the sample border and form the nuclei while 

interacting with the flow of vacancies.  

 
 

Self - organization means formation of ordered structures (similar to ordered 

turbulence flow) from initially stochastically uncontrolled states without external 

correcting impact. 
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STOCHASTIC MOLECULAR DYNAMIC DESCRIPTION 

 

Numerical experiment for the stochastic molecular dynamics method has the 

following features: 

  1. SDEs are formulated, corresponding coefficients are related to the coefficients of 

kinetic equations; those coefficients should be smooth and twice continuously 

differentiable, which provides the conditions for the existence and uniqueness of the 

SDEs solution, 

  2. discrete model of the medium includes stochastic dynamic variables [1] 

describing clustering of particles (vacancies and gas); that model is determined by the 

Gibbs energy model of the nuclei formation, corresponding Brownian motion of 

those nuclei is determined by the interaction potentials of the fixed nucleus with the 

other nuclei in the lattices of the sample layers and conservation laws, 

  3. the choice of the Stratonovich form for the Ito SDEs allows to simplify a 

representation of stochastic integrals in the solution of the SDEs systems, solution of 

which replaces the solution of the partial differential equation; 

  4. the trajectories of the random process should be analyzed in terms of the transient 

probability density of Markov processes for Kolmogorov equations and to find the 

kinetic functions of the cluster size distribution in the unit volume and the distribution 

of defects in the sample in depth for the given moments of time. 

 

 

KINETIC AND STOSHACTIC EQUATIONS OF MODELING 

 

Let us consider the model of the fluctuation stage of porosity formation. 

Processes of clustering are represented by a diffusion in the phase space of cluster 

sizes {G}. The idea to use a random Markov process allows us to formulate the 

problem in the form of the Fokker–Planck–Kolmogorov (FPK) equation for the 

probability density of cluster size DF  f g,t  (source of "monomers" :vacancies and 

implanted gas) is denoted as aS ) [3-5]:  

 
   

 
 

 , , ,1
, , ,

f g t g t f g t
D g t f g t D g t S

t kT g g g g


      
     

       
.                        (1) 

Initial conditions are    
 

 0 2 2

,
,0 ,0 , 2, , 0.g g

df g t
f g f g f g t

dg
     

Here g is the cluster size or the number of incompressible volumes of gas in the pore, 

D is the diffusion coefficient in the space of cluster sizes {G}, which depends on 

temperature T and gas pressure, D ~ g
2/3

;   is the free energy of nuclei formation 
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(or Gibbs energy), which depends on the difference of chemical potentials of phases, 

on surface tension of pores, on elastic properties of the layers and on distance from 

the boundary between the layers.  

The value f(g, t)dg determines the number of nuclei in the size range (per unit 

volume of the medium). The range of variation of variables is    2, , 0,g G t   . 

The Einstein-Smoluchowski equation for the Brownian motion of the centers of 

mass of clusters of defects reads as  

g
gr

gg

f (r,t) F(r,t)
f (r,t)D (r,t)

M γrf (r,t)
= Q,

t r r

  
  
     





 

  
                                                      (2) 

boundary conditions (periodic on x and y), and on the z axis are chosen similarly to 

[5], Q is the runoff of clusters.  

Distribution f(g, t) from (1) allows to find Mg (clusters’ masses) for (2). The 

force projection on the flow direction z is /zF U(x,y,z) z  , where U(x, y, z) is a 

superposition of the potentials of the indirect elastic interaction of VGDs (pores) in 

the layers with each other and with the boundaries of the computational domain; U(x, 

y, z) reflects long-range self-consistent interactions VGDs due to long-range elastic 

forces in lattice associated with the perturbation of oscillations of acoustic phonons 

by VGDs in the lattice; the distance r = r(x, y, z) between defects is measured in units 

of interatomic distances in the formula for U(x, y, z) are the projection distances on 

the axis x, y, z (see below). The sign of the potential depends on the combination of 

the elastic moduli. 

The model (1) for the stationary phase transition at the initial stage was 

proposed by Yа. B. Zel’dovich [2], whose ideas were developed in [3 - 6]. Stable 

algorithms proposed in [3] (see also references there) of the SDEs solution became a 

tool of computational experiments for the kinetics of non-equilibrium fast - flowing 

processes. We consider here the problem statement, omitting the description of the 

algorithms. 

The Cauchy problem for the stochastic differential equation in the sense of Ito, 

corresponding to the FPK (1) equation, has the form: 

0 0

0 .

t t

t t

X(t)= X(t )+ H(τ,X(τ))dτ+ σ(τ,X(τ))dW(τ)   

Where H(τ,X(τ))  and σ(τ,X(τ))  are functional - coefficients of drift and diffusion, W is 

the Wiener random processes. Variable X can be represented by stochastic dynamic 

variables: the size of the clusters g, or/and Cartesian coordinates r={x, y, z}. To write 

SDEs in the sense of Stratonovich we replace equation (1) by the equation for X(t) or 

its stochastic analogue using the appropriate form of coefficients: 
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2/3

1 ΔΦ 1

2

1
2D

g

g g

g g g g0

D (g,t)(g,x, y, t)
H = D (g,t) ,

kT g g

σ = (g,t), D = D g
q


 

 
 

Ito’s SDEs in the sense of Stratonovich has the form, 

 
     

   

     0 0 0

, , ,1
2 , ,

2

, ; , 2.k

D g t g t D g t
dg t dt D g t dw t

kt g g

t t T g t g g t

  
    

  

  

                     (3) 

Here dw(t) is a model increment of a random process corresponding to (1). Similarly, 

it is possible to present the drift and diffusion in the SDEs to determine the  

 

coordinates r of the Brownian particles (pores) in the lattice: 
11 1

2D
2

r
rr r

g

DU(r)
σ =H = D ,

qγM r r


 

