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3mueBckan I U.
CTpyKTYpBbI CAMOOPraHU3ANUN MOPUCTOCTH B TBEPAOM TeJIe

KomnbroTepHoe MOIETMPOBAHUE 3APOXKAEHUS MOPUCTOCTH MPU HMIUIAHTALIMH
MOHOB HMHEPTHOIO Tra3a NpPOBEJECHO HAa OCHOBE YPABHEHUN KHHETHYECKOW TEOpUU
HadyallbHOM cTamuu  (a3oBoro mepexoga —  (DIYKTyallMOHHOW  HYKJICaluu.
Croxactudeckas MOJEKyIspHas JUHAMUKA, HCIIONb3YyIOLIasi CUCTEMY ypaBHEHUH HTo
B cmbicie CTpaTOHOBMYA, IO3BOJSIET AHAJIM3UPOBATH OOpa30BaHME KIIACTEPOB
BAaKAaHCMOHHO-TA30BbIX IOp B 3aBUCUMOCTH OT MX HEPABHOBECHBIX (DYyHKIUH
pacnpezneneHuss Kak IO pa3MepaMm, TaKk W IO JEKapTOBBIM KOOpAHWHAaTaM oObema
cioeB. Camoopranuzanus B (a30BOM MPOCTPAHCTBE CTOXAaCTUYECKUX JUHAMHYECKUX
IEPEMEHHBIX BO3HUKAECT  IIpH OpOYHOBCKOI auppy3un BCJIE/ICTBUE
NaTbHOAEHCTBYIOIIETO KOJJIEKTUBHOTO YNPYTrOro B3aWMOAECHCTBUS MOpP B PEIIETKE
IIPU YCIIOBUU «OTKPBITON» (PU3UUECKON CHCTEMbI MMILUIAHTALIMK MOHOB B PELIETKY 32
KOpoTKoe BpeMs Hykieanuu (meHee 100 mukpocekyHn). Ilpumepsl CTpyKTyp
MIPEICTABIICHBI IJIs1 YCIOBUN (DIYKTYyallMOHHOM HEYCTOMYMBOCTH (ha30BOT0 MEPEX0aa
B TOHKOM CJI0€ KapOua KpeMHHs Ipu 00ydeHnn Xe' ' ¢ sHeprueii nonos 5 -10 k3B.

Knioueevie cnoea: xvHeTHYECKass TEOPHUSA, CTOXACTHMYECKOE MOMEIMPOBAHMUE,
MOPUCTOCTh, KAPOUI KPEMHHSI, KIaCTEPhI MOP, CTPYKTYPhl CAMOOPTaHU3ALUH.

Galina Ivanovna Zmievskaya
Structures of Self-Organization of Porosity in Solid

Computer simulations of porosity nucleation under implantation inert gas ions
carried out on the basis of equations kinetic theory of initial stage of phase transition -
fluctuation nucleation. Stochastic molecular dynamics, which use set of Ito equation
in Stratonovich sense, allows to analyze the formation of structures vacancy - gas
pore clusters in dependence on their non-equilibrium distribution functions from
both: size and Cartesian coordinates of the volume of the layers. The self-
organization in phase space stochastic dynamical variables appears during Brownian
diffusion due to long - range collective elastic interaction of pores in lattice under
condition "open" physical system of ions implantation in the lattice at short time of
nucleation (less to 100 microsecond). The examples of structures are presented for
conditions of fluctuation instability of the phase transition in a thin layer of silicon
carbide upon irradiation with Xe™ with an ion energy of 5 -10keV.

Key words: kinetic theory, stochastic simulation, porosity, silicon carbide, pore
clusters, self-organization structures.
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INTRODUCTION

Simulation of phase transition is considered in a numerical experiment based on
the theory of stochastic dynamic variables [1]. Among the processes that modify the
functional properties of the surfaces, an important role belongs to the phase
transitions of the 1st kind [2] such as condensation of vapor in the volume of
discharge plasma on the surface of the substrate [3], formation of defects consisting
of vacancies and gas (vacancy gas) pores /VGD/ in the crystal lattice of the material
[4,5], crystallization, melting, and many other phenomena of the interaction of the
plasma with the surfaces [6], devices, installations, etc. At the initial stage of phase
transitions with characteristic times of ~ 100 usec, nuclei of a new phase have the
form of melt droplets during vapor condensation or VGD pores when the gas
implants in the crystal lattice.

