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Молина Саки Х. С., Ткачев С.С. 

Использование фильтра Калмана для определения углового движения 

по видеоизображению 

Работа посвящена задаче оценки ориентации объекта и его угловой 

скорости с помощью обработки видеоизображения. Для этого используется 

расширенный фильтр Калмана (РФК), где измерениями являются координаты 

точек изображения. 

Результаты экспериментальных исследований показали, что при 

использовании модели измерения и РФК удается значительно улучшить оценку 

угловой скорости, в то время как, оценка кватерниона не улучшается по 

сравнению с локальными методами. 

Ключевые слова: определение углового движения, обработка 

видеоизображения, расширенный фильтр Калмана 

 

Molina Saqui J. C., Tkachev S.  

Kalman filter application for the angular motion estimation by video 

processing 

This work considers the problem of estimating the orientation and angular 

velocity of the object by image processing. To solve this problem, an approach based 

on the Extended Kalman filter (EKF), where the mesurements are the coordinates of 

the image points. 

The results showed a significatly accuracy increase for the angular velocity 

estimation. As for the rotation quaternion, there was no significant improvement with 

respect to the local methods. 

 Key words: angular motion determination, image processing, Extended Kalman 

filter 
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Introduction 
The angular motion is nowadays a crucial information for most applications, 

where autonomous motion control systems are involved. Likewise, in conventional 

navigation system is usually composed by inertial sensor such as accelerometers 

and gyroscopes, where the angular velocity information is expected to be provided. 

However, inertial sensors usually present accumulated drift, high-level noise 

sensitivity, and in-built errors. 

When precise angular velocity measurements are strongly needed, the 

accurate gyroscopes are usually required but they are too expensive and 

unaffordable for cost-effective application. Therefore, gyroscope-free inertial and 

redundant sensors have started to be considered to get higher precision. In [1] S. 

Zhen by means of the data, provided by the gyroscope-free inertial system, and the 

Unscented Kalman Filter (UKF) the angular velocity estimation is performed 

based on analysis of nonlinear gyroscope inertial measurement model. In [2] M. 

Dehghani showed that the fusion data of gyroscope-free inertial system, stereo 

cameras and low-cost gyroscope improve the robustness and accuracy of 

navigation. Lei L. in [3] implemented an Adaptive Kalman Filter based on a nine-

accelerometer configuration for angular velocity estimation. 

In [4-5] Extended Kalman Filter (EKF) is implemented. Here the attitude 

quaternions is determined by measurements from inertial magnetic sensors 

processing. In [6] S. Bras presented attitude estimation of rigid body by combining 

rate gyros and pan-tilt camera where the image of planer scenes is required. 

Inertial sensors combined with Kalman Filter are quite popular solution. The 

conventional cameras are used as aid sensors also. In addition, it is expected that 

conventional cameras can be used to replace gyroscopes or other sensor for angular 

velocity totally. V. Anirudha in [7] proposed the develop of an algorithm for real-

time rotation estimation by means of live video feed, where the angle rotated is 

calculated applying thresholding techniques, blob identification, and centroid 

detection and object tracking. Y. Zhang in [8] considers optical flow vector of 

pixels combined with a polynomial system, which is obtained by using the rigid 

body velocity equations and the pinhole camera model. The angular velocity of the 

camera is determined by solving the polynomial system. M. Gardner in [9] 

estimates the instantaneous position, orientation, velocity, and angular velocity of 

an object in a free fly by means of two high speed stereo vision cameras and EKF. 

However, the results can be inaccurate due to the air drag and the Magnus effect. 

Nowadays, it is seen that cameras started to be used in space applications as 

aid sensors. This is reasonable since that star trackers and accurate gyroscope are 

expensive and cause that projects for small satellites is not affordable. This can be 
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considered as one of the main reasons to use cameras as low cost sensor for space 

application. Kim T. in [10] used the MEMS camera module, installed on a 

nanosatellite, and where the angular velocity vector of the camera is provided and 

combined with the data given by the gyroscope into the EKF.  

Volpe R. in [11] considered a scenery of а docking maneuver, where the 

chaser satellite equipped with a distance sensor and a camera. The measurements 

are provided at a certain time to be applied into UKF, whereby the relative 

position, attitude, linear and angular velocity are predicted. In [12] C. Pirat studied 

a solution for rendezvous and docking system for CubeSats, where a single camera 

is installed on the chaser satellite and Light-Emitting Diodes (LEDs) are installed 

on the target object. The proposed solution analyzes LEDs signals variations from 

Sun reflections, and solve the non-linear measurement equations based on the 

vision measurement model, rotation and translation dynamic. 

The purpose of this work is the estimation of the object attitude and the 

angular velocity at the same time by using quaternions and by means of a 

conventional low-cost camera without any additional sensor. This work can also be 

applied for short-distance maneuvers, such as rendezvous and docking operations. 

The section 1 elaborates the problem statement of this research, and it is 

explained the importance of measurement model, which is the mathematical model 

for the camera. In the Section 2 different measurement models are defined, and 

rotation quaternion is obtained.  

Because the estimation of the angular velocity from consecutives rotation has 

low precision, in the Section 3 is shown the modeling system and the application of 

the Extended Kalman Filter to improve object attitude accuracy and for angular 

velocity estimation. Finally, in the Section 4 the results for object attitude 

determination angular velocity estimation are shown. 

1. Problem statement 
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The problem of the angular velocity estimation by the image processing is 

considered. The source of measurements is the camera that captures the object’s 

movement by taking photographs at a certain frequency (see Figure 1). 

The Cartesian coordinates systems used in this work are: 

 𝑂𝑐𝑋𝑐𝑌𝑐𝑍𝑐− Camera Coordinate System (CCS) is based on the pinhole 

model, where its origin 𝑂𝑐 is located at camera center (center of the lens), 

𝑂𝑐𝑍𝑐 is defined by the line from the camera center perpendicular to the 

image sensor, 𝑂𝑐𝑋𝑐  is parallel to the horizontal side of the image sensor, 

𝑂𝑐𝑌𝑐is parallel to the vertical side of the image sensor. 

 𝑂𝑋𝑌𝑍 − Body-fixed Frame (BF) is placed in any location on the object in 

such a way that the points 𝑋𝑖 are known with respect to BF. Its origin 𝑂 is 

represented by the vector 𝑻𝒄 with respect to CCS 

 𝑂𝑖𝑚𝑔𝑈𝑉 – Image Coordinate System (ICS), also known as the Image plane, 

is a space of 2D pixel coordinates, where each 2D pixel coordinate is the 

result of the conversion of points which are located on the image sensor 

plane in CCS, to 2D coordinate pixel. Its origin 𝑂𝑖𝑚𝑔 is located on the top-

left corner of the image, 𝑂𝑖𝑚𝑔𝑈 extends from left to right and 𝑂𝑖𝑚𝑔𝑉 

extends downward, for more details about the relation between ICS, BF and 

the measurement model ℎ𝑋𝑖
(𝝀, 𝑻𝒄) [15]. 

 

The pictures taken by the camera are processed to estimate the angular 

velocity of the object using the following information: 

𝒘𝑟𝑒𝑙 

𝑋𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 

Body-fixed frame 

𝑋𝑖′(𝑥𝑖′, 𝑦𝑖′) 

U 

V 

Image 

coordinate 

system 

O 

Oc 
Oimg 

Figure 1. Diagram of the problem statement 
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 𝑋𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖): coordinates of the object points relative to the Body-fixed 

Frame OXYZ. 

