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Monauna Caxu X. C., Tkauee C.C.

MeToauka KaJUOPOBKH CTEHAA JIsi OTPA0OOTKH aJITOPUTMOB ONpeaeeHUus
OPHEHTALIMHU 0 BUE0U300PAKEHUIO

Pabora mocsiena 3amaue OMpeeNieHUs] OPUEHTAIMM OOBEKTa C MOMOIIBIO
00paboTku m3o0pakeHuid. [ ee permeHus peann3oBaH IBYXATamHbIA moaxos. Ha
MIEPBOM 3TaIlle ONpeNessseTCs] MaTpHIla MMOBOPOTA YepPe3 MOJIEh U3MEPEHUS, KOTOpast
aJIalITHPOBaHAa JIJIsl MCIIOJIb30BAaHMUS KBaTePHUOHOB. Ha BTOpOM 3Tare BBIMOTHSETCS
KOPPEKIMsl KBATEPHHUOHA OPUEHTAIIMH C TTIOMOIIBIO METO/1a HAUMEHBIIINX KBaIPATOB.

PGBYJ'IBTaTBI OKCIICPUMCHTAJIbHBIX I/ICCJIGIIOBaHI/Iﬁ IMOKa3aJiv, 4TO UCIOJb30BaHNEC
MOACIN H3MCPCHHA KaMCpPbl M HUTCPATHBHOI'O IIpOHCCCAa ITIO3BOJIACT OIIPCACINTD
KBATCPHUOH OPUCHTAIIHUH C XOpOIHGP'I TOYHOCTBIO.

Knwuesvie cnosa:  omnpeneneHue  yrioBoro  JIBIKEHHS,  oOpaboTka
BUJI€OU300paKEHUS

Molina Saqui J. C., Tkachev S.

Testbench calibration technique for testing attitude determination
algorithms by video processing

The paper is devoted to the problem of estimating the orientation of an object
using image processing. A two-stage approach has been implemented to solve this
problem. At the first stage the rotation matrix is determined using a measurement
model adapted for using quaternions. At the second stage the orientation quaternion is
corrected using the least squares method.

The results of experimental studies have shown that using a camera
measurement model and an iterative process it is possible to determine the orientation
quaternion with good accuracy.

Key words: angular motion determination, image processing



Introduction

Determination of angular motion is of great importance because it allows to
know and predict the attitude of the bodies with respect to a reference system, such
information is vital for missions where maneuvers and interactions of two or more
bodies are performed.

Studies on objects attitude and angular velocity estimation have been performed
using different sensors such as photoelectric encoders, tachometers, inertial sensors,
and even laser. However, their implementation can be expensive. The use of digital
Images as low-cost sources of information for evaluating the angular motion is
actively used in the field of robotics, control system, augmented reality, and are also
widely used in the field of satellite systems.

Over the last four decades, a variety studies have been done on measuring
motion parameters of objects using cameras, where a considerable importance had
the development of methods for camera calibration, i.e. the determination of internal
parameters of the camera. In [4-7] the calibration methods with analytical solutions
are presented, where in addition to determine internal parameters of the camera, the
3-D object attitude in space are determined as a part of the calibration process. R.
Tsai [6] used the Euler angles, while Z. Zhang [5] used Rodrigues' rotation formula.

Researches have been proposed to investigate the measurement of object pose
estimation. M. Dhome [8] proposed method to find the analytical solutions to the
problem of the determination of the 3-D object attitude in space from a single
perspective image. H. Kim [9] proposed a simple and fast stereo matching algorithm
for real-time robotic applications using 3D information of vertexes on the outline of
an object in image plane. Z. Zhong [10] presents a feature point pair based technique
for object pose estimation and 3D structure recovery from a single view, where it is
defined strategies for small rotational and large rotational motion, X. Zhang [11]
presents algorithms for recovering the camera pose and the 3D-to-2D line
correspondences simultaneously.

Determination of angular velocity by image processing is furthermore studied.
Y. Zhang [14] by means blurred images processing proposed the estimation of
motion parameters by measuring and comparing global geometric properties. S.
Wang [13] proposed parameter measurement of rotation through analyzing the
information of visual rotation motion blur based on a single blurred image. By using
event cameras, which have independent pixels that respond asynchronously to
brightness changes, G. Gallego and D. Scaramuzza [12] proposed algorithm to
estimate the angular velocity of the camera by analyzing the spatio-temporal
coordinates of the brightness change.

Several years ago, it is increased the interest in parameters movement estimation
by image processing for space applications. A. Boguslavsky [17] presented a
software package that by means of video signal received from the TV-camera,
mounted on the spacecraft board, allows the automatic visual monitoring of a
spacecraft "Progress" docking to International Space Station. D. Ivanov [18],
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proposed a satellite relative position and orientation determination algorithm by
performing image processing of the sunlit spacecraft. This algorithm was used to
determine the relative movement of the Chibis-M microsatellite developed by IKI
RAS.

M. Koptev [19] proposed a method for the translational and rotational motion
determination of mock-ups suspended on an aerodynamic testbed. The algorithm was
based on the detection of installed special marks on model’s body to evaluate the
location of model’s center of mass, angular position and angular velocity in the
coordinate system associated with the aerodynamic testbed.

The difference between the determination algorithm developed and the one
described above is that it does not require the installation of an additional special
objective or photodiodes on the satellite to shoot; it is enough to know the geometry
of the object being shot. The algorithm does not require the transfer of any data from
the satellite being taken, therefore a piece of space debris can act as the second
device. So, the algorithm is suitable for the tasks of removing space debris from orbit:
the satellite companion flies towards the debris, determines its movement, captures it
and takes it to the dense atmosphere.

Most of researches on angular motion parameters estimation mentioned above
are focused on parameter 3-D object attitude determination or measurement angular
velocity, but not both, if 3-D object attitude determination and angular velocity are
considered to be estimated at the same time, usually it is considered to add one more
sensor in addition to camera.