Implantation of ions into solid is accompanied by the phase transition of the 1-st
kind which manifests itself as VGD pores in lattice. Studying mechanisms of
nucleation formation of non-point radiation induced defects (or "blisters”) implies
using the non-stationary Kkinetic equation (Kolmogorov-Feller and Einstein-
Smolukhowski) with non-linear coefficients describing nucleation processes,
clustering of nuclei and their Brownian motion in phase space of cluster sizes and
Cartesian coordinates in lattice. Stable method of solving Ito stochastic differential
equations /SDEs/ in sense of Stratonovich which is used in the analysis of nucleation
dynamics was developed earlier. The stochastic dynamic variables of the problem are
analyzed as the probability density of random processes or as the distribution
function of kinetic equations in partial derivatives of molecular-kinetic theory. The
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long-range interaction of vacancy-gas pore nuclei in a unit volume arises due to
indirect elastic forces in the lattice, of a collective nature which leads to the creation
of pore cluster structures (“pre-cracks” in the samples). Computer simulation is able
to be used for non - point defects prediction in lattice.

Molecular dynamics / MD / is a numerical method for simulating on the atomic
scale of the movement of implanted particles. Modern ideas about the mechanisms of
damage to the crystal lattice by cascades of implanted atoms and the formation of
point defects is based on Monte-Carlo simulation. As a result of integration Newton's
classical equations analyze the dynamic development of the state system of atoms. A
numerical method of stochastic molecular dynamics [3 - 6] of the Monte Carlo family
of methods [7] was developed to solve the problems of kinetic theory (in particular a
model of non - equilibrium phase transition stage) which is different from MD since
it uses stochastic differential equations /SDEs/ as characteristics of motion and the
derivation of which used the exact relation of stochastic problem coefficients (a drift
and a stochastic diffusion in SDEs) with the coefficients of partial differential
equations of kinetic theory following from considered problems and models their
coefficients approximation. The choice of algorithms for the SDEs solution is also
important. The study of the properties of silicon carbide is relevant [8] in the
construction of automotive, aerospace and rocket technology, both in terms of
obtaining nano scale powders during vapor condensation for composites, and in the
study of radiation damage to protective coatings, where appearance structures of
pore leads to micro crakes development.

NUMERICAL MODELING OF THE NUCLEATION AND POROSITY IN THE SAMPLE

The mechanism of porosity formation is considered as a result of a phase
transition at its initial nonequilibrium stage and is associated with the generation of
vacancies upon irradiation with inert gas ions, i.e., defects arise in the crystal lattice.
The process model is represented by a superposition of two random processes: (1)
diffusion in the phase space {G} of the nuclei sizes [2] or clustering of defects, and
(2) Brownian diffusion of their centers of mass in a sample consisting of two layers
(silicon carbide and metal).T The computational domain is shown in Fig.1. Initially
the pores in the layers are uniformly distributed and several initial distributions over
sizes are considered (delta - function, equilibrium distribution, et al.)

Defects in the crystal lattice are described by a nonequilibrium size distribution
function, their motion occurs under the action of a sum of potentials that take into
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account the interaction of defects with each other, with the boundaries of the layers
and a number of other interactions, the dependence of the potential on the distance
between the defects and the elastic properties of the lattice is derived using the
Feynman diagrams taking into account the properties acoustic phonons of the lattice
and Friedel oscillations of electron density. Each pore experiences the influence of all
neighbors through a change in the vibrations of acoustic phonons when defects
appear, which determines the collective nature of the processes in a solid. This means
the collective nature of the potential of the interaction between pores. Thus, the
potential is recalculated when position of VGDs is changes. Distance between pores,
which is needed for their merging or stopping of their motion, determines spatial
structures of defects. Conditions of the "open physical system™, used in the model, are
determined via the thermodynamic parameters of the lattice and implanted particles:
ion energy (~5-10keV), dose of ion flux, and surface temperature of the sample, each
calculation of porosity formation are kept constant during porosity formation in a
crystalline lattice [4,5]. Nucleation process is described by the Fokker - Planck -
Kolmogorov kinetic equations and by their stochastic analogue — the Ito -
Stratonovich equations. Evaluated are the degree of dispersion of inclusions of gas
clusters and their structures in layers of thin films, when expose to fluxes of inert
gases ions, which are neutralized at the sample border and form the nuclei while
interacting with the flow of vacancies.