 𝑋𝑖′(𝑥𝑖′, 𝑦𝑖′): coordinates of the points 𝑋𝑖, which are visualized and located in 

the image coordinate system (image). 

 ℎ𝑋𝑖
: called measurement model, that performs the projection of point 𝑋𝑖 into 

the Image coordinate system 

The measurement model ℎ𝑋𝑖
(𝝀, 𝑻𝒄) is determined as function of the vector 

part 𝝀 of a rotation quaternion, and the translation vector 𝑻𝒄 with respect to the 

camera [15]. 

The angular velocity 𝒘𝑟𝑒𝑙 is considered to be estimated with respect to the 

Body-fixed Frame, and its estimation is based on the rotation quaternion changes 

information during consecutives rotations as will be explained further. 

2. Measurement models 

The measurement model ℎ𝑋𝑖
(𝝀, 𝑻𝒄) can be named as the camera’s 

mathematical model, this model performs the projection of a point 𝑋𝑖 into the 

image, and is expressed as follows: 

 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋𝑖
(𝝀, 𝑻𝒄), (2.1) 

where 𝑋𝑝𝑖
 represents the mapped point in the ICS from the BF, and is define in 

[15] as follows: 

 ℎ𝑋𝑖
(𝝀, 𝑻𝒄) = [

(𝑥𝑑𝑖
+ 𝑠𝑦𝑑𝑖

)𝑓𝑥 + 𝑢0

𝑦𝑑𝑖
𝑓𝑦 + 𝑣0

], 

where 𝑋𝑑𝑖
= [𝑥𝑑𝑖

, 𝑦𝑑𝑖
]
𝑇
 is the distorted point coordinates because of the non-ideal 

lens. 𝑋𝑑𝑖
 is defined as follows: 

 𝑋𝑑𝑖
= [

𝑥𝑑𝑖
𝑦𝑑𝑖

] = [
𝑥𝑐𝑝𝑖

(1 + 𝑘1𝑟𝑖
2 + 𝑘2𝑟𝑖

4 + 𝑘3𝑟𝑖
6) + 2𝑝1𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖
+ 𝑝2(𝑟𝑖

2 + 2𝑥𝑐𝑝𝑖
2)

𝑦𝑐𝑝𝑖
(1 + 𝑘1𝑟𝑖

2 + 𝑘2𝑟𝑖
4 + 𝑘3𝑟𝑖

6) + 2𝑝2𝑥𝑐𝑝𝑖
𝑦𝑐𝑝𝑖

+ 𝑝1(𝑟𝑖
2 + 2𝑦𝑐𝑝𝑖

2)
], 

 𝑟𝑖
2 = 𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2, 

 𝑋𝑐𝑝𝑖
= [

𝑥𝑐𝑝𝑖
𝑦𝑐𝑝𝑖

] = [
𝑥𝑐𝑖

𝑧𝑐𝑖
⁄

𝑦𝑐𝑖
𝑧𝑐𝑖

⁄
], 
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 𝑋𝑐𝑖
= [

𝑥𝑐𝑖
𝑦𝑐𝑖
𝑧𝑐𝑖

] = 𝑅 [

𝑥𝑖

𝑦𝑖

𝑧𝑖

] + 𝑻𝒄, 

where 𝑓𝑥 , 𝑓𝑦 , 𝑢0, 𝑣0, 𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2 are constant internal parameters of the 

camera, and R represents the rotation matrix, which can be expressed by means of 

vector part 𝝀 of a rotation quaternion 

 𝑅(𝝀) = [

1 − 2(𝜆2
2 + 𝜆3

2) 2(𝜆1𝜆2 − 𝜆0𝜆3) 2(𝜆1𝜆3 + 𝜆0𝜆2)

2(𝜆1𝜆2 + 𝜆0𝜆3) 1 − 2(𝜆1
2 + 𝜆3

2) 2(𝜆2𝜆3 − 𝜆0𝜆1)

2(𝜆1𝜆3 − 𝜆0𝜆2) 2(𝜆2𝜆3 + 𝜆0𝜆1) 1 − 2(𝜆1
2 + 𝜆2

2)

], 

 where 𝝀 = [𝜆1, 𝜆2, 𝜆3]
𝑻, 𝜆0 = √𝟏 − |𝝀|, and the rotation quaternion is 𝛬 =

[𝜆0, 𝜆1, 𝜆2, 𝜆3]
𝑻 

The camera captures the object’s movement by taking photographs every 

period of time ∆𝑡, and at every object’s movement sample the orientation 

quaternion is obtained by means of measurement model ℎ𝑋𝑖
(𝝀, 𝑻𝒄) and the least 

squares method [15] this process can be represented by the next expression 

 [
𝝀
𝑻𝒄

] = ℎ𝑜𝑝𝑡(𝝀, 𝑻𝒄). (2.2) 

In the Figure 2, it is shown measurement models which can be defined in the 

system camera - object. 

 

Figure 2. Measurement models 

Z
C
 

Y
C
 

𝑋𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 

𝑋𝑖′(𝑥𝑖′, 𝑦𝑖′) 

ℎ𝑋𝑖(𝝀, 𝑻𝒄) 

𝒘𝑟𝑒𝑙 

Body-fixed 

frame 

Least 

Square 

Method 

𝝀, 𝑻𝒄 
 

ℎ𝑜𝑝𝑡 O 

𝝀, 𝑻𝒄,𝒘𝑟𝑒𝑙  

 

𝒘𝑟𝑒𝑙 

Calculate  

 

ℎ𝑓𝑠 
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Additionally, it is understood that the angular velocity 𝒘𝒓𝒆𝒍 depends on the 

local rotation with respect to BF for period of time ∆𝑡 = 𝑡1 − 𝑡0, this local rotation 

can be expressed by using quaternion as follows:  

 𝛬𝛼 = 𝛬𝑡0
−1 ∘ 𝛬𝑡1,  

where 𝛬𝑡0 and 𝛬𝑡1 represent rotation quaternions the object for initial time 𝑡0 and 

for the time 𝑡1 respectively. Additionally, 𝛬𝛼 is composed by the rotation angle α 

and its rotation axis 𝒏 as shown below:  

 𝛬𝛼 = [
𝜆0𝛼

𝝀𝛼
] = [

𝑐𝑜𝑠
𝛼

2

𝒏𝑠𝑖𝑛
𝛼

2

],  

where 𝛼 and 𝒏 are obtained by means of the next expressions 

 𝛼 = 2𝑎𝑟𝑐𝑜𝑠(𝑞0𝛼),   

 𝒏 = 𝝀𝛼𝑠𝑖𝑛(𝛼/2), 

which allow the instantaneous angular velocity to be calculated from two 

consecutive rotation for period of time ∆𝑡 as follows: 

 𝒘𝒓𝒆𝒍 =
𝛼𝒏

∆𝑡
. (2.3) 

From the above mentioned, additional measurement model can be defined as 

follows: 

 [
𝝀
𝑻𝒄

𝒘𝒓𝒆𝒍

] = ℎ𝑓𝑠(𝝀, 𝑻𝒄). (2.4) 

By using the equation (2.3), the angular velocity 𝒘𝒓𝒆𝒍 is calculated and 

showed in the Figure 3. 

