

AV & S-2128

ИПМ им.М.В.Келдыша РАН • Электронная библиотека Препринты ИПМ • Препринт № 112 за 2020 г.

> ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

В.В. Колмычков, О.С. Мажорова

Исследование устойчивости квадратных ячеек в жидкости с коэффициентом теплопроводности, зависящим от вертикальной координаты

Рекомендуемая форма библиографической ссылки: Колмычков В.В., Мажорова О.С. Исследование устойчивости квадратных ячеек в жидкости с коэффициентом теплопроводности, зависящим от вертикальной координаты // Препринты ИПМ им. М.В.Келдыша. 2020. № 112. 14 с. https://doi.org/10.20948/prepr-2020-112 https://library.keldysh.ru/preprint.asp?id=2020-112 Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В. Келдыша Российской академии наук

В.В. Колмычков, О.С. Мажорова

Исследование устойчивости квадратных ячеек в жидкости с коэффициентом теплопроводности, зависящим от вертикальной координаты

Москва — 2020

Колмычков В.В., Мажорова О.С.

Исследование устойчивости квадратных ячеек в жидкости с коэффициентом теплопроводности, зависящим от вертикальной координаты

Работа посвящена численному исследованию конвективных структур, возникающих вблизи порога устойчивости в небуссинесковской жидкости, коэффициент температуропроводности которой зависит от вертикальной координаты. Основное внимание уделяется изучению вопроса существования и устойчивости течения в форме квадратных ячеек при различных значениях числа Прандтля.

Ключевые слова: Конвекция Рэлея–Бенара, небуссинесковская жидкость, конвективная неустойчивость, численное моделирование, устойчивые планформы, валы, шестиугольные ячейки, квадратные ячейки, число Прандтля, переменная теплопроводность.

Viatcheslav Victorovich Kolmychkov, Olga Semenovna Mazhorova Investigation of square cells stability in liquids with height varied thermal conductivity

The paper numerically investigates stable convective structures in non-boussinesq fluid with thermal conductivity variyng with height. The main focus of the paper is an existance and stability of square cells for different values of Prandtl number.

Key words: Rayleigh–Bénard convection, convective stability, non-Boussinesq fluid, numerical simulation, stable planforms, rolls, hexagons, square cells, Prandtl number, non-uniform thermal conductivity

Работа выполнена при поддержке РФФИ (проект 18-01-00436).

1. Введение

Конвективное движение в форме квадратных ячеек при тепловой конвекции в плоском горизонтальном слое жидкости, подогреваемом снизу, наблюдается в случае вязкости, зависящей от температуры [1], [2]; в случае неидеально проводящих горизонтальных границ [3]; при наличии поверхностного натяжения [4] и др. В работе [5] в рамках приближения бесконечно большого числа Прандтля теоретически предсказана возможность существования устойчивых квадратных структур и в случае температуропроводности, зависящей от вертикальной координаты.

Жидкость с температуропроводностью, зависящей от вертикальной координаты, рассматривается в работах [6–9], в которых показано, что устойчивой структурой течения при больших значениях числа Прандля являются шестиугольные ячейки. Устойчивых квадратных структур зафиксировано не было.

В данной работе методом математического моделирования исследуется форма установившегося конвективного движения вблизи порога устойчивости в жидкости с температуропроводностью, зависящей от вертикальной координаты. Особое внимание уделяется поиску устойчивых квадратных структур при различных значениях числа Прандтля. Проводится сравнение формы конвективных течений в жидкостях с различной величиной отклонения от приближения Буссинеска.

