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Monuna Caxku X. C., Tkauee C.C.

Hcnoab3oBanue ¢puiabTpa Kasimana niist onpenesieHust yrjioBoro 1BHKEHUs
10 BUI€0N300Pa’KEeHN IO

PaGora mnocpsiieHa 3ajjauye OLCHKM OpPUEHTALUMU OOBEKTa M €ro yIrioBOH
CKOPOCTH C IOMOIIbI0 OOpaOOTKM BHIEOM300pakeHHs. [l 3TOro Mcnoiib3yercs
pacupenssii GuiasTp Kanmana (POK), roe uaMepeHusiMu SBISIFOTCS KOOPIUHATHI
TOUYEK U300PAKEHHUS.

PGBYJ'IBTaTBI OKCIICPUMCHTAJIbHBIX I/ICCJ'IGILOBaHHﬁ ITOKa3aJIu, qTo IIpu
HCII0JIB30BaHUH MOICIN U3MCPCHUA U POK yAacCTCsAa 3HAYUTCIIbHO YIYUYIIHUTh OLICHKY
yrHOBOﬁ CKOpOCTH, B TO BpPCMA KaK, OICHKAa KBATCPHHOHA HC YIIYUYIIACTCA IIO
CPaBHCHUIO C JIOKAJIbHBIMU MCTOJdaMHU.

Knwuesvie cnosa:  omnpeneineHue  yrioBOro  JIBIODKCHHS,  oOpaboTka
BHJIEOM300pakeHus, paciipeHnbiil GpuibTp Kanmana

Molina Saqui J. C., Tkachev S.
Kalman filter application for the angular motion estimation by video
processing

This work considers the problem of estimating the orientation and angular
velocity of the object by image processing. To solve this problem, an approach based
on the Extended Kalman filter (EKF), where the mesurements are the coordinates of
the image points.

The results showed a significatly accuracy increase for the angular velocity
estimation. As for the rotation quaternion, there was no significant improvement with
respect to the local methods.

Key words: angular motion determination, image processing, Extended Kalman
filter



Introduction

The angular motion is nowadays a crucial information for most applications,
where autonomous motion control systems are involved. Likewise, in conventional
navigation system is usually composed by inertial sensor such as accelerometers
and gyroscopes, where the angular velocity information is expected to be provided.
However, inertial sensors usually present accumulated drift, high-level noise
sensitivity, and in-built errors.

When precise angular velocity measurements are strongly needed, the
accurate gyroscopes are usually required but they are too expensive and
unaffordable for cost-effective application. Therefore, gyroscope-free inertial and
redundant sensors have started to be considered to get higher precision. In [1] S.
Zhen by means of the data, provided by the gyroscope-free inertial system, and the
Unscented Kalman Filter (UKF) the angular velocity estimation is performed
based on analysis of nonlinear gyroscope inertial measurement model. In [2] M.
Dehghani showed that the fusion data of gyroscope-free inertial system, stereo
cameras and low-cost gyroscope improve the robustness and accuracy of
navigation. Lei L. in [3] implemented an Adaptive Kalman Filter based on a nine-
accelerometer configuration for angular velocity estimation.

In [4-5] Extended Kalman Filter (EKF) is implemented. Here the attitude
guaternions is determined by measurements from inertial magnetic sensors
processing. In [6] S. Bras presented attitude estimation of rigid body by combining
rate gyros and pan-tilt camera where the image of planer scenes is required.

Inertial sensors combined with Kalman Filter are quite popular solution. The
conventional cameras are used as aid sensors also. In addition, it is expected that
conventional cameras can be used to replace gyroscopes or other sensor for angular
velocity totally. V. Anirudha in [7] proposed the develop of an algorithm for real-
time rotation estimation by means of live video feed, where the angle rotated is
calculated applying thresholding techniques, blob identification, and centroid
detection and object tracking. Y. Zhang in [8] considers optical flow vector of
pixels combined with a polynomial system, which is obtained by using the rigid
body velocity equations and the pinhole camera model. The angular velocity of the
camera is determined by solving the polynomial system. M. Gardner in [9]
estimates the instantaneous position, orientation, velocity, and angular velocity of
an object in a free fly by means of two high speed stereo vision cameras and EKF.
However, the results can be inaccurate due to the air drag and the Magnus effect.

