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Ñ.Â. Åðøîâ, Ì.Ñ. Êîïûëîâ, À.Ã. Âîëîáîé

Îïòèìàëüíûå âåñà äëÿ ñëó÷àÿ òðåõ ñòðàòåãèé â äâóíàïðàâëåí-
íîé òðàññèðîâêå ëó÷åé ñ ôîòîííûìè êàðòàìè

Äâóíàïðàâëåííàÿ ñòîõàñòè÷åñêàÿ òðàññèðîâêà ëó÷åé ñ ôîòîííûìè êàð-

òàìè � ãèáêèé è ìîùíûé ìåòîä, îäíàêî ñòðàäàþùèé îò øóìà â èòîãîâîì

èçîáðàæåíèè. Äëÿ åãî ñíèæåíèÿ èñïîëüçóåòñÿ âûáîðêà ñ ìíîæåñòâåííîé çíà-

÷èìîñòüþ, êîòîðàÿ îáúåäèíÿåò ðåçóëüòàòû ðàçëè÷íûõ �ñòðàòåãèé� ñ âåñàìè.

Îïòèìàëüíûå âåñà ìèíèìèçèðóþò øóì è, òàêèì îáðàçîì, îáåñïå÷èâàþò íàè-

ëó÷øåå êà÷åñòâî ðåçóëüòàòîâ. Â ñòàòüå ìû âûâîäèì è ðåøàåì ñèñòåìó èí-

òåãðàëüíûõ óðàâíåíèé, îïðåäåëÿþùèõ îïòèìàëüíûå âåñà; îíà êà÷åñòâåííî

îòëè÷àåòñÿ îò ðàíåå èññëåäîâàííîãî ñëó÷àÿ äâóõ ñòðàòåãèé. Îíà äîïóñêà-

åò ðåøåíèå â çàìêíóòîé ôîðìå êàê àëãåáðàè÷åñêóþ ôîðìóëó, âêëþ÷àþùóþ

íåñêîëüêî èíòåãðàëîâ èçâåñòíûõ ôóíêöèé, êîòîðûå ìîãóò áûòü âû÷èñëåíû

ïðè òðàññèðîâêå ëó÷åé.

Êëþ÷åâûå ñëîâà: ñòîõàñòè÷åñêàÿ òðàññèðîâêà ëó÷åé, ôîòîííûå êàðòû,

ìíîæåñòâåííàÿ âûáîðêà ïî çíà÷èìîñòè, îïòèìàëüíûå âåñà.

S.V. Ershov, M.S. Kopylov, A.G. Voloboy

Optimal Weights for Bidirectional Ray Tracing with Photon Maps
while Mixing 3 Strategies

Bidirectional stochastic ray tracing with photon maps is a powerful method
but suffers from noise. It can be reduced by the Multiple Importance Sam-
pling which combines results of different “strategies”. The “optimal weights”
minimize the noise functional thus providing the best quality of the results. In
the paper we derive and solve the system of integral equations that determine
the optimal weights. It has several qualitative differences from the previously
investigated case of mixing two strategies, but further increase of their number
beyond 3 retains the qualitative features of the system. It can be solved in a
closed form i.e. as an algebraic formula that include several integrals of the
known functions that can be calculated in ray tracing.

Key words: stochastic ray tracing, photon maps, multiple importance
sampling, optimal weights.
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Abbreviations and notations

MCRT = Monte-Carlo ray tracing

FMCRT = forward Monte-Carlo ray tracing. It is tracing of rays from light
sources toward scene objects accumulating of illumination on scene ob-
jects. Usually it is used to calculate the secondary (indirect) illumination.

BMCRT = backward Monte-Carlo ray tracing. It is tracing of rays from
camera through virtual screen toward scene objects. Usually it is used to
get the virtual scene image.

BDF = bi-directional scattering function. It describes surface luminance as
a function of the illumination and observation directions. In this paper
f(v,u,x) is BDF (in luminance units) of the surface point x for illumi-
nation direction v and viewing direction u.

BDD = backward diffuse depth. It is a specific parameter of a hybrid ray
tracing, when FMCRT calculates illumination and BMCRT is used to
convert it to the observed luminance. In this method the backward ray
usually has a limited “length” and terminates after BDD diffuse events.

(x0,x1, ...) light (or forward) path. It starts from the light source position x0.
In each vertex it can be scattered or absorbed, but keeps unit “energy”.