2. Постановка задачи

Рассмотрим уравнения Навье-Стокса и уравнение теплопереноса в приближении Обербека–Буссинеска [10], обобщенном на случай жидкости с коэффициентом теплопроводности, зависящим от вертикальной координаты. В безразмерной форме эти уравнения могут быть записаны следующим образом:

$$\partial_t \mathbf{V} + (\mathbf{V} \cdot \nabla) \mathbf{V} = -\nabla p + \Delta \mathbf{V} + \frac{\mathrm{Ra}}{\mathrm{Pr}} T \mathbf{e}_z, \tag{1}$$
$$div \mathbf{V} = (\nabla \cdot \mathbf{V}) = 0,$$

$$\Pr\left[\partial_t T + (\mathbf{V} \cdot \nabla)T\right] = div(\chi grad T).$$
⁽²⁾

Здесь $\partial_{\xi} \equiv \partial/\partial \xi$, t – время, x, y, z – декартовы координаты, $\nabla = (\partial_x, \partial_y, \partial_z)$, $\mathbf{V}(t, x, y, z) = (V_x, V_y, V_z)$ – вектор скорости, p(t, x, y, z) – давление, T(t, x, y, z) – температура, $\mathbf{e}_z = (0, 0, 1)$. Безразмерная температура вводится по формуле $T = (T^d - T^d_{top})/\delta T^d$, T^d – размерная температура, $\delta T^d = T^d_{bot} - T^d_{top}$ – разность температур на верхней и нижней границах в отсутствие движения. Коэффициент тем-

пературопроводности χ^d нормируем на его значение на верхней границе – χ_0^d , тогда безразмерное значение определяется $\chi = \chi^d(z)/\chi_0^d$. В качестве масштаба измерения длины выбран вертикальный размер области H, масштаб времени – $t_{\nu} = H^2/\nu$, давления – $\rho_0 \nu \chi_0^d/H^2$, ν – коэффициент кинематической вязкости.

В уравнения (1)-(2) входят безразмерные параметры: число Прандтля $\Pr = \nu / \chi_0^d$ и число Рэлея $\operatorname{Ra} = \beta g \delta T^d H^3 / (\nu \chi_0^d)$, где β – коэффициент теплового расширения, g – модуль ускорения свободного падения.

Задача решается в прямоугольной области $\Omega = [0, L_x] \times [0, L_y] \times [0, 1]$. Температура нижней границы $T|_{z=0}=1$, верхней — $T|_{z=1}=0$, боковые стенки теплоизолированы. Для скорости на всей границе выполняются условия прилипания: V = 0.

В начальный момент времени t = 0 жидкость находится в состоянии покоя и имеет соответствующее равновесное распределение температуры. В начальное распределение температуры в каждой точке плоскости z = 0.5 (кроме границ) вносится случайное возмущение. Все расчеты выполнены для значений числа Рэлея, близких к критическому.

3. Известные результаты

В работе [5] методом разложения по малому параметру, в качестве которого выступает амплитуда движения (слабо нелинейная неустойчивость), проведено исследование конвективной устойчивости горизонтального слоя жидкости с температуропроводностью, зависящей от вертикальной координаты. Анализ проведен в предположении бесконечного большого значения числа Прандтля и справедлив для произвольной зависимости коэффициента температуропроводности от вертикальной координаты. В работе показано, что двумерные валы всегда неустойчивы и переносят меньше тепла, чем квадратные ячейки. Устойчивыми при различных зависимостях коэффициента температуропроводности от температуры могут быть либо только шестиугольные ячейки, либо шестиугольники и квадраты. В случае устойчивости ячеек двух видов их области устойчивости пересекаются и между течениями наблюдается эффект гистерезиса.

В работах [6–9] было показано, что устойчивой стационарной формой течения при больших значениях числа Прандтля являются шестиугольные ячейки. Квадратных ячеек зафиксировано не было. Это согласуется с результатами [5], поскольку шестиугольники должны присутствовать среди устойчивых течений при любой зависимости температуропроводности от вертикальной координаты, а квадраты могут отсутствовать. Направление циркуляции жидкости в шестиугольных ячейках определяется знаком $\partial \chi / \partial z$. Ячейки, в центре которых жидкость движется вверх, называются up-ячейками. Ячейки с противоположным направлением циркуляции – downячейками.

4. Численный метод

Численное моделирование осуществлялось методом конечных разностей [11], [12]. Использовался полунеявный алгоритм типа "предиктор-корректор" [11]. По времени исходные уравнения аппроксимируются с первым порядком точности, по пространству, на равномерной сетке, — со вторым. Аппроксимация конвективных членов не вносит вклад в баланс кинетической энергии и квадрата температуры [12], [13]. Метод ранее успешно использовался для исследования конвекции Рэлея–Бенара [7–9, 14–17].