Nowadays, it is seen that cameras started to be used in space applications as
aid sensors. This is reasonable since that star trackers and accurate gyroscope are
expensive and cause that projects for small satellites is not affordable. This can be
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considered as one of the main reasons to use cameras as low cost sensor for space
application. Kim T. in [10] used the MEMS camera module, installed on a
nanosatellite, and where the angular velocity vector of the camera is provided and
combined with the data given by the gyroscope into the EKF.

Volpe R. in [11] considered a scenery of a docking maneuver, where the
chaser satellite equipped with a distance sensor and a camera. The measurements
are provided at a certain time to be applied into UKF, whereby the relative
position, attitude, linear and angular velocity are predicted. In [12] C. Pirat studied
a solution for rendezvous and docking system for CubeSats, where a single camera
Is installed on the chaser satellite and Light-Emitting Diodes (LEDSs) are installed
on the target object. The proposed solution analyzes LEDs signals variations from
Sun reflections, and solve the non-linear measurement equations based on the
vision measurement model, rotation and translation dynamic.

The purpose of this work is the estimation of the object attitude and the
angular velocity at the same time by using quaternions and by means of a
conventional low-cost camera without any additional sensor. This work can also be
applied for short-distance maneuvers, such as rendezvous and docking operations.

The section 1 elaborates the problem statement of this research, and it is
explained the importance of measurement model, which is the mathematical model
for the camera. In the Section 2 different measurement models are defined, and
rotation quaternion is obtained.

Because the estimation of the angular velocity from consecutives rotation has
low precision, in the Section 3 is shown the modeling system and the application of
the Extended Kalman Filter to improve object attitude accuracy and for angular
velocity estimation. Finally, in the Section 4 the results for object attitude
determination angular velocity estimation are shown.

1. Problem statement
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The problem of the angular velocity estimation by the image processing is
considered. The source of measurements is the camera that captures the object’s
movement by taking photographs at a certain frequency (see Figure 1).

' —
—_——
—_—
—_
—_—

X' (i yi)
Camera coordinate
Image system AN
coordinate AN /i
system (x4, yi, Z;)
- /

Figure 1. Diagram of the problem statement

The Cartesian coordinates systems used in this work are:

o 0.X.Y.Z.— Camera Coordinate System (CCS) is based on the pinhole
model, where its origin O, is located at camera center (center of the lens),
0.Z. is defined by the line from the camera center perpendicular to the
image sensor, 0.X, is parallel to the horizontal side of the image sensor,
0.Y.is parallel to the vertical side of the image sensor.

e 0XYZ — Body-fixed Frame (BF) is placed in any location on the object in
such a way that the points X; are known with respect to BF. Its origin O is
represented by the vector T, with respect to CCS

® OingUV —Image Coordinate System (ICS), also known as the Image plane,
is a space of 2D pixel coordinates, where each 2D pixel coordinate is the
result of the conversion of points which are located on the image sensor
plane in CCS, to 2D coordinate pixel. Its origin O;,, is located on the top-
left corner of the image, 0;,,U extends from left to right and 0,V
extends downward, for more details about the relation between ICS, BF and
the measurement model hy (4,T,) [15].

The pictures taken by the camera are processed to estimate the angular
velocity of the object using the following information:
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o X;(x;,v; 2;). coordinates of the object points relative to the Body-fixed
Frame OXYZ.

e X;'(x;/,y;): coordinates of the points X;, which are visualized and located in
the image coordinate system (image).

e hy,: called measurement model, that performs the projection of point X; into
the Image coordinate system

The measurement model hy (4,T.) is determined as function of the vector

part A of a rotation quaternion, and the translation vector T, with respect to the
camera [15].

The angular velocity w,.,; is considered to be estimated with respect to the
Body-fixed Frame, and its estimation is based on the rotation quaternion changes
information during consecutives rotations as will be explained further.

2. Measurement models

The measurement model hy (4,T,) can be named as the camera’s

mathematical model, this model performs the projection of a point X; into the
image, and is expressed as follows:

Xp.
X, = [yp‘] = hy,(4,To), (2.1)

i
where Xpi represents the mapped point in the ICS from the BF, and is define in
[15] as follows:

hXi(Al Tc) — [(xdi + Sydi)fx + uO],

ydify + Vo

T . : : : .
where X;, = [xdl., ydi] is the distorted point coordinates because of the non-ideal
lens. X, is defined as follows:

Xa

_ xdi] _ [xcpi(l + klri2 + k2Ti4 + k3ri6) + Zplxcpiycpi + pz(riz + Zxcpiz)]
i .le' - '

YCpi(l + klri2 + k2Ti4 + k3ri6) + szxcpiycpi + pl(riz + Zycpiz)

