

ИПМ им.М.В.Келдыша РАН • Электронная библиотека

Препринты ИПМ • Препринт № 100 за 2020 г.

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

А.Е. Бондарев, А.Е. Кувшинников, Т.Н. Михайлова, И.Г. Рыжова

Сравнительный анализ солверов OpenFOAM для задачи сверхзвукового обтекания конуса под углом атаки

Рекомендуемая форма библиографической ссылки: Сравнительный анализ солверов ОрепFOAM для задачи сверхзвукового обтекания конуса под углом атаки / А.Е. Бондарев [и др.] // Препринты ИПМ им. М.В.Келдыша. 2020. № 100. 12 с. https://doi.org/10.20948/prepr-2020-100 https://doi.org/10.20948/prepr-2020-100

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.Келдыша Российской академии наук

А.Е. Бондарев, А.Е. Кувшинников, Т.Н. Михайлова, И.Г. Рыжова

Сравнительный анализ солверов ОренFOAM для задачи сверхзвукового обтекания конуса под углом атаки

Бондарев А.Е., Кувшинников А.Е., Михайлова Т.Н., Рыжова И.Г.

Сравнительный анализ солверов **OpenFOAM** для задачи сверхзвукового обтекания конуса под углом атаки

Для численного решения задачи о сверхзвуковом обтекании конуса выбраны три солвера OpenFOAM. Варьировались угол атаки, угол полураствора конуса и число Маха. Был проведен ряд тестовых расчетов. Проанализированы поля отклонений газодинамических величин от референтного решения для всех солверов.

Ключевые слова: сравнительный анализ точности, сжимаемое течение, сверхзвуковое течение, OpenFOAM

Alexander Evgenyevich Bondarev, Artem Evgenyevich Kuvshinnikov, Tatiana Nikolaevna Mikhailova, Irina Gennadievna Ryzhova

Comparative analysis of OpenFOAM solvers for the problem of supersonic flow around a cone at an angle of attack

Three OpenFOAM solvers are selected to numerically solve the problem of supersonic flow around a cone. The angle of attack, the cone half-angle, and the Mach number changed. A number of test calculations were carried out. The fields of deviations of gas-dynamic quantities from the reference solution are analyzed for all solvers.

Key words: comparative analysis of accuracy, compressible flow, supersonic flow, OpenFOAM

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проекты 19-01-00402 и 20-01-00358.

1. Введение

В настоящее время существует множество программных способных решать задачи обтекания вытянутых тел вращения. Естественно, у исследователя возникают вопросы: какой пакет выбрать для расчетов, какой из реализованных в программном пакете численных методов обеспечит точность расчетов и надежность результатов. В работах [1, 2] было предложено воссоздать на современном уровне технологию, разработанную в 80-е годы в Институте прикладной математики им. Келдыша А.Е. Бондаревым и В.А. Черкашиным под руководством А.В. Забродина. Суть этой технологии заключается в том, что коэффициент сопротивления рассматривается как сумма коэффициентов: коэффициента волнового сопротивления, рассчитанного в рамках системы уравнений Эйлера, коэффициента трения и коэффициента донного сопротивления. Этот подход широко применялся в массового промышленного аэродинамических анализа удлиненных тел вращения и оказался весьма эффективным [3].

Для расчета аэродинамических характеристик невязкого потока в окрестности удлиненных тел вращения использовался программный комплекс OpenFOAM [4]. Это бесплатный программный продукт, предназначенный для решения задач гидро- и газодинамики. Он используется во многих областях науки и техники, как в коммерческих, так и в академических организациях. ОреnFOAM содержит ряд солверов с различными вычислительными свойствами.

Необходимо уточнить, что некоторые солверы ранее были созданы разработчиками пакета OpenFOAM [5–7], но при этом пользователи могут создавать и развивать свои собственные солверы [8]. Данная работа посвящена сравнительному анализу точности ряда солверов на примере задачи о сверхзвуковом обтекании конуса под углом атаки.

Как и в работах [1, 2], в качестве эталона использовались табличные решения [9]. Эти таблицы были получены конечно-разностными методами в широком диапазоне чисел Маха и углов полураствора конуса с изменением угла атаки.

В работах [1, 2] рассматривался случай течения вблизи конуса при нулевом угле атаки. Цель данной статьи — решить более общую задачу, а именно найти обтекание конуса при изменении угла атаки. Задача решается в трехмерном пространстве варьируемых определяющих параметров, где в качестве определяющих параметров рассматриваются число Маха, угол полураствора конуса и угол атаки. Таким образом, мы получаем численное решение для класса задач, где класс задач задается диапазонами изменения трех определяющих параметров.

Следует отметить, что сравнения солверов также проводились в работах [10–12]. Однако эти сравнения были сделаны на других примерах и не

дают четких рекомендаций по выбору солвера для рассматриваемого класса задач.