(y−1,y0,y1, ...) camera (or backward) path. It starts from the camera origin
y−1 which is the same for all pixels and all rays through this pixel. y0 is
the first hit which depends on pixel but is the same for all rays for this
pixel. In each vertex the ray is only scattered (never absorbed!) and its
“energy” decreases

(z0, z1, ...) joint path in which zi can be taken from either the camera or the
light subpath depending on the intersection type. The camera origin and
light source position are dropped as always fixed.

E(y0, ...,yi) camera ray energy before hitting yi+1.

n(x) local normal at surface point x.

L(xb,xa) is the full luminance at the point xa in direction −−→xaxb. Similarly,
L0(xb,xa) is the direct luminance and Ld(xb,xa) is the diffuse luminance.

R radius of the “integration sphere” (distance threshold below which the light
and camera vertices can be merged).
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S = πR2 area of the “integration sphere” (this is a 2D sphere in the tangent
plane, i.e. rather a circle).

NF the number of light rays traced during one iteration.

NB the number of camera rays traced through this pixel during one iteration.

1 Introduction

Nowadays lighting simulation is widely used in realistic computer graphics and
for designing new materials and optical systems. This group of methods mainly
includes the simulation of light transport using the Metropolis method [1] and
stochastic ray tracing [2] and their bidirectional modifications. Among them, we
consider the bidirectional Monte-Carlo ray tracing with photon maps (BDPM)
[3, 4]. The main problem of all stochastic methods is noisy result. Therefore,
the noise reduction problem is always important, and it is considered in many
works, e.g., [5, 6, 7]. The level of noise in BDPM mainly depends on the random
scattering of the forward and backward rays, on the choice of the vertex for
their merging and, finally, on the number of forward and backward rays traced
in one iteration step. The majority of studies proposed to decrease the noise
by application of the multiple importance sampling (MIS) technique [5, 6, 8].

An important foundation here is the Veach’s work [9]. Veach results are
based on the theorem which assumes independent samples. But direct appli-
cation of them to BDPM would be incorrect. The samples (i.e. full paths
connecting the source and the camera) happen to be not independent because
in BDPM the same light path is merged with many camera paths and vice
versa. So the resulting joint full paths have common part and thus they are
not independent. In [10] the problem of the optimal weights in a limited MIS
for mixing contributions from two first camera vertices was considered. This
limited case already explains the main idea of calculation of the optimal weight
for the strategies in BDPM, i.e. that unlike the famous Veach heuristic for
the optimal weight in MCRT [9], [4, 11] where they obey a system of algebraic
equations, now they obey the system of integral equations.

However, mixing just two strategies has several deficiencies. For example,
let us suppose that the BDF at the first two camera vertices is sharp, while
the 3rd vertex has a smooth BDF. Mixing of just the two strategies (gathering
illumination at the 1st and st the 2nd vertices, respectively) may choose only
among them. But gathering illumination at a point where BDF is sharp is bad
(has high noise). This can be seen from the formulae for the optimal weights
from [10]: the sharper the BDF the lower the weight for the corresponding
vertex. Therefore, mixing two strategies allows only to choose less evil among
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the two. Meanwhile the gathering illumination at the 3rd vertex with smooth
BDF will be good. Or maybe at some another (later) vertex. Therefore it is of
interest to generalize the problem to mixing more than 2 strategies.

The first step, and it is principal, is mixing of three strategies. This case in
investigated in the current work, and we shall see that it is qualitatively different
from mixing two strategies. The main reason is that while for mixing two
strategies we had only one variable weight, now we have two different families
of weights, each with its own normalization conditions. The first consists of
2 weights and one of them is dependent. The second family consists of three
weights, any two of them can be considered as independent and the remaining
one is dependent on them. In case of mixing four and more strategies the
situation already remains qualitatively the same, just there will be three and
more families of weights. All independent weights from all families are coupled
in the common system of integral equations and this holds if mixing more than
3 strategies. Meanwhile when mixing 2 strategies we had just one weight and,
correspondingly, one integral equation.

Later we shall see that the resulting system of integral equations admits
a “local” approximation when it reduces to the system of algebraic equations
because the integral terms can be neglected. For two strategies the formula
relates some values at the two vertices of which both are the “end points”.
Therefore one can not deduce what it will turn into if adding another vertex
or more of them. Meanwhile this formula for 3 vertices already admits an
“intuitive induction” and one can imagine what it must turn into for mixing 4,
5 and more strategies.