2 2 2
T _xcpl- +ycpl- D

X. = xCpi]_ Xei/ Ze;
P ycpi yCi/ZCi s



7

xcl- X
X, = Yci]=R Vil +T,,
ch. Z;

where f, fy, U0, Vo, S, k1, k2, k3, 01,0, are constant internal parameters of the
camera, and R represents the rotation matrix, which can be expressed by means of
vector part A of a rotation quaternion
1-2(° +23%) 22, —0A3)  2(AgAs + Aphy)
R =| 244, + 2023)  1-2(4%+215°) 223 — Ae1y) |,
2045 — Agdy)  2(ApAs + A 1—2(4% +4,%)

where A = [A;,1,,23]7, 1, =+/1—|4|, and the rotation quaternion is A =
[A0, A1, 22, 251"

The camera captures the object’s movement by taking photographs every
period of time At, and at every object’s movement sample the orientation
quaternion is obtained by means of measurement model hy,(4,T.) and the least

squares method [15] this process can be represented by the next expression

[ ] = hopea 1. 2.2)

In the Figure 2, it is shown measurement models which can be defined in the
system camera - object.

hx, (4, T¢)

Body-fixed

Figure 2. Measurement models
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Additionally, it is understood that the angular velocity w,.,; depends on the
local rotation with respect to BF for period of time At = t; — t,, this local rotation
can be expressed by using quaternion as follows:

Ay = Ato_1 o Ay,

where A;, and A;; represent rotation quaternions the object for initial time t, and
for the time t; respectively. Additionally, A, is composed by the rotation angle o
and its rotation axis n as shown below:

a
. AW] _|%2 |
Ay nsin—
2
where a and n are obtained by means of the next expressions
a = 2arcos(qoqy),
n = A,sin(a/2),

which allow the instantaneous angular velocity to be calculated from two
consecutive rotation for period of time At as follows:

an

Wiel = AL (2-3)

From the above mentioned, additional measurement model can be defined as
follows:

A
T,
Wrel

= hes(4,Te). (2.4)

By using the equation (2.3), the angular velocity w,,; is calculated and
showed in the Figure 3.

u=8252°s

L= 00°/s o =4474°/s

o =0.428°/s

Angular velocity (°/s)

! ! T
0 100 200 300 400
samples

Figure 3. Angular velocity (°/s)
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As it can be observed the angular velocity calculation is strongly imprecise,
its standard deviation o can reach 4.47°/s, therefore to apply Kalman filter
technique for improving the angular velocity precision is to be recommended.

3. Extended Kalman Filter and system modeling

In this section is given a brief introduction to the Extended Kalman filter
(EKF) [16-18], whereby it is pretended to improve the rotation quaternion and
angular velocity precision taking in to account the state-space models of our
system.

3.1. Extended Kalman Filter
A system can be expressed as a continuous-time as follows:

x(t) = f(x(0),t) + w(D), (3.1)
z(t) = h(x(t)) + v(¢). (3.2)

The equation (3.1) represents the motion equation of the system, where f
represents the state transition model, which depends on the state vector x. With
regard to the equation (3.2), z is called the measurement vector and h is called the
observation model.

Due to the fact that every system is affected by external and inherent noise, w
and v are supposed to be noises with Gaussian distribution with zero expected
value, w ~ N (0,Q)andv ~ N (0,R), Q and R are assumed constants.

Similarly, a nonlinear system can be expressed as a discrete-time system as
follows

X = f(xp—1) + Wiy, (3.3)
z, = h(xy) + vy,

where w;, and v,, are supposed to be noises with Gaussian distribution with zero
expected value, w;, ~ N (0,Q) and v, ~ N (0, R).

Considering the continuous-time nonlinear system in the equations (3.1) and
(3.2) the EKF is described below.

Let X} be the posteriori estimation of the state vector estimation at t; , let
X+, be the priori estimation of the state vector at the moment of time ¢, Xy 41
Is calculated by integration of nonlinear equation (3.1) without considering the
noise component w using the state vector X .

The discrete Riccatti equation is used for prediction of the error covariance
matrix vector estimation P, , at time ¢4
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Pi;1 = F P F} +Q, (3.4)

where F, is the linearization of the state transition model f in the neighborhood of
X ,called transition matrix from the state x, to x,,., , let P{ be the error
covariance matrix at ty,.