2. Постановка задачи

Постановка задачи представлена в полном соответствии с [9], где рассматриваются результаты невязкого обтекания конусов с различными углами полураствора конуса и углами атаки при различных числах Маха.

Исследуется обтекание вытянутого тела вращения, помещенного в однородный сверхзвуковой поток идеального газа под углом атаки $\alpha=0^\circ, 5^\circ, 10^\circ$ с числом Маха M=3, 5. Исследуемое тело представляет собой конус с углом полураствора $\beta=10^\circ, 15^\circ, 20^\circ$. Условия входящего потока на входе обозначаются индексом" ∞ ", а на выходе — индексом " ξ ", так как решение автомодельно и зависит от безразмерной переменной. Схема потока показана на рис.1.

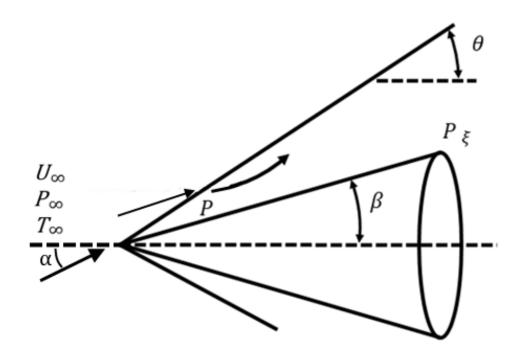


Рис. 1. Схема течения

Для расчета используется система уравнений Эйлера. Система дополняется уравнением состояния идеального газа.

3. Сравнение солверов

Для сравнения из программного пакета OpenFOAM выбрано 3 солвера:

rhoCentralFoam основан на центрально-противопотковой схеме, представляющей собой комбинацию центрально-разностной и противопотокой схем [5, 6];

sonicFoam основан на алгоритме PISO (Pressure Implicit with Splitting of Operator) [7];

pisoCentralFoam — это комбинация центрально-противопотковой схемы с алгоритмом PISO [8]. Солвер pisoCentralFoam не входит в стандартный набор солверов, он был создан в Институте системного программирования им. Иванникова РАН.

Расчеты для всех солверов проводились с использованием OpenFOAM версии 2.3.0.

4. Расчеты и результаты

4.1 Генерация сетки, начальные и граничные условия

На рис. 2 показана вычислительная область. Постановка граничных условий представлена в Таблице 1. Параметры входящего потока задаются на левой границе, обозначаемой как "inlet". Количество ячеек сетки — 336000.

Аналогично работе [2] было проведено исследование сходимости решения для данной задачи.

Таблица 1 Граничные условия

Грань	P	T	U
inlet	101325	300	3, 5M
outlet	zeroGradient	zeroGradient	zeroGradient
top	zeroGradient	zeroGradient	zeroGradient
bottom	zeroGradient	zeroGradient	zeroGradient
cone	zeroGradient	zeroGradient	slip
front	zeroGradient	zeroGradient	zeroGradient
back	zeroGradient	zeroGradient	zeroGradient

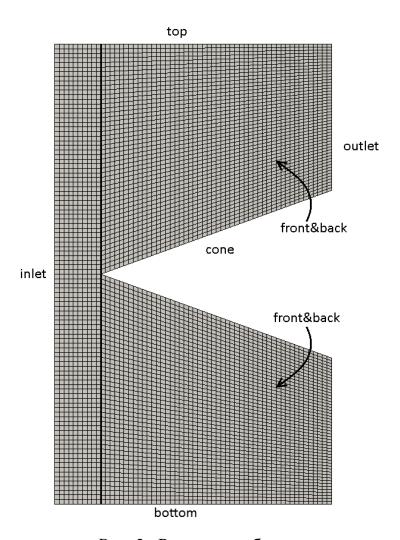


Рис. 2. Расчетная область

4.2 Выбор параметров солверов для унификации

В пакете OpenFOAM есть два варианта аппроксимации дифференциальных операторов: непосредственно в коде солвера или с помощью конфигурационных файлов fvSchemes и fvSolution. Чтобы сделать сравнение корректным, была проведена унификация параметров всюду, где это было возможно, аналогично работам [5, 6]. В файле fvSchemes: ddtSchemes — Euler, gradSchemes — Gauss linear, divSchemes — Gauss linear, laplacianSchemes — Gauss linear corrected, interpolationSchemes — vanLeer. В файле fvSolution: solver — smoothSolver, smoother — symGaussSeidel, tolerance — 1e-09, nCorrectors — 2, nNonOrthogonalCorrectors — 1.

4.3 Расчет течения

На рис. 3 показано стационарное решение для поля давления, полученное интерполяцией табличного решения из [9], угол полураствора конуса $\beta=20^\circ$, угол атаки $\alpha=10^\circ$, число Maxa M=3.