Расчеты проводились в области $[0, 20] \times [0, 20] \times [0, 1]$ на сетке $170 \times 170 \times 16$, что обеспечивает разумный компромисс между достаточно точным воспроизведением критических параметров процесса и затратами машинного времени на расчет одного варианта. В области меньшего размера помещается недостаточное число конвективных структур, чтобы судить о структуре течения в сложных переходных зонах. Шаг по времени (τ) варьировался в зависимости от значения числа Прандтля: $\tau = 0.5$ — для больших значений Pr и $\tau = 0.01$ при малых.

5. Результаты расчетов

Рассмотрим линейную зависимость коэффициента температуропроводности от вертикальной координаты: $\chi = 1 + \alpha(1 - z)$, $\alpha > 0$. Поскольку $\partial \chi / \partial z < 0$, в от-сутствие движения формируется выпуклый вверх профиль температуры (рис. 1).

Изучение получаемых в расчетах конвективных структур начнем с больших значений параметра α . Критическое значение числа Рэлея задачи для $\alpha = 20$ составляет Ra_{cr} ≈ 20255 . Задача существенно несимметрична – температуропроводность внизу области в 21 раз выше температуропроводности наверху. Результаты расчетов показывают, что около порога устойчивости при значениях числа Прандтля более 5 единственной устойчивой структурой течения являются шестиугольные ячейки down-типа (рис. 2с). Шестиугольники являются также и подкритическим течением — сохраняют свою устойчивость в некотором диапазоне значений числа Прандтля

Рис. 1. Стационарный профиль температуры для зависимостей теплопроводности от вертикальной координаты вида $\chi = 1 + \alpha(1 - z)$.

(0.1 < Pr < 4) устойчивыми становятся валиковые структуры (рис. 2b). В подкритической области валы затухают и конвекция отсутствует. Дальнейшее уменьшение числа Прандтля (Pr < 0.1) приводит появлению шестиугольных ячеек ир-типа (рис. 2a). При обмене устойчивостью между валами и шестиугольными ячейками наблюдается эффект гистерезиса. Квадратных ячеек вблизи порога устойчивости обнаружено не было. Приведенные данные соответствуют выводам работы [5] – при больших значениях числа Прандтля шестиугольники являются устойчивой формой движения, существование устойчивых квадратных ячеек не является обязательным.

Рис. 2. Температура в плоскости z=0.5, Ra=20300, Ra_{cr} \approx 20255, $\chi=1+20(1-z)$. Светлые участки соответствуют высокой температуре, темные – низкой.

Переход между ир-ячейками и валами при малых значениях числа Прандтля происходит в узком диапазоне параметров и здесь приводиться не будет. Рассмотрим подробнее, как осуществляется перестройка течения от валов к downячейкам по мере увеличения значения числа Прандтля. При *Ra* = 20350 переход наблюдается в диапазоне значений числа Прандтля 2 < Pr < 4. Следует отметить, что он зависит от выбранной величины надкритичности. Около Pr = 2 в структуре течения вблизи границ появляются дефекты, напоминающие узлы или ячейки (рис. 3а). С увеличением значения числа Прандтля они превращаются в квадраты (рис. 3b). Однако дальнейшее увеличение значения числа Прандтля делает предпочтительными уже шестиугольные структуры, квадратные ячейки так и не заполняют всю конвективную область (рис. 3с). Такая динамика соответствует приведенным теоретическим данным работы [5] – валы теряют свою устойчивость относительно квадратных ячеек. При бесконечно большом значении числа Прандтля квадратные ячейки обеспечивают более эффективный теплоперенос, и по мере увеличения значения числа Прандтля это начинает проявляться. Сами квадраты тоже оказываются неустойчивы относительно шестиугольных ячеек.

Рис. 3. Температура в плоскости z=0.5, Ra=20300, Ra_{cr} \approx 20255, $\chi=1+20(1-z)$.