Due to the fact that the measurements are frequently taken in a discrete form,
the measurement model (3.2) is given by

z, = h(xy)+vy,, vy, ~N(OR),
where x;, = x(t;). The gain matrix K, can be written as
Ky = PE+1H£+1Sk_1a (3.5
Sk = Hyy1Pip1Hiyr T R,

where H,, is the linearization of the observation model in the neighborhood of
X} .1 The corrected posteriori estimation is X, ; of the Kaman filter is given by

/32}("4_1 = Xp41 T Kis1[Zk1 — R(Xj41)]. (3.6)

A posteriori estimation for the error covariance matrix is given by the formula

Plt+1 =[I = Kgy1Hy11]Pisq,

where [ is an identity matrix.

The EKF algorithm for discrete-time system is remarkably similar for
continuous-time system, but with X, ; being calculated by means of the nonlinear
equation (3.3) without considering the noise component wy_; using the state
vector X7 .

The error covariance matrix vector estimation Pj ., at time t,,, is calculated
from the equation (3.4).

3.2. State-space modeling

In order to apply the Extended Kalman Filter, it is required that our system be
represented by means of state-space model. It means that the mathematical model,
which is formed by state transition model and observation model, of our system
must be defined.

It is considered to use a state-space model based on quaternion, where the
state vector x is represented by:

X = [AT' TCTJ WrelT]T-
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The vector A represents the vector part of the rotation quaternion A with respect to
the CCS, T, represents the distance vector between the camera and the BF, and
Ww,..; represents angular velocity with respect to the BF.

3.2.1. State transition model

From the studied system shown in the Figure 1, the angular motion of the
object can be defined by means of its rotation quaternion A, and by its angular
velocity w,.;.

In kinematic, the continuous-time angular motion equation can be obtained
using Poisson equation for relative motion using quaternions

c 1
A=2Aowy, |A] =1, (3.7)
where Wp..; = [Wy, wy, w,]T. The equation (3.7) can be written in a matrix form
C 1
A= > Y (Wre)4,

where W(w,.;) is defined as follows:

0 -w, —W, —-W
W (W )_ W, 0 Wy —Wy
rel Wy  —Wg 0 W,

W, Wy —Wy 0

The solution of the equation (3.7) for interval of time At, where w,,; is
assumed to be constant, can be written in a linear discrete-time form:

1
A = [Lgxa + Ewk—1At]Ak—1: At =ty — tyg-1. (3.8)

It 1s important to mention that the dynamic differential equation for angular motion
is not considered, because the inertial matrix of the object is unknown.

a) Discrete-time model

From the equation (3.8), the state transition model f can be expressed in a
discrete-time form:

1
A = [I4x4 + Eq’k—1At]Ak—1s (3.9)

T, =T (3.10)

Ck—-1°

Wiel, = Wrelp_q- (3.11)
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Because the state transition models for T, and w;,;, are unknown, it is

convenient to consider them to be constant for small period of time At. From the
equations (3.9), (3.10) and (3.11), let F be the linearized matrix of the state

transition model defined as:
0A,/0x

F=| 0T /ox
OWiep,, /0X
In order to obtain the expression for A, /dx , it is performed dA; /dx

0Ag _ [E)Ak 0Ag 0Ag ]
ax - al aTC aWTel :

The equation (3.9) can be expressed as follows:

A = g + %Wk—lAk—lAta

then A, /0A is

0Ag _ 0Ag—1 | At O(Pk—14k-1)
= — 12
EY o1 T2 EY ’ (3.12)
where 0/, _; /04 is:
A —Ay A3
2 A
0 0 0
9 A—
a’; 1= 1 0 O
0 1 0
0 0 1
and 0(Wy_1A_1)/0A is:
_Wx _Wy _WZ T
M 2 + Bw w.
Ao X 2o VxTWzo 37 T Wy
O(Wg-14k-1) _ _2 1 _2
) “==w, —w —w —w, +w
o Y z o Y o Y x
M TR T
| /10 Z y /10 WZ Wx )-0 VA ]

Thus, 04, /04 from the equation (3.12) can be rewritten as follows:
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r0qo — ﬁ — wxAt — ﬁ —_ WJ’_M - A_3 wzAt
e Ao 2 Ao 2 Ao 2
9a, 1 —lawelt Aawllt | wAL o Az walt  wydt
9 Ay EY) Ao 2 Ao 2 2 Ao 2 2
01 (0az| T | _AumyAt _wibt dpwyht Aswybt | welt
a2 Ao 2 2 Ao 2 Ao 2
943 A waAt  wybt Ay wiAt wydt 1 Az wzAt
~0A- L o2, 2 2 Ao 2 2 Ao 2 i
then the dA, /04 is:
07 [ - tawxht  _Aawalt | welt Az whAl  WyAl
D Ay 2 Ay 2 2 Ao 2 2
02 oA _ | _ A_lwy_At WAt _ A_Zwy_At _ Az wyAt | wyAt
94 loal| | 2 2 2 Ao 2 o 2 2
[%J A wAt wydt Ay WAL wyAt Az wzAt
04 L A, 2 2 Ao 2 2 Ao 2 i