While in [5] and [6] used Rodrigues' rotation formula and the Euler angles
respectively, the purpose of this work is the estimation of the 3-D object attitude by
using quaternions, and in addition the angular velocity estimation at the same time by
means of a conventional low-cost camera without any additional sensor. The section
1 elaborates the problem statement of this research, and it is explained the importance
of measurement model determination, which is the mathematical model for the
camera. In the Section 2 it is explained step by step the mathematical expression for
the measurement model and its gradient. The linear measurement model derived in
the Section 3 allows to determine some parameters of the measurement model by
linear methods. Due to the fact that the measurement model h is nonlinear and
depends on unknown parameters of the camera, a calibration process is needed to be
performed. In the Section 4 the algorithm for calibration is explained and applied for
3-D object attitude determination.

1. Problem statement
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The problem of the angular motion determination by the image processing is
considered. The source of measurements is the camera which captures the object’s
movement by taking photographs at a certain frequency (see Figure 1), These pictures
are processed to estimate the angular motion of the object using the following
information:

e X;(x;,v; z;): coordinates of the object points relative to the body-fixed frame
OXYZ.

e X;'(x;/,y;"): coordinates of the same points X;, which are visualized and
located in the image coordinate system (image).

Xi'(xi, yi)

Camera coordinate
Image system ~

coordinate b N
system

Figure 1. Diagram of the problem statement

The basic structure of a camera is shown in the Figure 2, where two main
components are involved:

e Lens: has the function of gathering and focus the light reflected from an object
or scene. As the reflected light rays enter the camera lens, they are directed to
the image sensor.

e Image sensor: it is a rectangular plane where the points are projected to,
representing in that way the image of the object.

The image sensor is located parallel to the lens in the focal plane of the lens. The
distance between the lens and the focal plane is called focal length f.

The locations of specific points of an object in an image varies according to the
rotation matrix R, and its translation vector T, with respect to the camera. Thus, the

Image sensor

o ~ Fiaure 2. Basic structure of acamera
estimation of the rigid body rotation matrix is possible when function h(R, T,), called
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measurement model, that performs the projection of point X; into the Image
coordinate system is found. In addition, an instantaneous angular velocity can be
calculated from two consecutive rotation matrices, thus, the first stage on this work is
focused on the rotation matrix determination.

The Cartesian coordinates systems used in this work are shown in the Figure 3:

e 0XYZ — Body-fixed Frame (BF) is placed in any location on the object in such
a way that the points X; are known with respect to BF.

o 0.X.Y.Z.— Camera Coordinate System (CCS) is based on the pinhole model,
where its origin O, is located at camera center (center of the lens), 0.Z, is
defined by the line from the camera center perpendicular to the image sensor,
0.X . is parallel to the horizontal side of the image sensor, 0.Y,is parallel to the
vertical side of the image sensor.

® OiyngUV —Image Coordinate System (ICS), also known as the Image plane, is
a space of 2D pixel coordinates, where each 2D pixel coordinate is the result of
the conversion of points which are located on the image sensor plane in CCS,
to 2D coordinate pixel. Its origin Oy, is located on the top-left corner of the
image, O;,,4U extends from left to right and 0;,,,,V extends downward.

The following notation of points in the different coordinate systems is used:

o X;(x;,y; z;) — i-th point with respect to BF.

o X, (xcp Ve Ze;) — i-th point with respect to CCS.

e X;(x;,y])— i-th point with respect to ICS.0XYZ — Body-fixed Frame (BF).

With regard to X;, it is important to notice this point remain fixed with respect to
the BF.

Oimg
Camera Coordinate U IRYS ImageSCO()rdmate
ystem
System
. f = focal

v Z.

Figure 3. Pinhole camera model

Most of the elements mentioned in this section are considered for measurement
model h(R,T,.) definition because of its importance and relevance in the success of
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this work, for that reason is given in details the process to define the measurement
model.

2. Measurement model

In order to define the measurement model h which is a function that performs
the projection of point X; into the ICS from BF, it is required to consider the
following:
transformation from BF to CCS,
projection of the points from CCS into the sensor plane,
lens distortion,
transformation from sensor plane to ICS

which are going to be explained in details in this section.

2.1. Transformation from BF to CCS

Let X; = [x;,V;,2;]" be any point in the BF, where its transformation to the CCS
is defined as follows:

xCi X
X, = yci] =R|yi|+T,, 2.1)
ZCi Z;

where the rotation matrix R can be expressed as

1 T2 7'13]

R =|T21 T2 123 (2.2)

31 T3 T31

and T is translation vector with respect to CCS:
Tc = [txc tyc tzc]T. (23)
From equations (2.1), (2.2) and (2.3) the next expression

T11X; T 112Yi T 113Z; + Uy
T21X; + 122); + 123Z; + Ty
T31X; + T32); + 133Z; + Ty

ycl

performs the transition from points from BF to the CCS.

2.2.Projection of the points from CCS into the image plane

The point X, represents the projection of the points from CCS into the image
plane, and it is expressed as



X . [xCPi] . xci/Zci
cp: — - s
Pi pri ycl'/Zci
where
x — T11Xi+712Yi+713Zj+lxc (2 4)
p; 131X{+7132Yi+733Zi iz '
and
T X7 itTa3Zitty (2.5)
pri T31Xi+732Yi+733Zi+tzc '

It is important to mention that X, is still located in the CCS.