   

SDEs corresponding to (2) can be presented as: 

 
   

   
, ,1

2 , ,
2

r

r

g

F r t D r t
dr t dt D r t dw t

M r

 
      

                                   (4) 

where potential Uij has the form  

 

     

 

 

 
 

4 4 4

4

3 3

3 / 5
cos

i j i j i j

r
N

i j r r i j

ij

i j
i j i j

x x y y z z
b

r r a c
U

r r r r

      
  
   

   
  
 
 
 


r r

, 

Here i, j are the numbers of interacting pores in corresponding volume being 

numerate them from 1 to N. An example of Uij is presented in Fig.2, coefficients br, 

ar, cr are the model parameters of the respective lattice layers. The correlation 

between concentrations of vacancy-gaseous defects in layers of sample and the 

potentials values is established by the corresponding normalization [5]. The 

distribution of potential in the lattice defines in a consistent way a porosity of the 

material with taking into account Dr, that is the diffusion coefficient in the phase 

space of Cartesian coordinates of crystal lattice, Dr  = Dr(r, t);   are connected with 

physical parameters of the problem:   22

0 1r rD D r r    .  

 

RESULTS AND DISCUSSION 

 

 Calculation of f(g, x, y, z, t) allows us to find the dependence of the number of 

pores in structures of the sample (Fig. 1) on their sizes along the Z axis (distance from 
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the irradiated surface). In Fig. 3a two histograms are presented for two moments of 

time: abscissa axis presents the size structures (in the lattice parameters), ordinate 

axis presents the number of pores in the structure for the 4keV Xe
++

 ion flux and the 

dose is 10
16

cm
-2

 for the layer temperature 1532 K. A structure consisting of two pores 

is taken into account if the distance between the centers of mass of gas inclusions is 

less than or equal to the sum of their radii plus the lattice parameter of the material. 

Porosity is used to estimate stresses in thin layers and at their boundary. Using the 

VGDs distributions (pore sizes and their coordinates), we can calculate the average 

length of defects in the lattice of a SiC / Mo sample for planes parallel and 

perpendicular to the flow (Fig. 3b and c).  
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 Calculate the average sizes of pore structures in a volume of 1x1x0.5 μm of 3C-

SiC material depending on the temperature of the sample (a series of calculations is 

given under the same irradiation conditions) are shown in Fig. 4. Porosity Fig. 5 is 

used to estimate in thin layers and at their boundary. 

 

 

 

 Modeling of implantation of the ions Xe++ showed that during the phase 
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transition the distribution of pore sizes evolves via the non-equilibrium stages. 

Consideration of Brownian motion of defects reveals the structure of defects arising 

under the action of U(x,y,z) . In Fig 3b a number of structure defects per unit volume 

of SiC along the gas flow direction is presented as a function of temperature. 

Spherical pores of different diameters form specific structures during Brownian 

diffusion. The total length of structures is less than 30 lattice parameters of 3C-SiC, 

which is used in assessing the degree of dispersion of the medium with inclusions of 

porosity and of amorphization. 

Non-stationary kinetic equation being a 2-nd order partial differential equation 

with nonlinear coefficients is solved numerically within the method of stochastic 

molecular dynamics. Non-equilibrium size and spatial distributions of nuclei 

corresponding to an initial stage of a phase transition of the 1-st type in a bulk are 

obtained. Both, condensation of silicon carbide vapor in the discharge plasma, and 

structure of gas pores in the crystal lattice of the surface irradiated by the inert gas 

ions are described by quasilinear stochastic Ito equations in the sense of Stratonovich. 

Distribution functions for the size pores are calculated similar to [6] for the melt 

droplets (nano powders). The porosity in thin films are calculated using 10
6
 

trajectories of random processes of the model.  
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 Defect concentration Fig.6a is Nc = 10
2
 cm

-3
. Temperature sample is 

1500K,radiation dose of Xe
++

 is 10
16

cm-
2
. 

Dependence of the DF VGDs (arb. units, Z axis) on the distances between 

blisters (in the 3C-SiC lattice parameters)  and on the distance from the irradiated 

surface at various concentrations (b, c, d). One division along the X axis is 30 lattice 

parameters. One division along the Y axis is 3.8 lattice parameters  Defect 

concentration Nc = 10
2
 cm

-3
.  
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 The simulation of the nonequilibrium stage of the phase transition at the initial 

nonequilibrium stage presented in the work continues the analysis of damages in the 
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crystal lattice, which are analyzed from the point of view of the appearance of 

porosity structures. The approach of blisters during their movement under the action 

of the potential of elastic forces occurs at times less than 100 microseconds, the 

potential of indirect elastic interaction is collective because it is calculated in a self-

consistent manner. The acoustic phonons of the lattice during the formation of defects 

change the character of vibrations, which was taken into account when deriving the 

calculation formulas, the change in the coordinates of the pores changes the potential, 

which noticeably affects the motion of non-point defects and the concentration of 

defects also changes the length of the porosity structures. After calculating the 

formation of damage at different temperatures, it was found that the length of the 

structures is different in the direction along the direction of introduction of ions of 

inert times and perpendicular to it, the maximum length is reached at different 

temperatures, nonlinearly depending on it.  

The formation of spatial-temporal structures in the phase space of stochastic 

dynamic variables provides new information on the behavior of the model in an open 

physical system and expands the understanding of the kinetics of phase transitions at 

a fluctuatingly unstable stage and complements the model of damage to the crystal 

lattice by a numerical analysis of the formation of non-point defects. 
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