Because A; does not depend on T, the expression for dA, /9T, is a null
matrix, thus dA, /9T, is:

04

a_TIZ = 03y3.
Additionally, 04y /0w, is
92 - Ay —A3
0Ag — OWyol _ /10 _2.3 AZ
OWyol 04k /13 /10 _/11 ’
OWrel =, A A
where 04, /OW,..; 1S
a AO _A3 /12
i = A3 A’O _Al .
Ml |, A A
2 1 0

From the equations (3.10) and (3.11), the dT., /dx and 0w, /dx are
expressed as follows:

oT,
axk=[03x3 13 03x3],
a re

el — [03x3 03x3 13]-

ox
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b) Continuous-time model

The State-space model based on quaternions can be expressed in a
continuous-time form:

A= %/1 ow,., |A] =1, (3.13)
Tc = 03x19 (314)
Wi = 0344. (3.15)

Let Fcon: De the linearized matrix of state transition model for continuous
time model defined as:

SA 52
5Tc = FCont 6TC ’
5Wrel 5wrel

where

- [Wrel]x 03x3 0-513x3
, (3.16)

Feont = [ 03,3 0353 0343
03,3 0353 0343

where [W,..], 1s a skew-symmetric matrix defined as follows:

0 —-w, W,
[Wretllx = | Wz 0 —Wy|.
—Wy Wy 0

From the continuous-time model, its linearized matrix Fg,,; Shows that
dW,..;/0x results in a null matrix 03,9, and further it is analyzed its effect in the
Kalman gain matrix K; and in the angular velocity estimation.

3.2.2. Observation model

Observation model is a function that provides information whereby directly or
indirectly allow for estimation of the state of the system. Therefore, an observation
model is closely related to the sensors function which is represented by the camera.

By means of the measurement model hy (4,T.) defined in (2.1), let the
observation model h; be defined as follows:



15

.
e [l AT )1|

ha(®) = |33 |Z§ R (3.17)
75| L, 4 0l
LY D4

where is performed the projection of the points X;, X,, X5 and X, into the image,
the minimum amount of points is 4 [15]. Then, let H, be the linearized matrix of
the observation model h; as follows:

[Ohx,/0x]

Ianb/axl
lahxé/axJ

dhy, /0%

[ahX hXi ahXi ] )
, L
Tc  OWrel

(3.18)

=1,..,4.

Because hy, does not depend on w..;, dhy, /0w, is a null matrix 0,,5. In [15] the
derivative dhy /04 is as follows:

Ohx,  Ohy; 9R(2)

94  OR 0A '
axpi

ohx, | 3r

dR aYpL-’
dR

where 6yp_/6R and (')xpi/aR are

yzo

_7bi prz a(r?) 6(7‘14) a( i ) axcpi
= fy (Dr, S+ yep, [R1 282 4 k2 200 4 32000 4 (9,3, + 2pyxy, ) ot +

(szxcp + 6p13’cp )aZ;p );
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6xpl.

S =1 (Dr, T op, [kla(r’ + k2200 4 kSa( l )] (2D1Yep, + 6P2%cy, )a’“—”+
(2P1xcp +2p2Yep . ) ) + fx( 5 cpl + Yo [kl A(r®) 1 k2 6(rl )

6(T1 ] (szycpi + Zplxcpi) % + (szxcpi + 6p1ycpi) ai;;pl),

Dri =1+ klriz + kzrl-4 + k31’i6,

A(r:? X
—(ar; ) = Z[xcpi Yep; ] a;pl
art) _ 20(®) _ 2 2 OXep
R T G N L e
A _ o4 a(rl ) _ 2\ OXep
R = 3n; =6 Xep; 2+ Yep; [Xer;  Yey] a_Rl’
Oxep; ;X0 =Ly, L0 -z
aXCPi | 7ar ch X Z¢; Zc;? Z¢; Zc;
OR aYCpl ycl 0 Vi Yci 0 Zi yczz . !
OR ZCL l ZCi ZCiz 2 ch- ch-

and the expression for dR /61 IS

. 0 —42, 42, 7
20y — 2250, /Ao 2y — 2450y /Ag 209 — 2A5ds /g
205 + 22,41 /A9 =240 + Ay /Ay 224 + 22505/ A4
20 + 2A3A [ 221 + 24505/ R =22 + 22505/ 2¢