Figure 3. Angular velocity (°/s) 
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As it can be observed the angular velocity calculation is strongly imprecise, 

its standard deviation 𝜎 can reach 4.47°/s, therefore to apply Kalman filter 

technique for improving the angular velocity precision is to be recommended.  

3. Extended Kalman Filter and system modeling 
In this section is given a brief introduction to the Extended Kalman filter 

(EKF) [16-18], whereby it is pretended to improve the rotation quaternion and 

angular velocity precision taking in to account the state-space models of our 

system. 

 Extended Kalman Filter 3.1.

A system can be expressed as a continuous-time as follows: 

 𝒙̇(𝑡) = 𝒇(𝒙(𝑡), 𝑡) + 𝒘(𝑡), (3.1) 

 𝒛(𝑡) = 𝒉(𝒙(𝑡)) + 𝒗(𝑡). (3.2) 

The equation (3.1) represents the motion equation of the system, where 𝒇 

represents the state transition model, which depends on the state vector 𝒙. With 

regard to the equation (3.2), 𝒛 is called the measurement vector and 𝒉 is called the 

observation model.  

Due to the fact that every system is affected by external and inherent noise, 𝒘 

and 𝒗 are supposed to be noises with Gaussian distribution with zero expected 

value, 𝒘 ∼ 𝒩(𝟎,𝑸) and 𝒗 ∼ 𝒩(𝟎,𝑹), 𝑸 and 𝑹 are assumed constants. 

Similarly, a nonlinear system can be expressed as a discrete-time system as 

follows 

 𝒙𝑘 = 𝒇(𝒙𝑘−1) + 𝒘𝑘−1, (3.3) 

 𝒛𝑘 = 𝒉(𝒙𝑘) + 𝒗𝑘,  

where 𝒘𝑘 and 𝒗𝑘 are supposed to be noises with Gaussian distribution with zero 

expected value, 𝒘𝑘  ∼ 𝒩(𝟎,𝑸) and 𝒗𝑘  ∼ 𝒩(𝟎, 𝑹). 

Considering the continuous-time nonlinear system in the equations (3.1) and 

(3.2) the EKF is described below. 

Let 𝒙̂𝑘
+ be the posteriori estimation of the state vector estimation at 𝑡𝑘 , let 

𝒙̂𝑘+1
−  be the priori estimation of the state vector at the moment of time 𝑡𝑘+1, 𝒙̂𝑘+1

−  

is calculated by integration of nonlinear equation (3.1) without considering the 

noise component 𝒘 using the state vector 𝒙̂𝑘
+ . 

The discrete Riccatti equation is used for prediction of the error covariance 

matrix vector estimation 𝑃𝑘+1
−  at time 𝑡𝑘+1 
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 𝑷𝑘+1
− = 𝑭𝑘𝑷𝑘

+𝑭𝑘
𝑇 + 𝑸, (3.4) 

where 𝑭𝑘 is the linearization of the state transition model 𝒇 in the neighborhood of 

𝒙̂𝑘
+ ,called transition matrix from the state 𝒙𝑘 to 𝒙𝑘+1 , let 𝑷𝑘

+ be the error 

covariance matrix at 𝑡𝑘.  

Due to the fact that the measurements are frequently taken in a discrete form, 

the measurement model (3.2) is given by  

 𝒛𝑘 = 𝒉(𝒙𝑘) + 𝒗𝑘,     𝒗𝑘  ∼ 𝒩(𝟎,𝑹),  

where 𝒙𝒌 = 𝒙(𝑡𝑘). The gain matrix 𝑲𝑘 can be written as 

 𝑲𝑘+1 = 𝑷𝑘+1
− 𝑯𝑘+1

𝑇 𝑺𝑘
−1, (3.5) 

 𝑺𝑘 = 𝑯𝑘+1𝑷𝑘+1
− 𝑯𝑘+1

𝑇 + 𝑹, 

where 𝑯𝑘 is the linearization of the observation model in the neighborhood of 

𝒙̂𝑘+1
− . The corrected posteriori estimation is 𝒙̂𝑘+1

+  of the Kaman filter is given by 

 𝒙̂𝑘+1
+ = 𝒙̂𝑘+1

− + 𝑲𝑘+1[𝒛𝑘+1 − 𝒉(𝒙̂𝑘+1
− )]. (3.6) 

A posteriori estimation for the error covariance matrix is given by the formula 

 𝑷𝑘+1
+ = [𝐼 − 𝑲𝑘+1𝑯𝑘+1]𝑷𝑘+1

− ,  

where 𝐼 is an identity matrix. 

The EKF algorithm for discrete-time system is remarkably similar for 

continuous-time system, but with 𝒙̂𝑘+1
−  being calculated by means of the nonlinear 

equation (3.3) without considering the noise component 𝒘𝑘−1 using the state 

vector 𝒙̂𝑘
+ .  

The error covariance matrix vector estimation 𝑷𝑘+1
−  at time 𝑡𝑘+1 is calculated 

from the equation (3.4). 

 State-space modeling 3.2.

In order to apply the Extended Kalman Filter, it is required that our system be 

represented by means of state-space model. It means that the mathematical model, 

which is formed by state transition model and observation model, of our system 

must be defined. 

It is considered to use a state-space model based on quaternion, where the 

state vector 𝒙 is represented by: 

 𝒙 = [𝝀𝑇 , 𝑻𝒄
𝑇 , 𝒘𝑟𝑒𝑙

𝑇]𝑇.  
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The vector 𝝀 represents the vector part of the rotation quaternion 𝛬 with respect to 

the CCS, 𝑻𝒄 represents the distance vector between the camera and the BF, and 

𝒘𝑟𝑒𝑙 represents angular velocity with respect to the BF.  

3.2.1. State transition model 

From the studied system shown in the Figure 1, the angular motion of the 

object can be defined by means of its rotation quaternion 𝛬, and by its angular 

velocity 𝒘𝑟𝑒𝑙. 

In kinematic, the continuous-time angular motion equation can be obtained 

using Poisson equation for relative motion using quaternions 

 𝛬̇ =
1

2
𝛬 ∘ 𝒘𝑟𝑒𝑙 , |𝛬| = 1, (3.7) 

where 𝒘𝑟𝑒𝑙 = [𝑤𝑥, 𝑤𝑦 , 𝑤𝑧]
𝑇. The equation (3.7) can be written in a matrix form 

 𝛬̇ =
1

2
𝛹(𝒘𝑟𝑒𝑙)𝛬,  

where Ψ(𝒘𝑟𝑒𝑙) is defined as follows: 

 𝛹(𝒘𝑟𝑒𝑙) = [

0 −𝑤𝑥

𝑤𝑥 0

−𝑤𝑦 −𝑤𝑧

𝑤𝑧 −𝑤𝑦

𝑤𝑦 −𝑤𝑧

𝑤𝑧 𝑤𝑦

0 𝑤𝑥

−𝑤𝑥 0

].  