Therefore, investigation of mixing of three strategies (which correspond to
gathering illumination at the 1st, 2nd and the 3rd vertices of the camera path)
is a necessary next step. It is performed in the current paper where we shall
derive the system of equations the optimal weights obey.

2 Related works

A good overview of the studies performed by the Krivanek’s group [12] had been
recently published. It explains a wide variety of different methods, including
bi-directional path tracing, light transport etc. providing a concise explanation
of the underlying ideas followed by a list of detailed publications. We dare
recommend this course to all engaged in related areas.

There is a part just related to MIS in bi-directional path tracing (pp. 214-
246 of [12]) and a detailed paper[13]. They improve the classic Veach results
[9]. There are two different formulae to calculate the optimal weights by Veach,
named the “balance heuristic” and the “power heuristic”, and this is because
Veach minimized not the variance itself but rather its bounds. Veach theorem
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states that the true minimum noise will not deviate from this estimate much
giving the estimation of that difference. Nevertheless, the true optimization is
undoubtedly better. The resulting formulae (13) for the optimal weights in [13]
consist of the parts present in the “balance heuristic”, but with scale coefficients
α are calculated from the linear system, see eqs. (10)–(12) in [13].

The general scheme of calculation of the optimal weights in [13] and in our
papers [10, 14] is rather similar. In both approaches the noise (variance) is
a quadratic integral functional on the weights. Its minimum is then achieved
for the weights which obey a system of linear integral equations (eq. (28) in
[13] vs our (29), (30)). Their αi is somewhat similar to our Gi(x1) though the
latter depends on the space point (i.e. the vertex of the joint path). Then the
weights themselves are written as the linear combination of the integral terms
and then integrated which gives a system in that integral terms (eq. (32) from
[13] vs our eq. (38)). Our procedure though does not end here because the
integrals Gm(x1) are space functions unlike their αi and so we need yet another
iteration of a similar procedure. Eventually the optimal weights in both their
and our investigations are expressed as algebraic functions with coefficients
being integrals (averages!) of known scene functions. They can be calculated
by Monte-Carlo averaging.

So there solution is also closer to ours than the algebraic “local” formulae of
the balance or power heuristics. In spite of the “overall similarity”, our formulae
are different. For example, our weights depend on scene luminance at the joint
path vertex, while in [13] they do not. Also, our weights depend on the number
of camera rays per pixel NB and the number of light rays NF ,common to all
pixels.

The difference is because these weights are for two different variants of bi-
directional MCRT. In [13] it is the bi-directional path tracing (BDPT) while we
use the bi-directional ray tracing with photon maps (BDPM). Roughly, they
trace one light path of the desired “depth” (the number of segment) and one
camera path with the desired depth. These depths determine the “strategy”
(so it is decided a priori, as is in the classic MIS). After that the ends of these
sub-paths are connected with a straight segment, and if it is not occluded, then
we get the joint path and increment the accumulated pixel luminance by its
“importance function”. If the segment is occluded, the increment is 0. After
that the pair of light and camera paths is discarded and a new one is generated.

In BDPM, the process is basically different. We trace NB camera rays and
NF light rays, then each camera path is checked against each light path, and
if they have close vertices, these are identified and we get the joint path and
increment the accumulated pixel luminance by its “importance function”. If
their is no close vertices, the increment is 0.

As a result, the BDPT operates independent “samples” (joint paths), while
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BDPM operates dependent “samples”. Indeed, we merge the same camera sub-
path with different light paths, and thus can obtain several joint paths which
have the same “camera” tail and thus are not independent. Also, in BDPT
which follows the classic MIS approach, the “strategy” is chosen before gener-
ating the random sample, and in principle one can decide freely and arbitrary
how many samples to generate with which strategy. In BDPM the situation is
different. We do not know in advance which vertices of the light and camera
path will be close (or none), so the strategy is determined a posteriori and
depends on the sample (path). The number of samples for each strategy is thus
not controllable directly. It is even unknown in advance.

3 Bi-directional Ray Tracing with Photon
Maps

Here and below all calculations are for one pixel.
For the sake of simplicity, the total flux of all scene lights is assumed 1 to

not bother about scaling between the density of photons and irradiance. We also
assume that the light source is point one and that it is unique in the scene.

It is well known that the luminance of a pixel can be written as an aver-
age over the paths connecting light source and camera which average can be
naturally calculated with a sort of Monte-Carlo integration [9]. The problem
is efficiency. The probability that a forward or light ray hits the (usually tiny)
camera pupil is very low. Similarly, the probability that a backward or camera
ray hits a point or line light source is exactly 0.