Перейдем теперь к значению параметра $\alpha = 10$. В этом случае критическое значение числа Рэлея задачи составляет Ra_{cr} ≈ 10600 . Здесь, как и при $\alpha = 20$, при больших значениях числа Прандтля (Pr > 4) единственной устойчивой структурой течения являются шестиугольные ячейки down-типа (рис. 4с). В среднем диапазоне значений числа Прандтля устойчивостью обладают валиковые структуры (рис. 4b). При малых значениях числа Прандтля (Pr < 0.25) наблюдаются шестиугольные ячейки ир-типа (рис. 4а).

В переходной зоне между валами и down-ячейками для $\alpha = 10$ снова наблюдаются квадраты, правда уже в центре области (рис. 5a,b). Однако они неустой-

(a) $\Pr = 0.25, t = 185t_{\nu}$ (b) $\Pr = 0.5, t = 190t_{\nu}$ (c) $\Pr = 10, t = 500t_{\nu}$ Рис. 4. Температура в плоскости $z=0.5, Ra=10650, Ra_{cr}\approx 10600, \chi=1+10(1-z).$

чивы и с течением времени превращаются либо в валы, либо в шестиугольники (рис. 5с). При этом эволюция течения идет крайне медленно, даже через 500 конвективных времен в структуре течения еще видны следы квадратных структур.

(a) $t = 100t_{\nu}$ (b) $t = 300t_{\nu}$ (c) $t = 500t_{\nu}$

Рис. 5. Температура в плоскости z=0.5, Pr=2, Ra=10650, $\chi=1+10(1-z)$.

Приведенная выше картина устойчивости, где вблизи критического значения числа Рэлея при малых значениях числа Прандтля наблюдаются шестиугольные ячейки, сохраняется вплоть до $\alpha = 5$ (рис. 6а). Очевидно, что с уменьшением величины небуссинесковскости преимущество шестиугольных ячеек перед валами должно становиться меньше, и диапазон, в котором наблюдаются валиковые структуры, постепенно расширяется (рис. 6b). При этом растет и время, необходимое для отбора предпочтительного течения. В таких условиях диапазон значений числа Прандтля, в котором осуществляется обмен устойчивостью между валами и down-ячейками, увеличивается, а сами смешанные течения сохраняют свою структуру долгое время. Так, на рисунке 6с квадраты наблюдаются при Pr = 6 и сохраняют свою структуру в течение 2000 конвективных времен.

(a) $\Pr = 0.025, t = 185t_{\nu}$ (b) $\Pr = 0.05, t = 380t_{\nu}$ (c) $\Pr = 6, t = 2024t_{\nu}$ Рис. 6. Температура в плоскости $z=0.5, \operatorname{Ra}=6080, \operatorname{Ra}_{cr}\approx6075, \chi=1+5(1-z).$

Дальнейшее уменьшение величины α приводит к исчезновению устойчивых шестиугольных ячеек при малых значениях числа Прандтля, вместо них наблюдаются валиковые структуры. Рассмотрим $\alpha = 2$. Внутри области наблюдается трехкратный перепад температуропроводности, а критическое число составляет Ra_{cr} \approx 3450. При малых значениях числа Прандтля шестиугольных ячеек получить не удается, устойчивой структурой течения являются двумерные валы (рис. 7а). В отличие от α =20 здесь в широком диапазоне значений числа Прандтля — от 0.1 до 6 в структуре наблюдаемых течений проявляются квадратные ячейки (рис. 7b,c). Для Pr=6 квадратные ячейки сохраняют свою устойчивость в течение длительного времени (2000 конвективных времен). При больших значениях числа Прандтля числа Прандтля числа Прандтля ля устойчивыми по-прежнему являются шестиугольные down-ячейки (рис. 7d).

(a) $Pr=10^{-3}$, $t=30t_{\nu}$ (b) Pr=0.1, $t=190t_{\nu}$ (c) Pr=6, $t=2024t_{\nu}$ (d) Pr=10, $t=600t_{\nu}$ Рис. 7. Температура в плоскости z=0.5, Ra=3470, $Ra_{cr}\approx3450$, $\chi=1+2(1-z)$.