The solution of the equation (3.7) for interval of time ∆𝑡, where 𝒘𝑟𝑒𝑙 is 

assumed to be constant, can be written in a linear discrete-time form:  

 𝛬𝑘 = [𝐼4𝑥4 +
1

2
𝛹𝑘−1∆𝑡]𝛬𝑘−1, ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1. (3.8) 

It is important to mention that the dynamic differential equation for angular motion 

is not considered, because the inertial matrix of the object is unknown. 

a) Discrete-time model 

From the equation (3.8), the state transition model 𝒇 can be expressed in a 

discrete-time form: 

 𝛬𝑘 = [𝐼4𝑥4 +
1

2
𝛹𝑘−1∆𝑡]𝛬𝑘−1, (3.9) 

 𝑻𝒄𝑘
= 𝑻𝒄𝑘−1

, (3.10) 

 𝒘𝑟𝑒𝑙𝑘
= 𝒘𝑟𝑒𝑙𝑘−1

. (3.11) 
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Because the state transition models for 𝑻𝒄𝑘
 and 𝒘𝑟𝑒𝑙𝑘

 are unknown, it is 

convenient to consider them to be constant for small period of time ∆𝑡. From the 

equations (3.9), (3.10) and (3.11), let 𝑭 be the linearized matrix of the state 

transition model defined as: 

 𝑭 = [

𝜕𝝀𝑘/𝜕𝒙
𝜕𝑻𝒄𝑘

/𝜕𝒙

𝜕𝒘𝑟𝑒𝑙𝑘
/𝜕𝒙

].  

In order to obtain the expression for 𝝀𝑘/𝜕𝒙 , it is performed 𝜕𝛬𝑘/𝜕𝒙  

 
𝜕𝛬𝑘

𝜕𝒙
= [

𝜕𝛬𝑘

𝜕𝝀

𝜕𝛬𝑘

𝜕𝑻𝒄

𝜕𝛬𝑘

𝜕𝒘𝑟𝑒𝑙
].  

The equation (3.9) can be expressed as follows:  

 𝛬𝑘 = 𝛬𝑘−1 +
1

2
𝛹𝑘−1𝛬𝑘−1∆𝑡,  

then 𝜕𝛬𝑘/𝜕𝝀 is  

 
𝜕𝛬𝑘

𝜕𝝀
=

𝜕𝛬𝑘−1

𝜕𝝀
+

∆𝑡

2

𝜕(𝛹𝑘−1𝛬𝑘−1)

𝜕𝝀
, (3.12) 

where 𝜕𝛬𝑘−1/𝜕𝝀 is: 

 
𝜕𝛬𝑘−1

𝜕𝝀
=

[
 
 
 
−𝜆1

𝜆0

−𝜆2

𝜆0

−𝜆3

𝜆0

1 0 0
0 1 0
0 0 1 ]

 
 
 

  

and 𝜕(Ψ𝑘−1𝛬𝑘−1)/𝜕𝝀 is: 

 
𝜕(𝛹𝑘−1𝛬𝑘−1)

𝜕𝝀
=

[
 
 
 
 
 

−𝑤𝑥
−𝜆1

𝜆0
𝑤𝑥

−𝜆1

𝜆0
𝑤𝑦 − 𝑤𝑧

−𝜆1

𝜆0
𝑤𝑧 − 𝑤𝑦

−𝑤𝑦

−𝜆2

𝜆0
𝑤𝑥 + 𝑤𝑧

−𝜆2

𝜆0
𝑤𝑦

−𝜆2

𝜆0
𝑤𝑧 − 𝑤𝑥

−𝑤𝑧
−𝜆3

𝜆0
𝑤𝑥 − 𝑤𝑦

−𝜆3

𝜆0
𝑤𝑦 + 𝑤𝑥

−𝜆3

𝜆0
𝑤𝑧 ]

 
 
 
 
 

.  

Thus, 𝜕𝛬𝑘/𝜕𝝀 from the equation (3.12) can be rewritten as follows: 
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𝜕𝛬𝑘

𝜕𝝀
=

[
 
 
 
 
 
 
𝜕𝑞0

𝜕𝝀
𝜕𝑞1

𝜕𝝀
𝜕𝑞2

𝜕𝝀
𝜕𝑞3

𝜕𝝀 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 −

𝜆1

𝜆0
−

𝑤𝑥∆𝑡

2

1 −
𝜆1

𝜆0

𝑤𝑥∆𝑡

2

−
𝜆1

𝜆0

𝑤𝑦∆𝑡

2
−

𝑤𝑧∆𝑡

2

−
𝜆1

𝜆0

𝑤𝑧∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝜆2

𝜆0
−

𝑤𝑦∆𝑡

2

−
𝜆2

𝜆0

𝑤𝑥∆𝑡

2
+

𝑤𝑧∆𝑡

2

1 −
𝜆2

𝜆0

𝑤𝑦∆𝑡

2

−
𝜆2

𝜆0

𝑤𝑧∆𝑡

2
−

𝑤𝑥∆𝑡

2

−
𝜆3

𝜆0
−

𝑤𝑧∆𝑡

2

−
𝜆3

𝜆0

𝑤𝑥∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝜆3

𝜆0

𝑤𝑦∆𝑡

2
+

𝑤𝑥∆𝑡

2

1 −
𝜆3

𝜆0

𝑤𝑧∆𝑡

2 ]
 
 
 
 
 
 

,  

then the 𝜕𝝀𝑘/𝜕𝝀 is: 

 
𝜕𝝀𝑘

𝜕𝝀
=

[
 
 
 
 
𝜕𝜆1

𝜕𝝀
𝜕𝜆2

𝜕𝝀
𝜕𝜆3

𝜕𝝀 ]
 
 
 
 

=

[
 
 
 
 1 −

𝜆1

𝜆0

𝑤𝑥∆𝑡

2

−
𝜆1

𝜆0

𝑤𝑦∆𝑡

2
−

𝑤𝑧∆𝑡

2

−
𝜆1

𝜆0

𝑤𝑧∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝜆2

𝜆0

𝑤𝑥∆𝑡

2
+

𝑤𝑧∆𝑡

2

1 −
𝜆2

𝜆0

𝑤𝑦∆𝑡

2

−
𝜆2

𝜆0

𝑤𝑧∆𝑡

2
−

𝑤𝑥∆𝑡

2

−
𝜆3

𝜆0

𝑤𝑥∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝜆3

𝜆0

𝑤𝑦∆𝑡

2
+

𝑤𝑥∆𝑡

2

1 −
𝜆3

𝜆0

𝑤𝑧∆𝑡

2 ]
 
 
 
 

.  

Because 𝛬𝑘 does not depend on 𝑻𝒄, the expression for 𝜕𝛬𝑘/𝜕𝑻𝒄 is a null 

matrix, thus 𝜕𝝀𝑘/𝜕𝑻𝒄 is: 

 
𝜕𝝀𝑘

𝜕𝑻𝒄
= 03𝑥3.  

Additionally, 𝜕𝛬𝑘/𝜕𝒘𝑟𝑒𝑙 is 

 
𝜕𝛬𝑘

𝜕𝒘𝑟𝑒𝑙
= [

𝜕𝜆0

𝜕𝒘𝑟𝑒𝑙

𝜕𝝀𝑘

𝜕𝒘𝑟𝑒𝑙

] = [

−𝜆1

𝜆0

𝜆3

−𝜆2

−𝜆2

−𝜆3

𝜆0

𝜆1

−𝜆3

𝜆2

−𝜆1

𝜆0

], 

where 𝜕𝝀𝑘/𝜕𝒘𝑟𝑒𝑙 is 

 
𝜕𝒒𝑘

𝜕𝒘𝑟𝑒𝑙
= [

𝜆0 −𝜆3 𝜆2

𝜆3 𝜆0 −𝜆1

−𝜆2 𝜆1 𝜆0

].  