Fig.1. Sizes of the sample (SiC/Mo) and flux Xe"" direction relative to thin film layers (at the left).

Fig.2. Equipotential surfaces of U (x,y,z), (arb. units), of the indirect elastic interaction of pores in
the lattice of layer SiC , T/Tue=0,53, T is the melting temperature of SiC, the dose of Xe*" flux is
10" cm”, ion energy is 5keV.

Self - organization means formation of ordered structures (similar to ordered
turbulence flow) from initially stochastically uncontrolled states without external
correcting impact.



STOCHASTIC MOLECULAR DYNAMIC DESCRIPTION

Numerical experiment for the stochastic molecular dynamics method has the
following features:

1. SDEs are formulated, corresponding coefficients are related to the coefficients of
Kinetic equations; those coefficients should be smooth and twice continuously
differentiable, which provides the conditions for the existence and uniqueness of the
SDEs solution,

2. discrete model of the medium includes stochastic dynamic variables [1]
describing clustering of particles (vacancies and gas); that model is determined by the
Gibbs energy model of the nuclei formation, corresponding Brownian motion of
those nuclei is determined by the interaction potentials of the fixed nucleus with the
other nuclei in the lattices of the sample layers and conservation laws,

3. the choice of the Stratonovich form for the Ito SDEs allows to simplify a
representation of stochastic integrals in the solution of the SDEs systems, solution of
which replaces the solution of the partial differential equation;

4. the trajectories of the random process should be analyzed in terms of the transient
probability density of Markov processes for Kolmogorov equations and to find the
Kinetic functions of the cluster size distribution in the unit volume and the distribution
of defects in the sample in depth for the given moments of time.

KINETIC AND STOSHACTIC EQUATIONS OF MODELING

Let us consider the model of the fluctuation stage of porosity formation.
Processes of clustering are represented by a diffusion in the phase space of cluster
sizes {G}. The idea to use a random Markov process allows us to formulate the
problem in the form of the Fokker—Planck—Kolmogorov (FPK) equation for the

probability density of cluster size DF f(g.t) (source of "monomers" :vacancies and

implanted gas) is denoted as S,) [3-5]:

%=%%{D(g,t) f (g,t)—amgég't)}%{D(g,t)afgg't)}sa. (1)
df(g,t)|
dg
Here g is the cluster size or the number of incompressible volumes of gas in the pore,
D is the diffusion coefficient in the space of cluster sizes {G}, which depends on

temperature T and gas pressure, D ~ g%%; A® is the free energy of nuclei formation

Initial conditions are f(9.0)=f,(9,0), =2 f(gt)],,=0.
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(or Gibbs energy), which depends on the difference of chemical potentials of phases,
on surface tension of pores, on elastic properties of the layers and on distance from
the boundary between the layers.

The value (g, t)dg determines the number of nuclei in the size range (per unit
volume of the medium). The range of variation of variables is 9<[2G], te[0.],

The Einstein-Smoluchowski equation for the Brownian motion of the centers of
mass of clusters of defects reads as

_Lof (1Y) F(rY) .
ﬁg(F,t)_alzDr(r’t) ar }_a{'\ﬁsﬂ’) fg(r,t)}_Q 2)
ot or or ’
boundary conditions (periodic on x and y), and on the z axis are chosen similarly to
[5], Q is the runoff of clusters.

Distribution f(g, t) from (1) allows to find My (clusters’ masses) for (2). The
force projection on the flow direction z is F,—0U(xy,2)/dz, where U(x, y, z) is a
superposition of the potentials of the indirect elastic interaction of VGDs (pores) in
the layers with each other and with the boundaries of the computational domain; U(X,
y, z) reflects long-range self-consistent interactions VGDs due to long-range elastic
forces in lattice associated with the perturbation of oscillations of acoustic phonons
by VGDs in the lattice; the distance r = r(x, y, z) between defects is measured in units
of interatomic distances in the formula for U(x, y, z) are the projection distances on
the axis x, v, z (see below). The sign of the potential depends on the combination of
the elastic moduli.