Аналогичные структуры конвективных движений наблюдаются и в случае более сложных зависимостей коэффициента температуропроводности от температуры. Рассмотрим $\chi = (1 + 99z^5)^{-1}$. Профиль температуры в отсутствие движения здесь снова выпуклый вверх, отношение температуропроводностей вверху и внизу области – 100. Поскольку отклонение от приближения Буссинеска здесь яв-

ляется достаточно сильным, при малых значениях числа Прандтля наблюдаются шестиугольные ячейки up-типа (рис. 8a). С увеличением значения числа Прандтля течение превращается в двумерные валы (рис. 8b), которые затем сменяют квадраты (рис. 8c). Квадраты неустойчивы и медленно превращаются в валы. При больших значениях числа Прандтля течение имеет форму шестиугольных ячеек down-типа (рис. 8d).

(a) $Pr=0.5, t=77t_{\nu}$ (b) $Pr=1, t=85t_{\nu}$ (c) $Pr=2, t=82t_{\nu}$ (d) $Pr=100, t=650t_{\nu}$

Рис. 8. Температура в плоскости z=0.5, Ra=32500, Ra_{cr} \approx 32000, $\chi=(1+99z^5)^{-1}$.

Приведенные выше результаты показывают, что более сильные отклонения от приближения Буссинеска способствуют развитию шестиугольных ячеек, которые подавляют движения в форме квадратов. Непосредственно вблизи порога устойчивости квадраты могут наблюдаться и быть устойчивыми только при малых значениях небуссинесковскости в среднем диапазоне значений числа Прандтля, там где шестиугольные ячейки теряют свою устойчивость в пользу двумерных валов. Как и двумерные валы, квадратные ячейки не заполняют всю область, а наблюдаются в основном в центре, что накладывает ограничение на минимальный размер области, в котором можно наблюдать подобные структуры. К примеру, для рассматриваемых задач область размера $[0, 15] \times [0, 15] \times [0, 1]$ оказывается достаточной, чтобы наблюдать шестиугольные структуры обоих типов и двумерные валы, и не достаточной для изучения квадратных структур. Перечисленные результаты справедливы как для линейной зависимости коэффициента температуропроводности от вертикальной координаты, так и для более сложных.

6. Заключение

В работе рассмотрена конвективная устойчивость жидкости с температуропроводностью, зависящей от вертикальной координаты. На примере линейной зависимости $\chi = 1 + \alpha(1 - z), \alpha > 0$ показано, что около критического значения числа Рэлея при сильном отклонении от приближения Буссинеска (от постоянной температуропроводности) устойчивая структура течения представляет собой шестиугольные ячейки up-типа для малых значений числа Прандтля, двумерные валы для средних значений и шестиугольные ячейки down-типа для больших. Квадратные ячейки наблюдаются только в узком диапазоне значений числа Прандтля в зоне перехода от валов к down-ячейкам и являются неустойчивыми.

С уменьшением величины небуссинесковскости преимущество шестиугольных ячеек над другими конвективными структурами вблизи порога устойчивости становится не таким явным. Это выражается в исчезновении устойчивых шестиугольных ячеек up-типа при малых значениях числа Прандтля, их сменяют двумерные валы. В то же время зона перехода от двумерных валов к down-ячейкам становится шире, в этой зоне наблюдаются устойчивые квадратные структуры, которые сохраняют свою устойчивость в течение длительного времени.

Перечисленные результаты справедливы и в случае более сложных зависимостей коэффициента температуропроводности от вертикальной координаты.

Подобное поведение конвективных структур объясняется следующими соображениями: с увеличением значения числа Прандтля валы теряют свою устойчивость относительно квадратных ячеек, поскольку при бесконечном значении числа Прандтля квадратные ячейки обеспечивают более эффективный теплоперенос. В случае большой небуссинесковскости квадраты неустойчивы относительно шестиугольных ячеек. В то время как при малой небуссинесковскости преимущество шестиугольных ячеек над другими конвективными структурами выражено не так сильно и существует диапазон значений числа Прандтля, в котором квадраты оказываются устойчивыми в течение длительного времени.