From the equations (3.10) and (3.11), the 𝜕𝑻𝒄𝑘
/𝜕𝒙 and 𝜕𝒘𝑟𝑒𝑙𝑘

/𝜕𝒙 are 

expressed as follows: 

 
𝜕𝑻𝒄𝑘

𝜕𝒙
= [03𝑥3 𝐼3 03𝑥3],  

 
𝜕𝒘𝑟𝑒𝑙𝑘

𝜕𝒙
= [03𝑥3 03𝑥3 𝐼3]. 
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b) Continuous-time model 

The State-space model based on quaternions can be expressed in a 

continuous-time form: 

 𝛬̇ =
1

2
𝛬 ∘ 𝒘𝑟𝑒𝑙 , |𝛬| = 1, (3.13) 

 𝑻𝒄̇ = 𝟎3𝑥1, (3.14) 

 𝒘̇𝑟𝑒𝑙 = 𝟎3𝑥1. (3.15) 

Let 𝑭𝑪𝒐𝒏𝒕 be the linearized matrix of state transition model for continuous 

time model defined as: 

 [
𝛿𝝀̇
𝛿𝑻𝒄̇

𝛿𝒘̇𝑟𝑒𝑙

] = 𝑭𝑪𝒐𝒏𝒕 [
𝛿𝝀
𝛿𝑻𝒄

𝛿𝒘𝑟𝑒𝑙

] ,  

where  

 𝑭𝑪𝒐𝒏𝒕 = [
−[𝒘𝑟𝑒𝑙]𝑥

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

0.5𝑰𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

], (3.16) 

where [𝒘𝑟𝑒𝑙]𝑥 is a skew-symmetric matrix defined as follows: 

 [𝒘𝑟𝑒𝑙]𝑥 = [

0 −𝑤𝑧 𝑤𝑦

𝑤𝑧 0 −𝑤𝑥

−𝑤𝑦 𝑤𝑥 0
]. 

From the continuous-time model, its linearized matrix 𝑭𝑪𝒐𝒏𝒕 shows that 

𝛿𝒘̇𝑟𝑒𝑙/𝛿𝒙 results in a null matrix 𝟎𝟑𝒙𝟗, and further it is analyzed its effect in the 

Kalman gain matrix 𝑲𝑘 and in the angular velocity estimation. 

 

3.2.2. Observation model 

Observation model is a function that provides information whereby directly or 

indirectly allow for estimation of the state of the system. Therefore, an observation 

model is closely related to the sensors function which is represented by the camera. 

By means of the measurement model ℎ𝑋𝑖
(𝝀, 𝑻𝒄) defined in (2.1), let the 

observation model 𝒉𝝀 be defined as follows: 
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 𝒉𝝀(𝒙) =

[
 
 
 
 
 
 
 
𝑥𝑝1

𝑦𝑝1
𝑥𝑝2

𝑦𝑝2
𝑥𝑝3

𝑦𝑝3
𝑥𝑝4

𝑦𝑝4]
 
 
 
 
 
 
 

=

[
 
 
 
 
ℎ𝑋1

(𝝀, 𝑇𝑐)

ℎ𝑋2
(𝝀, 𝑇𝑐)

ℎ𝑋3
(𝝀, 𝑇𝑐)

ℎ𝑋4
(𝝀, 𝑇𝑐)]

 
 
 
 

, (3.17) 

where is performed the projection of the points 𝑋1, 𝑋2, 𝑋3 and 𝑋4 into the image, 

the minimum amount of points is 4 [15]. Then, let 𝑯𝝀 be the linearized matrix of 

the observation model 𝒉𝝀 as follows: 

 𝑯𝝀 =

[
 
 
 
 
𝜕ℎ𝑋1

/𝜕𝒙

𝜕ℎ𝑋2
/𝜕𝒙

𝜕ℎ𝑋3
/𝜕𝒙

𝜕ℎ𝑋4
/𝜕𝒙]

 
 
 
 

, (3.18) 

 
𝜕ℎ𝑋𝑖

𝜕𝒙
= [

𝜕ℎ𝑋𝑖

𝜕𝝀

𝜕ℎ𝑋𝑖

𝜕𝑻𝒄

𝜕ℎ𝑋𝑖

𝜕𝒘𝑟𝑒𝑙
] , 𝑖 = 1,… ,4.  

Because ℎ𝑋𝑖
 does not depend on 𝒘𝑟𝑒𝑙, 𝜕ℎ𝑋𝑖

/𝜕𝒘𝑟𝑒𝑙  is a null matrix 02𝑥3. In [15] the 

derivative 𝜕ℎ𝑋1
/𝜕𝝀 is as follows:  

 
𝜕ℎ𝑋𝑖

𝜕𝝀
=

𝜕ℎ𝑋𝑖

𝜕𝑅

𝜕𝑅(𝝀)

𝜕𝝀
, 

 
𝜕ℎ𝑋𝑖

𝜕𝑅
= [

𝜕𝑥𝑝𝑖

𝜕𝑅
𝜕𝑦𝑝𝑖

𝜕𝑅

], 

where 𝜕𝑦𝑝𝑖
/𝜕𝑅 and 𝜕𝑥𝑝𝑖

/𝜕𝑅 are 

𝜕𝑦𝑝𝑖

𝜕𝑅
= 𝑓𝑦 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑅
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑅
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑅
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑅
] + (2𝑝2𝑦𝑐𝑝𝑖

+ 2𝑝1𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑅
+

(2𝑝2𝑥𝑐𝑝𝑖
+ 6𝑝1𝑦𝑐𝑝𝑖

)
𝜕𝑦𝑐𝑝𝑖

𝜕𝑅
),  
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𝜕𝑥𝑝𝑖

𝜕𝑅
= 𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑥𝑐𝑝𝑖

𝜕𝑅
+ 𝑥𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑅
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑅
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑅
] + (2𝑝1𝑦𝑐𝑝𝑖

+ 6𝑝2𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑅
+

(2𝑝1𝑥𝑐𝑝𝑖
+ 2𝑝2𝑦𝑐𝑝𝑖

)
𝜕𝑦𝑐𝑝𝑖

𝜕𝑅
) + 𝑠𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑅
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑅
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑅
+

𝑘3
𝜕(𝑟𝑖

6)

𝜕𝑅
] + (2𝑝2𝑦𝑐𝑝𝑖

+ 2𝑝1𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑅
+ (2𝑝2𝑥𝑐𝑝𝑖

+ 6𝑝1𝑦𝑐𝑝𝑖
)

𝜕𝑦𝑐𝑝𝑖

𝜕𝑅
),  

  𝐷𝑟𝑖
= 1 + 𝑘1𝑟𝑖

2 + 𝑘2𝑟𝑖
4 + 𝑘3𝑟𝑖

6, 

 
𝜕(𝑟𝑖

2)

𝜕𝑅
= 2[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑅
, 

 
𝜕(𝑟𝑖

4)

𝜕𝑅
= 2𝑟𝑖

2 𝜕(𝑟𝑖
2)

𝜕𝑅
= 4(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2) [𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑅
,  

 
𝜕(𝑟𝑖

6)

𝜕𝑅
= 3𝑟𝑖

4 𝜕(𝑟𝑖
2)