2.3.Lens distortion

It is necessary to take into account that the lens distortion affects the image
during the projection of the point X. into the sensor plane. The usual types of
distortion are radial and tangential ones. Radial distortion can be defined as a
function which depends on the distance from the Principal point, this point is formed
by the intersection point between the 0.Z.-axis and the sensor plane. Tangential
distortion is caused by an unperfected parallel alignment between the lens and the
Image sensor [3]. These distortions can be defined by the following expression

¥ xcpi(l + klri2 + kzri4 + k3ri6) + Zplxcpiycpi + b2 (Tiz + zxcpiz)
d; = ’
' ycpi(l '|'\klri2 + kzri4 + k3riJ6) + apzxcpiYCpi + P1 (riz + Zycp;)

- - - Y
Radial distortion Tangential distortion

2 and ky, k,, k3,1, p, are the distortion

T
where Xy, = [xq,¥4,] - 1% = xcpi2 + Yep,
coefficients, Xy, is the point coordinates when the lens distortion is taken into

account. In case when there is no lens distortion (ideal lens), X, and X cp; are equal.

2.4. Transformation from sensor plane to ICS

Due to the fact that the ICS and sensor plane are parallel, and both located at the
same plane, this transformation is based on scaling and translation of the points
located in the sensor plane as follows:

(Xa; +$Ya)f + Uo
Pi Yafy +vo ’ (2.6)
where:
e P = (uy,vy): Principal point expressed in pixels with respect to ICS.
o f, = a,f :focal length axis-x (pixel).
e f, = a,f :focal length axis-y (pixel).
* a,,a,: number of pixels per unit distance.
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e s: skew coefficient, which usually is equal to zero.
o Xpi: mapped point in the ICS from the BF.

e X;: point in the BF.
The expression (2.6) can be rewritten as follows:

Xy .
Xpi = [yzz] = hXi(fonyuOlvo'S' kl» kZ'kBJ p1, pz;R; Tc)v (27)
where hy, is called measurement model, which performs the projection of a point X;
into the ICS from the BF. However, taking into account that the parameters
faor fys U0, Vo, S, K1, ko, k3,01, 02 are fixed values and specific for each camera, the
expression (2.7) can be simplified to hy,(R,T.) once those parameters are
determined.

2.5. Measurement model based on Quaternions

Due to the fact that the rotation matrix has 9 scalar elements, it is convenient to
express the rotation matrix with less scalar elements during optimization processes.
While in [5] and [6] the rotation matrix is expressed using Rodrigues' rotation
formula and the Euler angles respectively, in this work the rotation matrix is
expressed by means of quaternions.

Taking into account basic quaternion theory, let the multiplication of
quaternions Q = [qo, 91, 92, q3]7and P = [py, p1, P2, p3]T be defined as follow:

. Poqo — P4
P Q_[PO‘I+QOP+Px‘I’

where q = [q4, 95, 93]" and p = [py,p,, p3]T are vector parts of the quaternions Q
and P respectively. The previous equation also can be rewritten in a matrix form:

_ [po -p’ ] o] _ [qo —q" ] Po
PoQ= [ _ 2.8
¢ P Dpolz + [plk [q] q qols —[qlx [p] (28)
The rotation of points by means of quaternions is defined as follows:
01 _ 01 ~
[XC] =Ao [X] o A, (2.9)

where X = [x,y,z]Tis a tri-dimensional point, and A = [14,1;,1,,43]7 is an unit
quaternion, which modulus |A| is defined as follows:

|A| = \/).02 +/112 +AZZ +A32 = 1

and the conjugated of A is represented by
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=[]

From the equations (2.9) and (2.8) is obtained the next matrix form for rotation

k=10 renl ()

where R(A) represents the rotation matrix as a function of the quaternion A.
However, due to the fact that A is a unit quaternion, the rotation matrix R can be
expressed as a function of the vector part A = [1,1,,15]7 of the A as follows:

1 - 2().22 + /132) 2().1).2 - 2.02.3) 2(/11/13 + /10/12)
R =| 202, + 202A3)  1—=2(A° +245°)  2(A345 — Aody) |- (2.10)
20445 — Aody)  2(AaAs + A2 1—2(2° +4,%)

Thus, the equation (2.7) can be rewritten as follows:

Xp
Xp = || = b oo 0, S, e Ko sy ppa, AT, @211)

l

The measurement model based on quaternion is obtained in the equation (2.11),
which is important to determine its gradient for the optimization process.

2.6. Measurement model gradient

Due to the fact that measurement model based on quaternions in the equation
(2.11) is a composed function of several transformations, which involves vector and
matrices, it is convenient to determine the gradient by means of matrix calculus. Let
the measurement model be rewritten as follow:

Xp
X, = [ ‘] hy,(F,C,S,Kp, A, T,), (2.12)

where F=[fy fy], C=[uo Vo], and Kp=[k; k, pi D> k3], and let the
measurement model gradient be defined as follows:

. [ahX th. Ohy. Ohy. (2 13)

i i ahXi ahxi]
ac oS 0Kp 04 oT. I’

where dhy, /OF, dhy, /0C, dhy /S, and dhy /0K are defined in a matrix form:

axpi 0
ohx; _ |7oF | _ |¥ai T SVa;

OF



6xpl,
Ohx; _ | ac | _ [1
ac aypl- - 0
oc
axpi
ahxi: 9s — [ypifx]
ds aYpi
L Os

dhx,

9Kp

2
2 2 2 2 2
Xep;(Xep,” + Yep,”) xCpi(xCpi +yCPi) 2Xa;Ya; Yep;” t 3Xcp,

3
2 2 2
xCPi (xCPi t ycPi )

2 3
2 2 2 2
Yep;Xep,” + Vep,”) ycpl.(xcpi + Yep, ) Xep,> +3Vep,> 2%a;Va, yq:,i(xmi2 +ycpl_2)

With regard to dhy /04 and Ohy, /0T these values have remarkably complicated
expressions due to the fact that the measurement model in the equation (2.11) is a

composed function of several transformations.
As the rotation matrix R is a function of A, see equation (2.10), the derivative

dhy /04 is

Ohy; _ Ohx; OR(1) (2.15)
aA orR o1’ '
%
Ohx; _ | ar
oR aYpi’
OR

where 6yp,/6R and axpl,/aR are

o(ri?) a(TL“)