Список литературы

- 1. Busse F.H., Frick H. Square-pattern convection in fluids with strongly temperaturedependent viscosity // J. Fluid Mech. 1985. Vol. 150. Pp. 451–465.
- Jenkins D.R. Rolls versus squares in thermal convection of fluids with temperaturedependent viscosity // J. Fluid Mech. 1987. Vol. 178. Pp. 491–506.
- 3. Jenkins D.R., Proctor M.R.E. The transition from roll to square-cell solutions in Rayleigh-Benard convection // J. Fluid Mech. 1984. Vol. 139. Pp. 461–471.
- Schatz M.F., VanHook S.J., McCormick W.D. et al. Time-independent square patterns in surface-tension-driven Bénard convection // Physics of Fluids. 1999. Vol. 11. Pp. 2577–2582.
- 5. Riahi N. Nonlinear convection with variable coefficient of thermal expansion // Acta Mechanica. 1985. Vol. 60. Pp. 143–155.
- Колмычков В.В., Мажорова О.С. Исследование конвективных структур в небуссинесковской жидкости вблизи порога устойчивости. Часть первая анализ упрощенных моделей // Препринты ИПМ им. М.В.Келдыша. 2018. no. 64. P. 30. doi: 10.20948/prepr-2018-64.
- Колмычков В.В., Мажорова О.С. Исследование конвективных структур в небуссинесковской жидкости вблизи порога устойчивости. Часть вторая вычислительный эксперимент // Препринты ИПМ им. М.В.Келдыша. 2018. no. 210. P. 20. doi: 10.20948/prepr-2018-210.
- Колмычков В.В., Мажорова О.С. Исследование конвективных структур вблизи порога устойчивости в жидкостях с переменной теплопроводностью // Препринты ИПМ им. М.В.Келдыша. 2019. по. 68. Р. 16. doi:10.20948/prepr-2019-68.
- Колмычков В.В., Мажорова О.С. Механизм отбора предпочтительной формы конвективных структур вблизи порога устойчивости в жидкостях с переменной теплопроводностью // Препринты ИПМ им. М.В.Келдыша. 2019. no. 126. P. 15. doi:10.20948/prepr-2019-126.
- Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972. 392 стр.

- Белоцерковский О.М. Численное моделирование в механике сплошных сред. М.: ФизМатЛит, 1994.
- Колмычков В.В., Мажорова О.С., Попов Ю.П. Анализ алгоритмов решения трехмерных уравнений Навье-Стокса в естественных переменных. 2006. Vol. 42, no. 7. Pp. 932–942.
- Arakawa A. Computational design for long-term numerical integration of the equation of fluid motion: Two dimensional incompressible flow // J. Comput. Phys. 1966. Vol. 1. Pp. 119–143.
- Kolmychkov Viatcheslav V., Mazhorova Olga S., Popov Yurii P. et al. Identification of the convective instability in a multi-component solution by 3D simulations // Comptes Rendus Mécanique. 2005. Vol. 333. Pp. 739–745.
- Колмычков В.В., Мажорова О.С., Попов Ю.П. Математическое моделрование конвективного массопереноса в пространственно трехмерном случае. Часть 1. Подкритическая конвекция // Препринты ИПМ им. М.В.Келдыша. 2003. no. 92. P. 28.
- 16. Kolmychkov V. V., Mazhorova O. S., Shcheritsa O. V. Numerical study of convection near the stability threshold in a square box with internal heat generation // Physics Letters A. 2013. Vol. 377. Pp. 2111–2117.
- Kolmychkov V. V., Shcheritsa O. V., Mazhorova O. S. Thermal convection in a cylinder and the problem of planform selection in an internally heated fluid layer // Physical Review E. 2016. Vol. 94.

Содержание

1.	Введение	3
2.	Постановка задачи	3
3.	Известные результаты	4
4.	Численный метод	5
5.	Результаты расчетов	5
6.	Заключение	10
Список литературы		12