= —42, 0 —41,
200 — 2 A1 /Ay 2453 —2A4A, /A0 21, — 2A4A3/ A
25 — 2,41 /Ay 2A0 — 22454, /4¢ 214 — 2A,A3/A,
=20 + 24 A /Ay 245+ 2444, /Ay 225, + 2A44145/ 2
i —47, —42, 0 |
In [15] the derivative dhy /0T is defined as follows:
axpi
Ohy; oT,
oT, - yp, |’
T,

%) (™) a(rﬁ) Oxcp;
fx( - aT xcpi[kl oT. + k2 aT. + k3 (Zplycp +6p2xcp) 5 +

(zplxcp + szycp )a ) + fx( Ti aay;pl + [kl
6(rl

a(rl a(rl )
ot +k2 or. +

] (szycpl- + Zplxcpi) a_;fl + (szxcpi + 6p1ycpi) 5;’;;: )a
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axcpl,

a(ri? a(ri* a(r;®
) + k2 <§Tc) + k3 ( ] (szpri + 2p1xcpi) T, +

= (0n 2 12

T,
(szxcp + 6P1Yep . )3chl)

a(r?) X Xep,
_— Ccp; yC
aT, 2[%er Pil 5 T, >
ar™ 2 0(ri?) ( 2 2) X 9Xep,
= Ccp; yC
aT, = 2n oT, =4 Xep; +yCPi [Fer; Pil 5 T, ’
AT _ o 4002) ( 2 2)2 X 9Xep,
= Ccp; yC
aT, =3 aT, 6 Xep; +pri [Fer; Pil 5 T, ’
Oxep; Lo -
achi _loTe | _ |%ci Zciz
aT, ep, 0o L _if
oT. Zcj Ze;?

Because of the high non-linearity of the observation model h; the EKF is not

convenient, and it would require more analysis for future work.
From the measurement model h,,, defined in (2.2) the observation model

hope can be defined as follows:

[1/'16] = hope(4,To). (3.19)

Let H,,, be the linearized matrix of the observation model h,,, defined as:

o1
_0hope _ ox| _ [ I3 0O3x3 0343
Hopt =5 = oTc| = [03,3 I3 0g3,3] (3.20)
ox

where I5 is identity matrix.
Below, it is analyzed the effect of missing angular velocity measurement in

the Kalman gain matrix K, Let the continuous-time system for angular motion be

defined as:
A=ZAow, 14 =1,

Wrer = 0351
From the expression (3.16), let us define the state-transition model

F =[_[Wrel]x 0-513x3
k 03x3 03x3

b
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and the observation model

Hj = [I3x3 03,3],

where only rotation quaternion measurement is available.
Let us define the covariance of the process noise

2=[gs al

where Q1, Q2, @3, and Q4 are 3x3 matrices. The covariance of the observation
noise R is a 3x3 matrix. The matrices Q and R are considered to be constants.

The error covariance matrix is

P1 P2
P3 P4FP

where P1, P2, P3, and P4 are 3x3 matrices.
From the expression (3.4), is obtained the Predicted error covariance Py,

Y 03,3
03,3 03,3

P,t=[

Py = [ ] + Q,
where
Y = —[W,o1],(P1 [W,i], + 0.5P2) + 0.5(P3[w,.;], + 0.5P4)
From the expression (3.5) Kalman gain matrix K is calculated
Ysk‘l] N [lek‘ll
03,3 1 [Q3S, 7'/
S, =Y+ Q1+R.

|

From the previous results are deducted that the angular velocity estimation
depends on @3, Q1 and R.

The matrix R can be determined by performing measurements. The
covariance of the process noise @Q, in contrast, it requires a tuning process for each
element which is highly complex. To avoid this complexity the number of
elements is reduced by considering Q to be diagonal. However, a diagonal matrix
Q turns the submatrix Q3 to be a null matrix, in consequence, the matrix it K,
keep the angular velocity estimation constant.