—i= fy( s Z;p + Yep, [kl + k2 + k320 )] (szycpi +

) 22 (2t + ) 22)

a(rl a(rl4)

pl =[x ( Ti a;pl T X Xep; [kl + k2——+ k3 20° )] (2p1YCp
6p2Xcp . )L + (2P1xcp + ZpZpr ) o ) + sf, ( s a;;p‘ +
Yep, [K1752 + k2 a(“ + k35! )] (szycpi + 2p1xcpi)% +

(szxcp + 6p1ycp )aZCRp )’

axcp

a(r;
sz[xcpi Vep,] =i -

OR
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0(r:%) 0(r?) ?
o = 3 TG = 6 (xep P e ) Pery e

The expression for dR /A is

0 —42, —42;
20, — 223A JAg 2 — 24505 /Ag  2Ag — 2A3ds /Ay
205 + 20,0, [y =24 + ApAy/Ag 214 + 22505/ 2
20 + 24 fhg 221 + 24505/ 0 =22 + 20505/ 2¢
g—i = —4), 0 —42,
200 — 2A A JAg 23 — 20,/ A 22, — 22405/ A
205 — 20,01 /Ao 2o — 2205/ he 24 — 20,05/ 2
200 + 2040 [y 225+ 20,25 /hg 205 + 22405/ 2
—42, —42, 0 ]

The derivative dhy, /0T is

axpi
ahXi OTC
7= o | (2.16)
aT,
Xcp; a(ri®) a(ry) 6(r 6) Oxcp,
fx( T —+ cp,[kl T + k2 aTlc + k3—= ] (Zplycp +6p2xcpi)—aTc‘+
aye Yep, ar?) ™) A(ri®)
(2p1%cp, + 202Yep, ) o )+ st (Dr, CETHY [k1 + k27 4 13 aTc]+

(2P23’cpl- + zplxcpi)aTcl + (zpzxcpl- + 6p1ycpl-) a;];i )’

a(ri®) a(r*)
T, + k2 T,

Devi 1, o, |1 + k32 (”6)] + (2P2yep, + 2p1xcpi)zx7c”ci +

aTC =fy ( Ti aT,
(szxcpi + 6p1ycpi)aachii)a

a(ri%) 0Xcp;
90 _ orXep. Ve
oT, [Fer; pil 5 T, '’
a(ri*) 2 0(ri%) 2 2 0Xcp
—1 7 = b—e— 2 =4 | x Xep: Vep
T, 2 oT, it Vep, [Feps il oT,
ar®) 4a(n) 2 2\ 9Xcp
= 371; =6(x Xep;  Vep;
oT, oT, cPi +pri [Fer; pi oT,
6xcpi 1 0 — Xc;
achi | 9T | _ | Zci Zc;?
oT.  |9Yep;| 0 —~— el
oT. Zcj Zci

It is important to mention that the measurement model gradient is obtained for any
point X; located in BF and projected to ICS. And as a result, it is obtained a 2 X 16
matrix for each point X; , which is taken into account in the optimization process.
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3. Linearization of the measurement model

The linearization of the measurement model allows to solve the nonlinear
calibration problem for cameras by linear method, in which the nonlinear radial and
tangential distortion components are ignored.

The expressions (2.4) and (2.5) are nonlinear functions, which perform the
projection to the sensor plane, and can be linearized by means of Homogeneous
coordinates provided that the vector X, and Xep, are expressed homogeneous vectors

[1], obtaining the equation (3.1) as a linear expression, where the symbol ~ means
that the two homogeneous vectors are not equal, but they have the same direction.

Xepi|  [%eif 0 0 0 ;Cl
Yep; [ ~ ycl [0 f oo ol 3.1)
Zep; 0 0 1 olf

With regard to the effect of the lens distortion, it is convenient to consider it to
be equal to zero during the linearization process [2]. Therefore, considering this
particular case it is possible to obtain a linear expression, see equation (3.2), from the
nonlinear measurement model (2.6) by means of the homogeneous coordinates which
Is usually done in order to determine initial values of internal and external parameter.

R T \y;
[01x3 1] Z (32)

] [ 00 0
H[ vo][Ofoo
00 1 0 1

In the equation (3.2), i, ¥, w are homogeneous coordinates for the points in the
ICS, and can be expressed as follows:

Xi

i Xi
[ﬁ ~[Hazal [ 3] (3.3)
w 1

where matrix H is the transition matrix, or linear measurement model. The BF is
chosen in such a way that the points X; are located on the XY-plane, in consequence,
the component z; is zero, it means that the equation (3.3) can be reduced to equation

(3.4).
a
i
a8

Due to the fact that the vectors [ﬁi,ﬁi,vT/i]T and H[x;,v;,1]7 have the same
direction, their cross product is zero and based on the Direct Linear Transformation
(DLT) algorithm [1] the equation is

xl Xi
)P o4
1 1
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ﬁi X 0

Vi | xH Yi] = 10|,

w; 1 0
of  —w,xI' XTI
e N (3.5)
WiXi O _ul’Xi O

where L = [a; a, a; a4 as ag ag ao]’ and X; = [x; y; 1]7.

As it can be seen, the equation (3.5) has the form of a homogeneous system,
where L can be determined by the Single Values Decomposition (SVD). This DLT
algorithm is widely used to calculate the transition matrix H where is needed a set of
four points as minimum. However, because matrix H is a projective transformation, it
has a non-linear nature, therefore, an iterative method can be applied in order to
optimize the components of the matrix H by means of reduction of the error
projection [2]. Thus, it is necessary to work in inhomogeneous coordinates.