The model (1) for the stationary phase transition at the initial stage was
proposed by Ya. B. Zel’dovich [2], whose ideas were developed in [3 - 6]. Stable
algorithms proposed in [3] (see also references there) of the SDEs solution became a
tool of computational experiments for the kinetics of non-equilibrium fast - flowing
processes. We consider here the problem statement, omitting the description of the
algorithms.

The Cauchy problem for the stochastic differential equation in the sense of Ito,
corresponding to the FPK (1) equation, has the form:

X(t)= X(t, )+j H(z, X(7))dt + ja(r,X(r))dW(r).

Where H(z. X(7)) and o(z. X(z)) are functional - coefficients of drift and diffusion, W is
the Wiener random processes. Variable X can be represented by stochastic dynamic
variables: the size of the clusters g, or/and Cartesian coordinates r={x, y, z}. To write
SDEs in the sense of Stratonovich we replace equation (1) by the equation for X(t) or
its stochastic analogue using the appropriate form of coefficients:
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D, (9.t
H, =—iDg(g,t)E}A(D((‘]”X’y’t)—l @9
kT g 2 a9

1l o507
O-g :a 2Dg(g1[)1 Dg =D90g2l3

Ito’s SDEs in the sense of Stratonovich has the form,

dg (1) :[_ D(kgt’t) oA (g,t) +%aD(gS’t)]dt+./2D(g,t)dw(t),

a9
telt, T 9(t) =9, 9(t)>2.
Here dw(t) is a model increment of a random process corresponding to (1). Similarly,
it is possible to present the drift and diffusion in the SDEs to determine the

(3)

coordinates r of the Brownian particles (pores) in the lattice:
1 50U 1D, 1

H =- } : 2D,
M, or 2 or q
SDEs corresponding to (2) can be presented as:
F(r, ab, (r,
dr(t)=(— I\;:;)% 8(: t)JdH,/ZDr(r,t)dw(t), )

where potential Uj; has the form

(r-r) ]+arcos(c,|ri—rj|)
=) |

b{
N
i#]

Here i, j are the numbers of interacting pores in corresponding volume being
numerate them from 1 to N. An example of Uj; is presented in Fig.2, coefficients by,
a;, C, are the model parameters of the respective lattice layers. The correlation
between concentrations of vacancy-gaseous defects in layers of sample and the
potentials values is established by the corresponding normalization [5]. The
distribution of potential in the lattice defines in a consistent way a porosity of the
material with taking into account D,, that is the diffusion coefficient in the phase
space of Cartesian coordinates of crystal lattice, D, = D(r, t); & are connected with

physical parameters of the problem: D.=D-(L+a((r*)~(r)’)).
RESULTS AND DISCUSSION

Calculation of f(g, x, y, z, t) allows us to find the dependence of the number of
pores in structures of the sample (Fig. 1) on their sizes along the Z axis (distance from
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the irradiated surface). In Fig. 3a two histograms are presented for two moments of
time: abscissa axis presents the size structures (in the lattice parameters), ordinate
axis presents the number of pores in the structure for the 4keV Xe™ ion flux and the
dose is 10*°cm for the layer temperature 1532 K. A structure consisting of two pores
Is taken into account if the distance between the centers of mass of gas inclusions is
less than or equal to the sum of their radii plus the lattice parameter of the material.
Porosity is used to estimate stresses in thin layers and at their boundary. Using the
VGDs distributions (pore sizes and their coordinates), we can calculate the average
length of defects in the lattice of a SiC / Mo sample for planes parallel and
perpendicular to the flow (Fig. 3b and c).

2500

2000 |- 7

1500 H

t=Tpx103s
7
P

1000

number of structures

500

10 20 30 40 50 60 temperature (n meling temperature)

length of structure along depth-axe, lattice parameter

a b

Fig. 3a. Histograms of the dependence of the number pores in structures per unit volume of
the silicon carbide layer on their size (projection on the Z-axis in the lattice parameters).

Fig. 3b. Dependence of the maximum length of structures of porosity related to the Xe™ flux
direction to the silicon carbide sample on T/7 yex.
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Fig. 3c. Dependence of the maximum length of structures of porosity related to the Xe™ flux
perpendicular direction to the silicon carbide sample on 7/T ... The ordinate of the graph shows the
average length of the pore structures in fractions of the size along the x axis, along the abscissa of
the temperature, where the melting point of silicon carbide is (the end of calculations is 1.5 ms).