As an alternative solution, in order to use a diagonal matrix @Q, consist of
sending angular velocity information through the measurements into the Kalman
filter. The angular velocity can be calculated by the formula (2.3).
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As it has been mentioned, to add angular velocity measurements to the
observation model is required. Thus, from the measurement model h¢,, defined in

the equation (2.4), the observation model hs¢ can be defined as follows:

A
= hfs()': Te,Wrer). (3.21)

Wiel

Let Hy, be the linearized matrix of the observation model hy defined as:

oh 03x3 03x3
Hg, = ;x = [03x3 I3 03x3]-
0343 03x3 I3
It can be noticed that the observation model h,,, has the advantage of being
represented by a linear function H,,, in the equation (3.20). However, for
measuring h,,, in addition to point detection, it requires more computational time

because of the Least Square Method, see Figure 4. The observation model hy, in
contrast, does only require point detection, but it is strongly nonlinear.

Z

yi
X = - 2 > =P Wie
X, T, T,
Least Calculate
Squares Wiel
Method

Body-fixed frame

Figure 4. Observation models

It is important to mention that in discrete-time system and in continuous-time
system, the observation models are in discrete-time form, because the
measurements, in most physical continuous-time system, are frequently taken in a
discrete form. Thus, the observation models h;, h,,, and hgs are completely

suitable for the continuous-time state transition model. However, as it has been
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mentioned, angular velocity measurements for the continuous-time is required
(3.1). Thus, the observation model hg is suitable for the continuous-time model
(3.13).

With regard to discrete-time model, its linearized matrix Fp;s. shows that its
component 0w, /0x is different than a null matrix, it gives the possibility to use

the observation models h,p,; and hg,.

4. Experiment and results

In this section, the results of the orientation quaternion and angular velocity
estimation by means of a rotating table are presented.

The facilities are shown in the Figure 5, where Aruco marker [13-14] is used
to allow to establish the correspondence between the points in the coordinate
system OXYZ and the points located in the images. This marker is installed on the
rotating table in a way that the maker will be rotated around its axis-Z.

The camera FI8918W, previously calibrated [15], is used to capture the Aruco
marker’s movement every period of time At, where At = 1/15 seconds.

In order to estimate the orientation quaternion and the angular velocity of the
Aruco marker, the EKF is implemented in according to the section 3.

Figure 5. Rotary table rotates on the axis-Z

Let x = [AT,w,,;T]T be the state vector of the continuous-time state space
model where 4 = [1;,1,,25]7 is the vector part of orientation quaternion A. This
quaternion represents the Aruco marker’s attitude with respect to the camera.
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The vector w,,; = [Wx,Wy,WZ]T represents the local angular velocity, with
respect to the coordinate system OXYZ.

The process model is represented by the equations (3.13) and (3.15). The
observation model is based on the equation (3.21) and is defined as follows:

[ ] hfs(lr Wrel)-
Wrel

The translation vector T in equation (3.10) is not taken into account because
the angular motion of the object is analyzed.

The process model integration is performed every period of time At by means
of the Runge-Kutta 4™ order method.

The covariance matrices of the process noise and observation noise were
determined experimentally by means of a graphical user interface (GUI) developed
in Python 3.7 during this work. This GUI is implemented in order to fine-tune the
covariance matrix. The covariance matrix of the process noise Q is started with a
diagonal matrix with values equal to 1e-8, then by means of the mentioned GUI,
the matrix components are tuned obtaining the next matrix Q as follows:

Q = diag([o-gl; 0-52; 0-53) 0-54-1 0-551 0-56])9

where o7,=1e-8, 0Z,=1e-8, 953=1e-8, 07,=9.243e-5, 075=1.329e-4, 0,5,=2.172e-5.

On the other hand the covariance matrix of the observation noise R was
determined by performing measurements when the rotating table is static,

R = diag([0/1.0%, 0/, 074, 05, 076 1),
where ¢4 =5.4e-9, 04=1e-8, c5=1e-7, 64 =1e-4, 0%=3e-4, 0.5 =5¢e-b.
Similarly, the state vector x is also used for the discrete-time model, its

process model is represented by the equation (3.9) and (3.11). The observation
model is based on the equation (3.19) as follows:

A= h,, (4).

The translation vector T, from equation (3.14) is not taken into account. The
covariance matrix of the process noise Qy is determined by means of tuning
process:

Qk - dlag([ kl’ k2'05k3’0-‘§k4" qi5’ qk6])

where o 1=1e-8, 0} ,=5€-8, 07, 3=1e-8, 0} 4,=6.29¢-6, 0} s=4.5e-6, 07, =2.47e-6.
The covariance of the observation noise Ry, is



Ry = diag([07,1,

where o 1=5.4e-9, o7 ,=1e-8, o/ ;=1e-

The covariance matrices of the process noise and observation noise were
determined experimentally by means of a graphical user interface (GUI) developed
in Python 3.7 during this work. This GUI is implemented in order to fine-tune the

covariance matrix.