Let the matrix H already be determined by means of DLT, then

fi a1 az a3 xi xi
)71'] = [a4 as a6] [}’i] =H [}’i], (3.6)
@; a, ag dao|l1 1

where (X;,¥;, @;) is the homogeneous coordinate representation of a point (u;, v;)
located in the ICS, then the projective transformation in the equation (3.6) can be
written in inhomogeneous form as

_ X _ aqxijtazyitas
Uy = — = ) (3-7)
wi a7xl+a8yl+a9
Vi azxitasy;ta
vi — & — 40 s5YVi 6 (38)

Dj a;xi+agy;+aq

where (u;, v;) finally represents the mapped point in the ICS from the BF. The
Jacobian matrix for projective transformation is shown below, which is widely used
by the most of the iterative methods.

6[1;:]_ 1[xl- yi 1 0 0 0 —wx; —wy, —Y

]= oL 0 0 0 Xi Vi 1 —Vvix; —viy; —v; (39)

wi
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Below it is described an algorithm to compute the transition matrix H.

I. Initialize data:

Leti =1,2,...,n, where n = 4 is the number of mapped points.
Let X; = [x; ¥; 1]7 be a homogeneous coordinate representation
of a i-th point from the BF, where the component z; is zero.
Let (&i;, U;, W;) be a homogeneous coordinate representation of a i-th
point located in the ICS.
Let w; to be one, in order to make (ii;, ¥;) points measured in the
ICS.

v Apply the preconditioning matrix to each point as follow:

w;'
Write the homogeneous system according to the equation (3.5) for n
points.
Solve the homogenous system in order to obtain L, and obtain the
transition matrix H from L.
Update the transition matrix as follow:

H < H/aq

H < Hpyee 'H

[l. Optimize the matrix H:

Let X;" = [x;’,v;']T be measured point in the ICS.

Let P, = [u;,v;]7 mapped point in the image coordinate obtained
from the equations (3.7) and (3.8).

By means of iterative process and using the Jacobian matrix of the
equation (3.8), minimize:

e= ) X/ — P

Algorithm 1. Computing Transition matrix H

Before determining the transition matrix, a normalization of the data is
recommended to avoid bad results because of noisy data. In [1] is recommended a
normalization data so that the centroid of the new set of points is the origin of

coordinates (0,0) and the average distance from the origin equals to V2.

In the next section it is shown how the Computing transition matrix algorithm
can be used to estimate the rotation matrix and translation vector of the BF with
respect to CCS by a linear method rather than use the linearized measurement model.
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4. Calibration Algorithm

In this section the calibration algorithm of the widely known tool for camera
calibration developed in [2], based on Rodrigues’ rotation formula, is adapted to
quaternion rotation representation.

In the Figure 4, it is shown that a chessboard is photographed with different
orientations and translation vectors in order to obtain considerable amount of points
for calibration process. Additionally, intrinsic parameters are shown, which are
internal fixed parameters of the camera itself. They have to be determined in the
calibration process and then will remain fixed. On the other hand, extrinsic
parameters, rotation matrix and translation vector, are determined for each image, and
they are not fixed parameters because the location and orientation of the object can

Ri Te,, °

Parameters for calibration: ®
Intrinsic parameters(camera): fy, fy, Uo, Vo, S, k1, k2, k3, 01, P2

Extrinsic parameters(images): Ry, T¢y, R, T, Rs, T ' R, Tey,

c c3s

Figure 4. Intrinsic and Extrinsic parameters

change.
Calibration process is based on two main steps: initialization of the parameters
and optimization of the parameters by the gradient method.

4.1. Initialization of parameters

The initial value of the principal point can be initialized as the center point of
the image, for example, if the resolution of the camera is 640x480 pixels, then the
principal point P = (uy, vo) = (320,240). The Skew parameter can be initialized as
zero as well as the distortions coefficients k4, ko, k3, py, p2.

With regards to the focal distance (fy, f;), it can be initialized using vanishing
points as in [1] and different methods as in [2] and [4], which make use of transition
matrices from BF to the ICS by using the Algorithm 1.
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Considering initial values for skew factor ‘S’ and distortion coefficients Kp
equal to zero, the points in the ICS (x;,y;) can be transformed into CCS as follows:

xcpi = (xl, - uO)/fxa
ycpl- = (yl, - vO)/fy-

The equations above show that the point (x;,y;) is located in the sensor plane in
the CCS, and it is related to the BF by the next equation, where the points in the ICS
and BF are expressed by homogeneous coordinate.

Xi

Xc
R T.]|y;
)161~[01x3 1] Zi [ 1)

1

Because of component z; is zero for flat objects, equation (4.1) can be rewritten

Xc Xi Xi
[%] ~[ry ry T.] [3’1‘] = H, [3’1‘],
1 1 1

where T, is translation vector and r; are the columns of rotation matrix R, and
|7;ll = 1. The matrix H, can be computed by means of the Algorithm 1, and
additionally it is necessary to perform a normalization so that the vectors 7; have
modulus equal to one, then to use the QR decomposition to obtain a better result in
the orthogonality of the vector r;.

as

4.2.Optimization process

Due to the non-linearity of the measurement model, an optimization process is
required to be performed in order to tune up the parameters which have been
initialized previously. The essential step is the definition of the equations.

Let us consider a scheme where it is available just one image as it is shown in
the Figure 5. Let i = 1,2, ..., n, where n is the number of mapped points to the ICS.
Let X'; = [x’i,y’i]T and X; = [x;,y;,0]" be the known vector representations of a
point in the ICS and BF.

Image coordinate system Body-fixed frame
z
X' =(',y") X'y =02%Y"2)

Xy = (%2,¥2,0)

XTL = (xTL’ yn! 0)

Figure 5. Projection from Body-fixed frame to image coordinate system
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Let Xp; = [xp;, yp;]” be i-th point already mapped to the ICS from the BF by
using the measurement model hy, from the equation (2.12), where the rotation matrix
can be expressed by using the vector part A of a unit quaternion, below the equations
for one image with n points:

Xp1 = hyx, (F,C,S,Kp, A, T,)
Xp, = hx,(F,C,S5,Kp,A,T.)