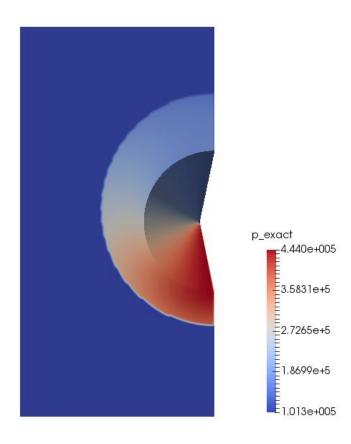


Рис. 3. Поле давления для установившегося течения

Таблицы 2-7 показывают результат расчета в виде аналога нормы L_2 .

$$\sqrt{\sum_{m} \left| y_{m} - y_{m}^{exact} \right|^{2} V_{m}} / \sqrt{\sum_{m} \left| y_{m}^{exact} \right|^{2} V_{m}}$$

где y_m — давление р в ячейке, V_m — объем ячейки для угла полураствора конуса $\beta=10^\circ,\ 15^\circ,\ 20^\circ$ и чисел Маха $M=3,\ 5.$ Минимальные значения выделены жирным шрифтом. Значения y_m^{exact} получаются путем интерполяции табличных значений из [9] в ячейки сетки. Следует отметить, что авторы таблиц [9] указывают на допустимость интерполяции для всех параметров и табличных значений.

Далее мы будем использовать аббревиатуры для солверов: rCF (rhoCentralFoam), pCF (piso Central Foam), sF (sonicFoam), GGDF (QGDFoam).

Отклонение от точного решения, U=3M, β = 10°

Таблица 2

Угол атаки	Давление		
	rCF	pCF	sF
0	0.026174	0.032426	0.046394
5	0.030636	0.037702	0.067424

Таблица 3

Отклонение от точного решения, U=3M, β = 15°

Угол атаки	Давление		
	rCF	pCF	sF
0	0.046490	0.058198	0.091404
5	0.050298	0.060187	0.116237
10	0.060519	0.069622	0.145829

Таблица 4

Отклонение от точного решения, U=3M, $\beta=20^{\circ}$

Угол атаки	Давление		
	rCF	pCF	sF
0	0.060614	0.069128	0.123338
5	0.065373	0.075543	0.149785
10	0.072673	0.081022	0.172609

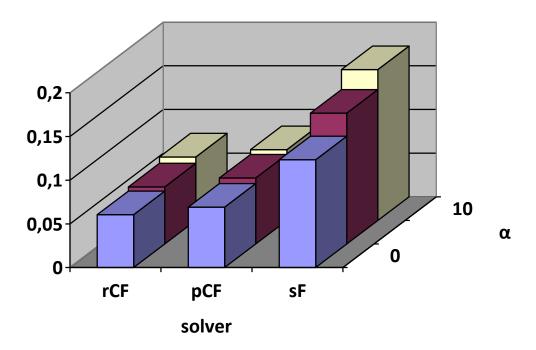
Таблица 5

Отклонение от точного решения, $U=5M,\,\beta=10^\circ$

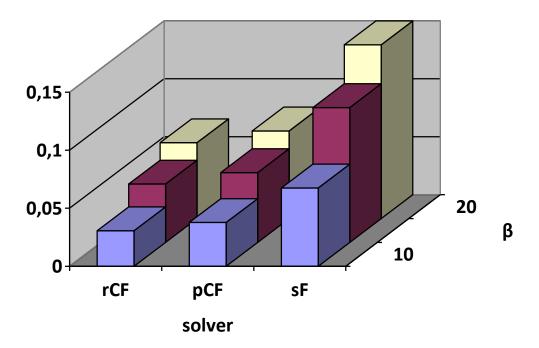
Угол атаки	Давление		
утол атаки	rCF	pCF	sF
0	0.077473	0.092200	0.153549
5	0.092149	0.100937	0.195634

Таблица 6

Отклонение от точного решения, U=5M, $\beta=15^{\circ}$


Vгол отоки	Давление		
Угол атаки	rCF	pCF	sF
0	0.113791	0.119559	0.217991
5	0.125873	0.130514	0.255976
10	0.146496	0.150704	0.294785

Отклонение от точного решения, U=5M, $\beta=20^\circ$


Угол атаки	Давление		
	rCF	pCF	sF
0	0.146504	0.137954	0.265875
5	0.152228	0.151698	0.289013
10	0.169685	0.162005	0.338927

Далее приведем несколько графических представлений таблиц 2-7.