Calculate the average sizes of pore structures in a volume of 1x1x0.5 pm of 3C-
SiC material depending on the temperature of the sample (a series of calculations is
given under the same irradiation conditions) are shown in Fig. 4. Porosity Fig. 5 is
used to estimate in thin layers and at their boundary.

0.58|
0.56 -
0.54
0.52r

0.5
0.48+

0.46;

mMax Or DS INUMDar DISTers N structure)

0.44+

042 | 1 1 1 1 1 L
0.4 04z 044 0.46 oas 0.5 052 054 0.56 0.58 0.6

termparature (in melting temparatura)

Fig. 4. Dependence of the most probable number of blisters in extended structures (the number
of in extended structures is related to the total the number of VGDs in the sample)in dependence on
temperature in fractions of temperature melting of the least refractory material 3C-SiC / Mo.

Modeling of implantation of the ions Xe++ showed that during the phase
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transition the distribution of pore sizes evolves via the non-equilibrium stages.
Consideration of Brownian motion of defects reveals the structure of defects arising
under the action of U(x,y,z) . In Fig 3b a number of structure defects per unit volume
of SiC along the gas flow direction is presented as a function of temperature.
Spherical pores of different diameters form specific structures during Brownian
diffusion. The total length of structures is less than 30 lattice parameters of 3C-SiC,
which is used in assessing the degree of dispersion of the medium with inclusions of
porosity and of amorphization.

Non-stationary Kkinetic equation being a 2-nd order partial differential equation
with nonlinear coefficients is solved numerically within the method of stochastic
molecular dynamics. Non-equilibrium size and spatial distributions of nuclei
corresponding to an initial stage of a phase transition of the 1-st type in a bulk are
obtained. Both, condensation of silicon carbide vapor in the discharge plasma, and
structure of gas pores in the crystal lattice of the surface irradiated by the inert gas
ions are described by quasilinear stochastic Ito equations in the sense of Stratonovich.
Distribution functions for the size pores are calculated similar to [6] for the melt
droplets (nano powders). The porosity in thin films are calculated using 10°
trajectories of random processes of the model.

Fig. 5: The projections of the porosity(white color) on the section planes of the
irradiated two layers sample(Fig.1a).
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Fig.6a: Initial state DF for Brownian motion calculation. DF postponed on axis Z and
counted from exposured surface, f(|rj — rj|, Z), i,j=1,...,N, N is number VGDs corresponding to

concentration N¢ in the sample (see Fig.1a, 3C-SiC layer).

Defect concentration Fig.6a is N; = 10? cm™. Temperature sample is
1500K  radiation dose of Xe™* is 10"°cm-2.
Dependence of the DF VGDs (arb. units, Z axis) on the distances between

blisters (in the 3C-SiC lattice parameters) and on the distance from the irradiated
surface at various concentrations (b, c, d). One division along the X axis is 30 lattice
parameters. One division along the Y axis is 3.8 lattice parameters Defect
concentration N, = 10 cm™,

Fig.6 (b). The same that (a) in final state of run.
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Fig.6 (c). The same that (a) at Ty, N = 10° cm™.

Fig.6 (d). The same that (a) at T, N = 10* cm™.

The simulation of the nonequilibrium stage of the phase transition at the initial
nonequilibrium stage presented in the work continues the analysis of damages in the
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crystal lattice, which are analyzed from the point of view of the appearance of
porosity structures. The approach of blisters during their movement under the action
of the potential of elastic forces occurs at times less than 100 microseconds, the
potential of indirect elastic interaction is collective because it is calculated in a self-
consistent manner. The acoustic phonons of the lattice during the formation of defects
change the character of vibrations, which was taken into account when deriving the
calculation formulas, the change in the coordinates of the pores changes the potential,
which noticeably affects the motion of non-point defects and the concentration of
defects also changes the length of the porosity structures. After calculating the
formation of damage at different temperatures, it was found that the length of the
structures is different in the direction along the direction of introduction of ions of
inert times and perpendicular to it, the maximum length is reached at different
temperatures, nonlinearly depending on it.

The formation of spatial-temporal structures in the phase space of stochastic
dynamic variables provides new information on the behavior of the model in an open
physical system and expands the understanding of the kinetics of phase transitions at
a fluctuatingly unstable stage and complements the model of damage to the crystal
lattice by a numerical analysis of the formation of non-point defects.
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