𝜕𝑅
= 6(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2)

2
[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑅
, 

 
𝜕𝑋𝑐𝑝𝑖

𝜕𝑅
= [

𝜕𝑥𝑐𝑝𝑖

𝜕𝑅
𝜕𝑦𝑐𝑝𝑖

𝜕𝑅

] = [

𝑥𝑖

𝑧𝑐𝑖

0 −
𝑥𝑐𝑖

𝑧𝑐𝑖
2 𝑥𝑖

𝑦𝑖

𝑧𝑐𝑖

0 −
𝑥𝑐𝑖

𝑧𝑐𝑖
2 𝑦𝑖

𝑧𝑖

𝑧𝑐𝑖

0 −
𝑥𝑐𝑖

𝑧𝑐𝑖
2 𝑧𝑖

0
𝑥𝑖

𝑧𝑐𝑖

−
𝑦𝑐𝑖

𝑧𝑐𝑖
2 𝑥𝑖 0

𝑦𝑖

𝑧𝑐𝑖

−
𝑦𝑐𝑖

𝑧𝑐𝑖
2 𝑦𝑖 0

𝑧𝑖

𝑧𝑐𝑖

−
𝑦𝑐𝑖

𝑧𝑐𝑖
2 𝑧𝑖

],  

and the expression for 𝜕𝑅/𝜕𝝀 is 

 
𝜕𝑅

𝜕𝝀
=

[
 
 
 
 
 
 
 
 
 

0 −4𝜆2 −4𝜆3

2𝜆2 − 2𝜆3𝜆1/𝜆0 2𝜆1 − 2𝜆3𝜆2/𝜆0 2𝜆0 − 2𝜆3𝜆3/𝜆0

2𝜆3 + 2𝜆2𝜆1/𝜆0 −2𝜆0 + 𝜆2𝜆2/𝜆0 2𝜆1 + 2𝜆2𝜆3/𝜆0

2𝜆2 + 2𝜆3𝜆1/𝜆0 2𝜆1 + 2𝜆3𝜆2/𝜆0 −2𝜆0 + 2𝜆3𝜆3/𝜆0

−4𝜆1 0 −4𝜆3

2𝜆0 − 2𝜆1𝜆1/𝜆0 2𝜆3 − 2𝜆1𝜆2/𝜆0 2𝜆2 − 2𝜆1𝜆3/𝜆0

2𝜆3 − 2𝜆2𝜆1/𝜆0 2𝜆0 − 2𝜆2𝜆2/𝜆0 2𝜆1 − 2𝜆2𝜆3/𝜆0

−2𝜆0 + 2𝜆1𝜆1/𝜆0 2𝜆3 + 2𝜆1𝜆2/𝜆0 2𝜆2 + 2𝜆1𝜆3/𝜆0

−4𝜆1 −4𝜆2 0 ]
 
 
 
 
 
 
 
 
 

.  

In [15] the derivative 𝜕ℎ𝑋1
/𝜕𝑻𝒄 is defined as follows: 

 
𝜕ℎ𝑋𝑖

𝜕𝑻𝒄
= [

𝜕𝑥𝑝𝑖

𝜕𝑻𝒄

𝜕𝑦𝑝𝑖

𝜕𝑻𝒄

], 

𝜕𝑥𝑝𝑖

𝜕𝑻𝒄
= 𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+ 𝑥𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑻𝒄
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑻𝒄
] + (2𝑝1𝑦𝑐𝑝𝑖

+ 6𝑝2𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+

(2𝑝1𝑥𝑐𝑝𝑖
+ 2𝑝2𝑦𝑐𝑝𝑖

)
𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
) + 𝑠𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑻𝒄
+

𝑘3
𝜕(𝑟𝑖

6)

𝜕𝑻𝒄
] + (2𝑝2𝑦𝑐𝑝𝑖

+ 2𝑝1𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+ (2𝑝2𝑥𝑐𝑝𝑖

+ 6𝑝1𝑦𝑐𝑝𝑖
)

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
),  
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𝜕𝑦𝑝𝑖

𝜕𝑻𝒄
= 𝑓𝑦 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑻𝒄
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑻𝒄
] + (2𝑝2𝑦𝑐𝑝𝑖

+ 2𝑝1𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+

(2𝑝2𝑥𝑐𝑝𝑖
+ 6𝑝1𝑦𝑐𝑝𝑖

)
𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
),   

 
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
= 2[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
,  

 
𝜕(𝑟𝑖

4)

𝜕𝑻𝒄
= 2𝑟𝑖

2 𝜕(𝑟𝑖
2)

𝜕𝑻𝒄
= 4(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2) [𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
,  

 
𝜕(𝑟𝑖

6)

𝜕𝑻𝒄
= 3𝑟𝑖

4 𝜕(𝑟𝑖
2)

𝜕𝑻𝒄
= 6(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2)

2
[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
,  

 
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
= [

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄

] = [

1

𝑧𝑐𝑖

0 −
𝑥𝑐𝑖

𝑧𝑐𝑖
2

0
1

𝑧𝑐𝑖

−
𝑦𝑐𝑖

𝑧𝑐𝑖
2

]. 

Because of the high non-linearity of the observation model 𝒉𝝀 the EKF is not 

convenient, and it would require more analysis for future work. 

From the measurement model ℎ𝑜𝑝𝑡 defined in (2.2) the observation model 

𝒉𝒐𝒑𝒕 can be defined as follows: 

 [
𝝀
𝑻𝒄

] = 𝒉𝒐𝒑𝒕(𝝀, 𝑻𝒄). (3.19) 

Let 𝑯𝒐𝒑𝒕 be the linearized matrix of the observation model 𝒉𝒐𝒑𝒕 defined as: 

 𝑯𝒐𝒑𝒕 =
𝜕𝒉𝒐𝒑𝒕

𝜕𝒙
= [

𝜕𝝀

𝜕𝒙
𝜕𝑻𝒄

𝜕𝒙

] = [
𝑰𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝑰𝟑 𝟎𝟑𝒙𝟑
], (3.20) 

where 𝑰𝟑 is identity matrix. 

Below, it is analyzed the effect of missing angular velocity measurement in 

the Kalman gain matrix 𝑲𝑘, Let the continuous-time system for angular motion be 

defined as: 

 𝛬̇ =
1

2
𝛬 ∘ 𝒘𝑟𝑒𝑙 , |𝛬| = 1,   

 𝒘̇𝑟𝑒𝑙 = 𝟎3𝑥1.  

From the expression (3.16), let us define the state-transition model 

 𝑭𝑘 = [
−[𝒘𝑟𝑒𝑙]𝑥 0.5𝑰𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑
],  
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and the observation model 

 𝑯𝑘 = [𝑰𝟑𝒙𝟑 𝟎𝟑𝒙𝟑],  

where only rotation quaternion measurement is available. 

Let us define the covariance of the process noise 

 𝑸 = [
𝑄1 𝑄2
𝑄3 𝑄4

], 

where 𝑄1, 𝑄2, 𝑄3, and 𝑄4 are 3x3 matrices. The covariance of the observation 

noise 𝑹 is a 3x3 matrix. The matrices 𝑸 and 𝑹 are considered to be constants. 

The error covariance matrix is 

 𝑷𝑘
+ = [

𝑃1 𝑃2
𝑃3 𝑃4

], 

where 𝑃1, 𝑃2, 𝑃3, and 𝑃4 are 3x3 matrices. 