Xpi = hXi(FJ C,S,KD,A,TC)

Xpn = hy (F,C,S,Kp, 4, T,)

Let AX be the error vector which is defined as the difference between the points
Xp; and X'; as follow:

_xpl _ xll_
Xp, — X'y 2:51 : 1,1
Ax = |Xpa—Xo| |02 T2 4.2)
: yp2 — Y2 | :
Xpn - X’n xp _ x'
n n
Ly — V'nd

Now let us assume that m images are available with n points in each image. Let
i=12,..,n,and k = 1,2, ..., m where n is the number of mapped points to the ICS
and m is the number images. It is important to mention that the location of points in
each image depends on the translation vector and orientation of the BF with respect
to the CCS.

Let X'¥ = [x'¥,9"¥]" be the vector representation of the i-th point in the k-th
image (ICS).

Let X; = [x;,v;,0]7 be the vector representation of the i-th point in the BF.

Let Xp¥ = [xp¥, yp¥]T be the point X; already mapped to the k-th image (ICS)
from the BF by using the nonlinear model h;’?i, which represent the projection of the
point X; to the k-th image. Below the equations for m images with n points in each
image are given:
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Xpi = hy, (F,C,5,Kp, 41, T, )
Xpz = hi,(F,C,5,Kp, 41, T, )

Xpy = h)l(n(F' C:' S, KD'AI'TH)
Xp? = h)z(l(F' CS, KD'AZ'Tcz)
Xp3 = h)Z(Z(F» C.S, KD'AZ'Tcz)

Xp2 =hg (F,C,S,Kp,23,T,,) (4.3)
Xpf = h§,(F,C,S,Kp, A, Te,)

Xp’{n = h)T(Yi(F, C)SI KD:Am' TCm
Xp* = K, (F.C.S, Kp, A, Ty,

Xpit = hit (F,C,S,Kp, A, T,
Let h* be defined as

h% (F,C.S,Kp, 4, T¢,)

BE(F,C,S, Kp, Ay Te,) = | e (F €5, Kp, A Tey ) |

hi (F,CS, kD, A Tey)

The partial derivatives of h* from the measurement model gradient in the
equation (2.13) are
ah%

[ k k
onk ~ on% ~oank ~9hx, Ohx,
Ty,

oF ac aSs aI(D aﬂ,k

k k k
ank ank ank ank ank ank ohk, Ohx, Ohk, Ohx, 0hx, Ohx,
OF 9C S 0Kp a 0T | | OF ac os  0Kp 0k OTep

onk  onk  onk  ank  ank  ank
| oF ac S  9Kp 9Ax OT

Ck-

then the equations (4.3) can be expressed in a shorter form as follows:
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Xpl = hl(FJ C;S: KDJ)’1J TC]_) - AXl = Xpl _X,11

Xp? = h?(F,C,S,Kp, 23, T.,) > AX? = Xp? — X%,

Xp* = h*(F,C,S,Kp, A, T, ) —» AX* = Xp* — X'¥,
Xpm — hm(F, CS, KD’/lm' Tf-'m) - AX™ = Xpm —_x'm™m

where Xp* = [xp¥, yp¥, xp%, yp%, ...,xp,’f,yp,’f]Tis column vector representation of
the points mapped to the k-th image (ICS) from the BF, and

T . . L
X' =[x"* y'k 'k Yk X' y'K]" is vector representation of all the points in the
1 V' 2 y's wYn p p

k-th image.
In the equation (4.2) the error vector AX can be express as AX* where k

indicates the error vector for the corresponding k-th image and nonlinear model h*.
Finally, the equations can be express as a column of functions

[Xpl] [ K*(F,C,S,Kp, 44,

Tey) |
_ | xp? | | *(F.C.5S, KD,AZ, Tc,) |

h(F,C,S,Kp, 21, Tcy, A, Te,) =
lXp [hm(F CS, KD,/lm,T J

Let X' be the column vector [X nt y2l  x 'mT] , and the global error vector
can be defined as follows:
AX1
2
€=h(M)—x' =|8X
AX™

The Gauss—Newton Method is used to solve the optimization problem, which is
based on the minimization of the global error vector €; Let

M = [F, C,S Kp, A, Tey, s A, Tcm] be the vector of parameters, let My be the
initial values for the vector of parameters M, and let €, be the initial error vector.

60 = h(Mo) —X,

Let €; be the error vector and M, be the vector of parameters which are updated
for each iteration as follows:

€ =h(Mp) — X',
= (]T])_leEla
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M I+1 — M 1 + AM
where the Jacobian matrix J is defined as follows:

[ oh' ar' an' an'  an! gl

— 1_ z- z" b on
% oF o¢ a5 oKkp o atg 0 0 0 0 .0
2 2 2 2 2 2
2 or* on’ o’ on on’  oh
2l | oF 5w amp 00 5y 00 ..0
oM D 04 0T¢,
an’ o’ on’ on’ o’ 000 O o on’
_on _lem|_| 9F ac s oKy o2 1. —~ O
] oM . 3 c3
i RS T S S S BN |
A O I T T S N RO LR LA
oM oF aC 05 0Kp DT e e, )
@ ah;" ah":l ah’:” ahE" o ah’"‘.. oh™
Lom 0 00 0 .. 0 —
|9F 3¢ s oKy 0hm  Tep, ]

where F = [fx fy],C=[Uo Vo]and Kp=[k; k, p1 D2 ksl

4.3. Algorithm for camera calibration

Assume m images with n points in each image are given and let i = 1,2, ..., n,
and k = 1,2, ..., m where n is the number of mapped points to the ICS and m is the
number images. The calibration algorithm is shown below.