На рис. 4 показана зависимость отклонения от точного решения в аналоге нормы L_2 для давления для угла полураствора конуса $\beta=20^\circ$ и набегающего потока с числом Маха M=3 при изменении угла атаки α и солверов (табл. 4). Можно заметить увеличение отклонения с увеличением угла атаки. Также хорошо видно увеличение отклонения с увеличением числа Маха. Аналогичные соотношения наблюдаются и в других таблицах.

Рис. 4. Изменение отклонения от точного решения для давления в зависимости от солвера и угла атаки для угла полураствора конуса 20° и числа Маха 3

Рис. 5. Изменение отклонения от точного решения для давления в зависимости от солвера и угла полураствора конуса для угла атаки 5° и числа Маха 3

На рис. 5 показана зависимость отклонения от точного решения в аналоге нормы L_2 для давления при угле атаки $\alpha=5^\circ$ и числе Maxa M=3 с изменением выбора солвера и угла полураствора конуса. Здесь с увеличением угла полураствора конуса увеличивается и отклонение от точного решения.

5. Заключение

Результаты показывают, что солвер rhoCentralFoam имеет минимальную ошибку для поля давления. Солвер pisoCentralFoam занимает второе место по точности.

Солвер sonicFoam имеет колебания на фронте ударной волны. Такие колебания усиливаются с увеличением угла атаки и полуугла конуса. Таким образом, величина отклонения от референтного решения для этого солвера максимальна среди всех сравниваемых солверов. Таким образом, можно утверждать, что солверы rhoCentralFoam и pisoCentrlFoam обеспечивают наилучшую точность для данного класса задач и могут быть использованы при построении вычислительной техники для расчета течения для удлиненных тел вращения.

Библиографический список

1. Bondarev A.E., Kuvshinnikov A.E. Comparative study of the accuracy for OpenFOAM solvers. – 2017 Ivannikov ISPRAS Open Conference (ISPRAS), Moscow, pp. 132-136, 2017. doi:10.1109/ISPRAS.2017.00028.

- 2. Bondarev A.E., Kuvshinnikov A.E. Analysis of the accuracy of OpenFOAM solvers for the problem of supersonic flow around a cone. In: Shi Y. et al. (eds) Computational Science ICCS 2018. ICCS 2018. Lecture Notes in Computer Science, vol. 10862. Springer, Cham, 2018. doi:10.1007/978-3-319-93713-7_18.
- 3. Красильщиков А.П., Гурьяшкин Л.П. Экспериментальные исследования тел вращения в гиперзвуковых потоках. М.: ФИЗМАТЛИТ, 2007.
- 4. OpenFOAM Foundation. http://www.openfoam.org. (дата обращения: 01.12.2020)
- 5. Kurganov A., Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations // J. Comput. Phys., vol. 160, pp. 241–282, 2000. doi:10.1006/jcph.2000.6459.
- 6. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows / Christopher J. Greenshields, Henry G. Wellerr, Luca Gasparini, Jason M. Reese // Int. J. Numer. Meth. Fluids. 2010. Vol. 63. no 1. pp. 1–21. doi:10.1002/fld.2069.
- 7. Issa R. Solution of the implicit discretized fluid flow equations by operator splitting // J. Comput. Phys., vol. 62, no. 1, pp. 40–65, 1986. doi:10.1016/0021-9991(86)90099-9.
- 8. Kraposhin M., Bovtrikova A., Strijhak S. Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of Mach numbers // Procedia Computer Science. 2015. Vol. 66. pp. 43–52. doi:10.1016/j.procs.2015.11.007.
- 9. Бабенко К.И., Воскресенский Г.П., Любимов А.Н., Русанов В.В. Пространственное обтекание гладких тел идеальным газом. М.: Наука, 1964. 508 с.
- 10. Карвацкий А.Я., Пулинец И.В., Лазарев Т.В., Педченко А.Ю. Численное моделирование сверхзвукового обтекания клина с применением свободного открытого программного кода OpenFOAM // Космическая наука и технология. 2015. Т. 21. № 2. С.47–52. doi:10.15407/knit2015.02.047.
- 11.Gutierrez L.F., Tamagno J.P., Elaskar S.A. High speed flow simulation using OpenFOAM // Mecanica Computacional, vol. XXXI, Salta, Argentina, pp. 2939–2959, 2012.
- 12.Lorenzon D., Elaskar S.A. Simulacion de flujos supersonicos bidimensionales y axialmente simetricos con OpenFOAM // Revista de la Facultad de Ciencias Exactas, Fisicas y Naturales, vol. 2, no. 2, pp. 65–76, 2015.

Оглавление

1.	Введение	3
	Постановка задачи	
3.	Сравнение солверов	4
	Расчеты и результаты	
	4.1 Генерация сетки, начальные и граничные условия	
	4.2 Выбор параметров солверов для унификации	
	4.3 Расчет течения	
5.	Заключение	10
Би	блиографический список	10