From the expression (3.4), is obtained the Predicted error covariance 𝑷𝑘+1
−  

 𝑷𝑘+1
− = [

Υ 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑
] + 𝑸, 

where 

Υ = −[𝒘𝑟𝑒𝑙]𝑥(𝑃1 [𝒘𝑟𝑒𝑙]𝑥 + 0.5𝑃2) + 0.5(𝑃3[𝒘𝑟𝑒𝑙]𝑥 + 0.5𝑃4) 

From the expression (3.5) Kalman gain matrix 𝑲𝑘 is calculated  

𝑲𝑘 = [
Υ𝑺𝑘

−1

𝟎𝟑𝒙𝟑
] + [

𝑄1𝑺𝑘
−1

𝑄3𝑺𝑘
−1], 

𝑺𝑘 = Υ +  𝑄1 + 𝑹. 

From the previous results are deducted that the angular velocity estimation 

depends on 𝑄3, 𝑄1 and 𝑹. 

The matrix 𝑹 can be determined by performing measurements. The 

covariance of the process noise 𝑸, in contrast, it requires a tuning process for each 

element which is highly complex. To avoid this complexity the number of 

elements is reduced by considering 𝑸 to be diagonal. However, a diagonal matrix 

𝑸 turns the submatrix 𝑄3 to be a null matrix, in consequence, the matrix it 𝑲𝑘 

keep the angular velocity estimation constant. 

As an alternative solution, in order to use a diagonal matrix 𝑸, consist of 

sending angular velocity information through the measurements into the Kalman 

filter. The angular velocity can be calculated by the formula (2.3). 
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As it has been mentioned, to add angular velocity measurements to the 

observation model is required. Thus, from the measurement model ℎ𝑓𝑠, defined in 

the equation (2.4), the observation model 𝒉𝒇𝒔 can be defined as follows: 

 [
𝝀
𝑻𝒄

𝒘𝑟𝑒𝑙

] = 𝒉𝒇𝒔(𝝀, 𝑻𝒄, 𝒘𝑟𝑒𝑙). (3.21) 

Let 𝑯𝒇𝒔 be the linearized matrix of the observation model 𝒉𝒇𝒔 defined as: 

 𝑯𝒇𝒙 =
𝜕𝒉𝒇𝒙

𝜕𝒙
=

[
 
 
 
 

𝜕𝝀

𝜕𝒙
𝜕𝑻𝒄

𝜕𝒙
𝜕𝒘

𝜕𝒙 ]
 
 
 
 

= [

𝑰𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝑰𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝑰𝟑

].  

It can be noticed that the observation model 𝒉𝒐𝒑𝒕 has the advantage of being 

represented by a linear function 𝑯𝒐𝒑𝒕 in the equation (3.20). However, for 

measuring 𝒉𝒐𝒑𝒕 in addition to point detection, it requires more computational time 

because of the Least Square Method, see Figure 4. The observation model 𝒉𝝀, in 

contrast, does only require point detection, but it is strongly nonlinear. 

 

It is important to mention that in discrete-time system and in continuous-time 

system, the observation models are in discrete-time form, because the 

measurements, in most physical continuous-time system, are frequently taken in a 

discrete form. Thus, the observation models 𝒉𝝀, 𝒉𝒐𝒑𝒕 and 𝒉𝒇𝒔 are completely 

suitable for the continuous-time state transition model. However, as it has been 

𝑋1 

𝒘𝑟𝑒𝑙 

Body-fixed frame 

𝒉𝝀 𝒉𝒐𝒑𝒕 𝒉𝒇𝒔 

Point 

detection 
Least 

Squares 

Method 

𝑋1

𝑋2

𝑋3

𝑋4

 
𝝀
𝑻𝒄

 

𝝀
𝒘𝑟𝑒𝑙

𝑻𝒄

 

𝑋2 

𝑋3 

𝑋4 

Calculate 

𝒘𝑟𝑒𝑙 

Figure 4. Observation models 
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mentioned, angular velocity measurements for the continuous-time is required 

(3.1). Thus, the observation model 𝒉𝒇𝒔 is suitable for the continuous-time model 

(3.13). 

With regard to discrete-time model, its linearized matrix 𝑭𝑫𝒊𝒔𝒄 shows that its 

component 𝜕𝒘𝑟𝑒𝑙𝑘
/𝜕𝒙 is different than a null matrix, it gives the possibility to use 

the observation models 𝒉𝒐𝒑𝒕 and 𝒉𝒇𝒔. 

4. Experiment and results 
In this section, the results of the orientation quaternion and angular velocity 

estimation by means of a rotating table are presented. 

The facilities are shown in the Figure 5 , where Aruco marker [13-14] is used 

to allow to establish the correspondence between the points in the coordinate 

system 𝑂𝑋𝑌𝑍 and the points located in the images. This marker is installed on the 

rotating table in a way that the maker will be rotated around its axis-Z.  

The camera FI8918W, previously calibrated [15], is used to capture the Aruco 

marker’s movement every period of time ∆𝑡, where ∆𝑡 = 1/15 seconds.  

In order to estimate the orientation quaternion and the angular velocity of the 

Aruco marker, the EKF is implemented in according to the section 3. 

Let 𝒙 = [𝝀𝑇 , 𝒘𝑟𝑒𝑙
𝑇]𝑇 be the state vector of the continuous-time state space 

model where 𝝀 = [𝜆1, 𝜆2, 𝜆3]
𝑻 is the vector part of orientation quaternion 𝜦. This 

quaternion represents the Aruco marker’s attitude with respect to the camera. 

𝑋1 𝑋2 

𝑋3 
𝑋4 

𝑤𝑟𝑒𝑙 

Figure 5. Rotary table rotates on the axis-Z 
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The vector 𝒘𝑟𝑒𝑙 = [𝑤𝑥, 𝑤𝑦 , 𝑤𝑧]
𝑇
 represents the local angular velocity, with 

respect to the coordinate system 𝑂𝑋𝑌𝑍. 

The process model is represented by the equations (3.13) and (3.15). The 

observation model is based on the equation (3.21) and is defined as follows:  

𝒁 = [
𝝀

𝒘𝑟𝑒𝑙
] = 𝒉𝒇𝒔(𝝀,𝒘𝑟𝑒𝑙). 

The translation vector 𝑻𝒄 in equation (3.10) is not taken into account because 

the angular motion of the object is analyzed. 

The process model integration is performed every period of time ∆𝑡 by means 

of the Runge-Kutta 4
th
 order method. 

The covariance matrices of the process noise and observation noise were 

determined experimentally by means of a graphical user interface (GUI) developed 

in Python 3.7 during this work. This GUI is implemented in order to fine-tune the 

covariance matrix. The covariance matrix of the process noise 𝑸 is started with a 

diagonal matrix with values equal to 1e-8, then by means of the mentioned GUI, 

the matrix components are tuned obtaining the next matrix 𝑸 as follows: 

 𝑸 = 𝑑𝑖𝑎𝑔([𝜎𝑞1
2 ,𝜎𝑞2

2 , 𝜎𝑞3
2 , 𝜎𝑞4

2 , 𝜎𝑞5
2 , 𝜎𝑞6

2 ]), 

where 𝜎𝑞1
2 =1e-8, 𝜎𝑞2

2 =1e-8, 𝜎𝑞3
2 =1e-8, 𝜎𝑞4

2 =9.243e-5, 𝜎𝑞5
2 =1.329e-4, 𝜎𝑞6

2 =2.172e-5. 