I.  Initialize parameters: Use the Algorithm 1 to initialize the vector parameters
M=[F,CSKpA,Tc, ..., T, |
[.  Initialize global error vector €y: €y = A(M,) — X'
I1l.  Iterative process:
a. MMy = (Jo"Jo) Yo" €0, Where J, is J jacobian matrix evaluated at M
M;=M,+AM,
Change < [AM,|/|M4|
Iteration < 0
While ((Change > 1e-10) & (Iterarion < MaxIteration ))
i. €¢g=h(M)—-X'
i. AM; = (") €
iii. My =M+ AM,
iv. The quaternion part of M, must be normalized for each iteration, and
then M, must be updated.
v. Change « |AM|/|M,|
Vvi. Iterarion « Iterarion + 1
The vector M, is the optimal vector M.

© Qo0 o

Algorithm 2. Camera calibration

After the calibration the Algorithm 2 can be used to determine the matrix
rotation and T, without considering the other parameters in the vector M.
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4.4. Application algorithm for camera calibration

Using 50 images and 70 points per image. The images were taken using the
camera Model FI8918W with resolution 480x640 pixels.

i | - [ B F‘l

aeToY
-----
+*%%

Figure 6. Image used for calibration

As the result of the calibration process using the Algorithm 2 the values of the
intrinsic parameters are obtained:
e Principal point P = (318.85122,255.46648) (pixel)
e Focal length axis-x f,, = 633.54607(pixel)
e Focal length axis-y f,, = 634.02213(pixel)
e Skews =0.0
e Distortion coefficients k; =-0.46378, k, =0.28011, k3 =0.0, p; =0.00083,
p2 =0.00269
e The total error is expressed in pixels o, = 0.20879, g, = 0.24828

It is necessary to keep in mind that only intrinsic parameters remain fixed
because they are fixed values which depend on the camera assembly. On the other
hand, the external parameters, rotation matrix and translation vector change as the BF
or the camera move.

In the Figure 7 the extrinsic parameters by mean of the locations and
orientations of the chessboard with respect to the CCS are shown which has been
obtained during the calibration process.
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Figure 7. Visualization of the extrinsic parameters
with a fixed camera

As a result of the calibration process, the equation (2.11) for the measurement
model based on quaternions can be rewritten as follows:

X
_|"Pi| _
Xy, = [Yvi] = hy (A,T,). (4.4)

Thus, if the points Xpi and points X; are known, it is possible to determine the

orientation and the translation vector by means of Algorithm 2 as in the next section
Is shown.

4.5. Testing measurement model

In this part, the results of the camera calibration by means of a rotating table are
presented. The facilities for testing are shown in the Figure 8. It is used to determine
how accurate the measurement model is. The kinematic equation of the schema is
analyzed for initial time t;, and for the time t; when a rotation angle a around the
axis-Yris performed.

Kinematic equation in t:

RCWtOXi + TCtO = RCTRTWxi + RCTTW + TT (4.5)
Kinematic equation in t;:

RewXi + Ty = RerRrwReXi + RerTw + Ty (4.6)
where
e X;: Points with respect to the coordinate system 0, X,,Y,, Z,,.
® Rpy: Transformation matrix from the coordinate system O0,,X,,Y,Z,, to the
rotating table coordinate system O XY Zr.
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o R.r: Transformation matrix from the rotating table coordinate system
OrX7YrZy to the CCS.

* Rew,o Rew,q: Transformation matrix at time t, and t; from the coordinate
system 0, X,,Y,,Z,, to the CCS obtained by the Algorithm 2.

o T¢,y Tc,,: Transformation vectors at time t, and t; with respect to the camera
coordinate system obtained by the Algorithm 2.

e Ty : Translation vectors with respect to the rotating table coordinate system
OrXrYrZr.

e Tp: Translation vectors with respect to the CCS.

Figure 8. Testing schema using rotation table

From the equation (4.5) and (4.6) it is seen that
Rcwto = RerRrw
Rcwtl = RerRrwRe

From the previous equations it is possible to obtain a direct formula to estimate the
rotation matrix R, (intrinsic rotation) with respect to 0,,X,,Y,,Z,,, see the next
equation

R, = Rcwto_lRCth 4.7)
The equation (4.7) can be rewritten using quaternions:
Ay = Acwto_1 ° ACth (4.8)

As it can be noticed in the previous equation, R, depends on two consecutives
rotations of coordinate system 0, X,,Y,,Z,, which can be expressed as a function of
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the unit quaternion A,y . The rotation quaternion Ay, can be obtained by means of
Algorithm 2 considering extrinsic parameters, orientation and the translation vector
only. The intrinsic parameters, on the other hand, are not included in the parameters
because they already have been determined during the calibration and they remain
fixed.

It is important to mention that A, represents the local rotation with respect to BF
for period of time At = t1 — t0, and this rotation quaternion A, is composed by the
rotation angle a and its rotation axis n as shown below:

a

B . B cos;

A, = = B (4.9)
Aq nsin;

From the previous equation @ and n are obtained by means of the next expressions
a = 2arcos(Ayy), (4.10)
n = A,sin(a/2)
which allow the instantaneous angular velocity to be calculated from two consecutive
rotation for period of time At as follows:

Wiel = 7 (4.12)

where w,..; represents the angular velocity of the rigid body with respect to the BF.

A testing with the rotating table which consists of three rotations of 1°,2" and 3°
around axis-Y; IS performed, then by using the equation (4.10) the measurement
model accuracy is shown. In the Figure 9 it is noticed that the mean (u) of
consecutively rotations is very close to the true angle a with small standard deviation

(0).



26

Rotation
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a=1°",u=1.002" 0=0072°
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Figure 9. Detections for three rotations of 1°,2° and 3° using
the intrinsic parameters

Another testing is performed in order to know if it is possible to detect very
small rotation angles such as 1 arcmin (0.0167°), 5 arcmin (0.0833°) and 15 arcmin
(0.25%) using low resolution camera. As it can be seen in the Figure 10, the accuracy
it is less as the rotation angle is smaller. On the other hand, the precision (o) is still
maintained.