An experiment has been performed where the rotating table rotates in 90°
around the axis-Z, see Figure 5. The next pictures shown three graphics defined as

follows:
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2

7.

e Red line: Measurement without filter.

e Green line: Results for EKF using the continuous-time process model
integrated every period of time At by means of the Runge-Kutta 4™ order

method.

o Blue lines: Results for EKF using the discrete-time process model.

The components of the vector part A of the rotation quaternion are shown in

the Figure 6.

2
O-T'RZ’ JTkB

Quaternion A,

Quaternion A,

(a) Quaternion component A,

(b) Quaternion component 4,

e

Quaternion A5

(c) Quaternion component A5

Figure 6. Components of the vector part of the unit quaternion
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In the next table, the mean (u) and standard deviation (o) for the vector 4 are
calculated for the first 30 seconds of the experiment, when the rotating table is
static.

It can be seen that as for the orientation, which is determined by the
quaternions, there was no significant improvement, this is because the
measurement models hg, and h,,, are already accurate for orientation
determination.

Table 1
Quaternion measurements for the first 30 seconds for a static rotating table

Mean (u) Standard deviation (o)
Bmeas | Bcont.EKF | BDisc EKF | Omeas | O Cont.EKF | O Disc.EKF
Ay | 0.9646 0.9646 0.9646 | 0.00009 | 0.00009 0.000069
A, | 0.0566 0.0566 0.0566 0.0001 0.0001 0.0001
Az | -0.0533 -0.0533 -0.0533 | 0.0004 0.0004 0.0002

In the Figure 7, the results for the angular velocity estimation are shown. It
can be noticed that there is a remarkable increase in precision.

ar velocity (axis X An

ar velocity (axis y)

SRS

(@) Angular velocity along the axis-X (b) Angular velocity along the axis-Y

(c) Angular velocity along the axis-Z
Figure 7. Angular velocity with respect to the coordinate system OXYZ
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In the Table 2, it is shown the mean (u) and standard deviation (o)
measurements of the angular velocity for the first 30 seconds of the experiment,
when the rotating table is static. It can be seen that the precision increase can reach
up to 89.7% by means of the Discrete EKF, it is a better option than the
Continuous-time EKF which can reach up to 70.3%. However, it is important to
mention that the previous results depend on the efficiency for covariance matrices
determination. On the other hand, it is remarkable that an important precision
Increase is obtained with regard to angular velocity estimation.

Table 2
Angular velocity measurements for the first 30 seconds
for a static rotating table
Mean (°/s) Standard deviation (°/s) Improve (%)
Pmeas | BcontEKF | BDiscEKF | Omeas | OcontEkF | Opiscekr | CONt.EKF | Disc.EKF

w, | 0.00 0.0019 -0.001 0.84 0.15 0.086 82.1 89.7
w, | 0.00 -0.0012 -0.004 0.99 0.13 0.113 86.8 88.5
w, | 0.00 -0.0016 -0.005 0.40 0.12 0.050 70.3 87.5

In the Figure 8 the angle of rotation around the axis-Z is shown, and as it is
expected the estimated one is close to 90° with an error of not more than 0.1°.

Measurement:
n:90.08°c:0.02°
Disc. EKF:
n:90.08°,0:0.02
Cont. EKF:
n:90.08°,0:0.02°

Figure 8. Angle rotated (°) around the axis-Z

The rotation angle is not calculated by angular velocity integration, but it is
measured taking into account the first rotation quaternion to the current rotation
quaternion. As for the rotation quaternion, the angle rotated there is no significant
improvement because the measurement models hss and h,,,; are already accurate.
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Conclusion

This work is dedicated to the problem of estimating the orientation quaternion
of an object and its angular velocity at the same time by image processing. The
apporach based on the integration of the measurement model, adapted for the use
of quaternions, to the system camera — object, where the the EKF is implemented
for the orientation quaternion and angular velocity estimation.

The EKF has been implemented taking into account the rotation quaternion
and angular velocity as state variables, the results showed a significatly accuracy
increase for angular velocity estimation. As for the rotation quaternion, there was
no significant improvement, this is because the measurement is already accurate.
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