On the other hand, the covariance matrix of the observation noise 𝑹 was 

determined by performing measurements when the rotating table is static,  

 𝑹 = 𝑑𝑖𝑎𝑔([𝜎𝑟1
2 ,𝜎𝑟2

2 , 𝜎𝑟3
2 , 𝜎𝑟4

2 , 𝜎𝑟5
2 , 𝜎𝑟6

2 ]), 

where 𝜎𝑟1
2 =5.4e-9, 𝜎𝑟2

2 =1e-8, 𝜎𝑟3
2 =1e-7, 𝜎𝑟4

2 =1e-4, 𝜎𝑟5
2 =3e-4, 𝜎𝑟6

2 =5e-5. 

 

Similarly, the state vector x is also used for the discrete-time model, its 

process model is represented by the equation (3.9) and (3.11). The observation 

model is based on the equation (3.19) as follows: 

 𝝀 = 𝒉𝒐𝒑𝒕(𝝀). 

The translation vector 𝑻𝒄 from equation (3.14) is not taken into account. The 

covariance matrix of the process noise 𝑸𝒌 is determined by means of tuning 

process: 

 𝑸𝒌 = 𝑑𝑖𝑎𝑔([𝜎𝑞𝑘1
2 ,𝜎𝑞𝑘2

2 , 𝜎𝑞𝑘3
2 , 𝜎𝑞𝑘4

2 , 𝜎𝑞𝑘5
2 , 𝜎𝑞𝑘6

2 ]), 

where 𝜎𝑞𝑘1
2 =1e-8, 𝜎𝑞𝑘2

2 =5e-8, 𝜎𝑞𝑘3
2 =1e-8, 𝜎𝑞𝑘4

2 =6.29e-6, 𝜎𝑞𝑘5
2 =4.5e-6, 𝜎𝑞𝑘6

2 =2.47e-6. 

The covariance of the observation noise 𝑹𝒌 is  
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 𝑹𝒌 = 𝑑𝑖𝑎𝑔([𝜎𝑟𝑘1
2 ,𝜎𝑟𝑘2

2 , 𝜎𝑟𝑘3
2 ]), 

where 𝜎𝑟𝑘1
2 =5.4e-9, 𝜎𝑟𝑘2

2 =1e-8, 𝜎𝑟𝑘3
2 =1e-7. 

The covariance matrices of the process noise and observation noise were 

determined experimentally by means of a graphical user interface (GUI) developed 

in Python 3.7 during this work. This GUI is implemented in order to fine-tune the 

covariance matrix. 

An experiment has been performed where the rotating table rotates in 90° 

around the axis-Z, see Figure 5. The next pictures shown three graphics defined as 

follows: 

 Red line: Measurement without filter. 

 Green line: Results for EKF using the continuous-time process model 

integrated every period of time ∆𝑡 by means of the Runge-Kutta 4
th
 order 

method. 

 Blue lines: Results for EKF using the discrete-time process model. 

The components of the vector part 𝝀 of the rotation quaternion are shown in 

the Figure 6. 

 

(a) Quaternion component 𝜆1 (b) Quaternion component 𝜆2 

(c) Quaternion component 𝜆3 

Figure 6. Components of the vector part of the unit quaternion  

Quaternion 𝜆1 Quaternion 𝜆2 

Quaternion 𝜆3 
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In the next table, the mean (𝜇) and standard deviation (𝜎) for the vector 𝝀 are 

calculated for the first 30 seconds of the experiment, when the rotating table is 

static. 

It can be seen that as for the orientation, which is determined by the 

quaternions, there was no significant improvement, this is because the 

measurement models 𝒉𝒇𝒔 and 𝒉𝒐𝒑𝒕 are already accurate for orientation 

determination. 

Table 1  

Quaternion measurements for the first 30 seconds for a static rotating table 

 Mean (𝝁) Standard deviation (𝝈) 

 𝝁𝒎𝒆𝒂𝒔 𝝁𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝁𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 𝝈𝒎𝒆𝒂𝒔 𝝈𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝈𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 

𝝀𝟏 0.9646 0.9646 0.9646 0.00009 0.00009 0.000069 

𝝀𝟐 0.0566 0.0566 0.0566 0.0001 0.0001 0.0001 

𝝀𝟑 -0.0533 -0.0533 -0.0533 0.0004 0.0004 0.0002 

 

In the Figure 7, the results for the angular velocity estimation are  shown. It 

can be noticed that there is a remarkable increase in precision. 

(a) Angular velocity along the axis-X (b) Angular velocity along the axis-Y 

(c) Angular velocity along the axis-Z 

Figure 7. Angular velocity with respect to the coordinate system OXYZ 
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In the Table 2, it is shown the mean (𝜇) and standard deviation (𝜎) 

measurements of the angular velocity for the first 30 seconds of the experiment, 

when the rotating table is static. It can be seen that the precision increase can reach 

up to 89.7% by means of the Discrete EKF, it is a better option than the 

Continuous-time EKF which can reach up to 70.3%. However, it is important to 

mention that the previous results depend on the efficiency for covariance matrices 

determination. On the other hand, it is remarkable that an important precision 

increase is obtained with regard to angular velocity estimation.  

Table 2  

Angular velocity measurements for the first 30 seconds  

for a static rotating table 

 Mean (°/s) Standard deviation (°/s) Improve (%) 

 𝝁𝒎𝒆𝒂𝒔 𝝁𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝁𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 𝝈𝒎𝒆𝒂𝒔 𝝈𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝈𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 Cont.EKF Disc.EKF 
𝒘𝒙 0.00 0.0019 -0.001 0.84 0.15 0.086 82.1 89.7 

𝒘𝒚 0.00 -0.0012 -0.004 0.99 0.13 0.113 86.8 88.5 

𝒘𝒛 0.00 -0.0016 -0.005 0.40 0.12 0.050 70.3 87.5 

 

In the Figure 8 the angle of rotation around the axis-Z is shown, and as it is 

expected the estimated one is close to 90° with an error of not more than 0.1°. 

 

The rotation angle is not calculated by angular velocity integration, but it is 

measured taking into account the first rotation quaternion to the current rotation 

quaternion. As for the rotation quaternion, the angle rotated there is no significant 

improvement because the measurement models 𝒉𝒇𝒔 and 𝒉𝒐𝒑𝒕 are already accurate. 

Measurement: 

μ : 90.08 °, σ : 0.02 ° 
Disc. EKF: 

μ : 90.08 ° , σ : 0.02 ° 
Cont. EKF: 

μ : 90.08 ° , σ : 0.02 ° 

Figure 8. Angle rotated (°) around the axis-Z 
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Conclusion 

This work is dedicated to the problem of estimating the orientation quaternion 

of an object and its angular velocity at the same time by image processing. The 

apporach based on the integration of the measurement model, adapted for the use 

of quaternions, to the system camera – object, where the the EKF is implemented 

for the orientation quaternion and angular velocity estimation. 

The EKF has been implemented taking into account the rotation quaternion 

and angular velocity as state variables, the results showed a significatly accuracy 

increase for angular velocity estimation. As for the rotation quaternion, there was 

no significant improvement, this is because the measurement is already accurate. 
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