Rotation
03 T T T T
o =00167" ,u = 0.0599° ,o = 0.0343"
o =00833" p=0.1120" ,0 = 0.0339°
0.25 I a=02500" p=02571" 0 =0.0120° | |
0.2
o |
o |
B |
2015
] :
01r
A
\
0051 |
0 . . . L . .
0 10 20 30 40 50 60 70
points

Figure 10. Detection of three rotations larcmin (0.0167°), Sarcmin (0.0833°) and
15arcmin (0.25°) using the intrinsic parameters
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Until this moment the testing has been performed using chessboard where a
remarkable amount of points is provided. However, it is not possible to establish the
correspondence between the point from the BF and the ICS automatically, this
required the user support. It is very important that the program for image processing
detects and localizes automatically and accurately the points of correspondence
between the BF and the ICS, since the accuracy of the rotation matrix and translation
vector depends on it.

It is shown in the Figure 11 that once the four points are detected and their
position in the image is evaluated, it is impossible to determine which point is P1, P2,
P3 or P4. Therefore, the correspondences are not possible to be determined.

> _LT

vV
Body-fixed frame Image coordinate
Figure 11. Example where correspondences are not possible determined

To solve this problem a pattern between each point can be used in order to
determine the correspondences. In order to do that the utilization of the Aruco pattern
is considered [15], [16]. It helps to establish the correspondence between the point
from the BF and the ICS as it can be seen below.

" U
Z P,
p .
- Pl
P4- P2 P4_
Y
X P3 -
-\_.’

Body-fixed Image coordinate

X

Figure 12. Correspondences determined by using Aruco patterns

In this experiment the correspondences are established automatically using the
Aruco library. As it is understood, the measurement model’s error is inherent, and in
addition to that error, another source of errors appears such as: the error produced by
change of brightness in the enviroment, by the digitization of the image, and by the
algorithm for corner detection.
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In the Figure 13 it is shown how the used Aruco pattern is installed on the
rotating table

Figure 13. Aruco pattern and rotating table

In the Figure 14 it is shown how the location of a detected corner change for
each image with the rotating table being static. The located corner present in
coordinates Xx(pixel) and y(pixel) maximum standard deviation 0.11 and 0.12
respectively, the effects of this deviation are reflected in the precision of the rotation
angle.

232.4 * = *‘.:,, + * STD(x1)=0.044 STD(y1)=0.111
4 '& S W ey % Xx1=359.585y1=232.147
232.3 1 % s LA
bof e EERC A z o
232.2 1 t1vy Loty * 3 b
T ik ; X : - #
[ v ! $p " -
3 23211 * *‘ - *
= T ¥ *y, wx*
- '*ﬁ - -« k
232.0 e oo - *
- .f*# * ‘t* * *
231.9 - w T w M o
* r *‘ b
* * ks
231.8 1 *
359.45 359.50 359.55 359.60 359.65 359.70 359.75
x1(pixel)

Figure 14. Mean and standard deviation (STD) of the point X1

In the Figure 15(a) it is shown that the rotation angle has a mean value of
158.77°, and the standard deviaton (o) equals to 0.156°. The distance showed in the
Figure 15(b) represent the modulus of the translation vector T.
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Rotated angle(degree): mean =158.77 STD=0.156 Distance(cm) : mean =41.833 STD=0.018
159.2 1
41.88
3 B
o i
N 159.0 O 41.86
N—r

o
D [¢5]
o Q
© 158.8 A C 41.84
= ©
o +=
— [%2)
L 1se6] ) 41.82 il
(@)
c
< 41.80

158.4 4

0 50 100 150 200 250 300 0 50 100 15% 200 250 300
samples
samples P
@) (b)

Figure 15. (a) Estimation of initial angle position with the rotating table being
static. (b) Estimated distance with the rotating table being static.

Another experiment has been peformed where the rotating table rotates 90°
around the axis-Z. In the Figure 16, it is seen that, as it is expected, the estimated

rotated angle is close to 90°. Additionally, the featuring of some peaks are seen,
which appers due to the corner detecter’s errors.

150 4 /

1251 peaks

100 A

| 4 =0.0837",0 = 0.0399°

Angle rotated ( °)

l,-\,n'\,.~"w\Iw"‘LJ"‘L!M-"U%"HML,WWMW w‘ﬁ‘[‘

1

6 1(')0 260 360 460
samples
Figure 16. Estimated angle position with a rotation of 90°

The next experiment is focused on the local angular velocity calculation by

using the camera FI8918W, previously calibrated in sub-section 4.4 while the rotating
table rotates around the axis-Z.

N
w
I

=90.216",0 = 0.0296
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Figure 17. Angular velocity (°/s)

The camera captures the object’s movement by taking photographs every period
of time At where At = 1/15 seconds, and at every object’s movement sample the
rotation quaternion is obtained by means of Algorithm 2, then by using the equation
(4.11) the local angular velocity can be calculated as shown in the Figure 17.

As it can be observed in the Figure 17 the angular velocity calculation is
strongly imprecise, its standard deviation o can reach 4.47°/s, therefore to apply
adavanced technique for improving the angular velocity precision is to be
recommended.

Conclusion

This work is dedicated to the problem of estimating the orientation of an object
and its angular velocity by image processing. Two different approches were
considered: the orientation determination by means of the measurement model
adapted for the use of quaternions, in addition the angular velocity calculation.

As result of quaternions use, the simulations showed that there is no difference
with respect to the precision with its analog adapted measurement model for the
Rodrigues rotation formula. However, using measurement model based on
quaternions is a slight advantage in computing time.

Experiments for rotation matrix determination by means of quaternions showed
high precision. However, the estimation of the angular velocity from consecutives
rotation matrix has low precision. Thus, in order to improve the precision of the
angular velocity measurement additional technique has to be implemented.

The good results obtained for orientation quaternions determination allow that
this work can be easily integrated to another systems based on quaterions.
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