A natural remedy is that the “light source end” is generated with the forward
MCRT (from light source) while the “camera end” is generated by the backward
MCRT (from camera) and then these two “half-paths” are somehow joined.
This “somehow” is the crucial point and there is a real lot of different methods,
mainly vertex connection, vertex merging and photon maps. All of them have
their strong and weak points, none being a magic wand. We shall investigate
the photon maps or reverse photon maps [15, 16] which is the same from noise
estimation point of view.

3.1 Base idea of BDPM

The idea of joining sub-paths in the reverse photon map method is very simple
and natural. Roughly, first we do BMCRT and its hit points are stored in the
map. Then the FMCRT starts. Whenever its ray hits a surface, we ask from
the reverse photon map all camera hits which are close to this point (i.e. the
forward ray hit is within the integration sphere about the camera hit). If it is
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Figure 1: The main idea of BDPM: we trace camera path (blue) and light path
(red) and when a vertex of the latter is close to a camera vertex, we can joint
the paths neglecting this small distance. After that the accumulated luminance
of the pixel related to the camera sub-path is incremented.

so, we unify these close vertices and thus obtain the joint path connecting the
camera and the light source (Fig. 1).

For each this joint path, we increment of luminance of pixel corresponding
to camera ray. This increment is the contribution of the joint path. For the
correct estimation of luminance this contribution must equal to the ratio of the
target probability density for this joint path (or its “importance”, [9]) to the
probability density of its generation in the above BDPM procedure. So the
contribution C equals

C =
EiBDF(yi)

S
where yi is the camera hit point where the sub-paths joint, Ei is the energy
of the camera ray before this hit (i.e. after the previous hit), BDF(x) is the
surface BDF at point x and S is the area of the integration sphere (so that
S−1 gives the estimation of the irradiance from single incident ray with unit
energy). The whole procedure is depicted in Fig. 1.

A bit more formally, if the n-th a vertex xn of the light path x0 → x1 →
· · · → xn → · · · (here x0 is the light source origin position) is near the i-th
vertex yi of the camera path y−1 → y0 → · · · → yi → · · · (here y−1 is the
camera origin where the rays for all pixels starts from), then the full path is

x0 → x1 → · · · → xn−1 → yi → · · · → y1 → y0 → y−1,

its contribution (to the pixel luminance) being

C = S−1E(y0, ...,yi−1)f(−−−−→xn−1xn,
−−−−→yiyi−1,yi)
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Figure 2: Camera and light subpaths can “intersect” at different vertices. In
this example there are two close pairs of vertices: x4 ≈ y0 and x2 ≈ y1 which
produce two different joint paths x0 → x1 → x2 → x3 → y0 → y−1 and
x0 → x1 → y1 → y0 → y−1 of different length.

where
−→
ab is the unit vector from point a to point b, f(v,u,x) is BDF (in

luminance units) of the surface point x for illumination direction v and viewing
direction u, and E(y0, ...,yi−1) is the energy of the camera ray before hitting
yi. This energy (or transmission factor in [4] terms) is defined as usual: it is 1
just after leaving the camera, i.e. E(y−1) = 1 and then

E(x0) = µ(−−−→x−1x0,x0),

E(x0, ...,xm) = µ(−−−−−→xm−1xm,xm)E(x0, ...,xm−1), m = 1, 2, ... (1)

where

µ(u,x) ≡
∫
f(v,u,x) |(v · n(x))| d2v, (2)

n(x) being the local normal at the point x.

3.2 Final form of the path contribution and the gather-

ing equation

In principle, the camera and light sub-paths can have several “intersections”
(although this is rare in case of small integration area) as shown in Fig. 2

The increment of the accumulated pixel luminance in the above example is
the sum of contributions of these two joint paths. Naturally this full increment
is just the contribution of all joint paths obtained from all intersections of the
given camera and light sub-paths.

The general formula that allows an arbitrary number of “intersections”
(close pairs of vertices) calculates the contribution from the camera path
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(y−1,y0,y1, ...) and light path (x0,x1,x2, ...) as the weighted sum

C =
∑
i≥0

∑
n≥1

K(yi − xn)wi+n,i(y0,y1, ...,yi,xn−1, ...,x1)

×E(y0, ...,yi−1)f(−−−−→xn−1xn,
−−−−→yiyi−1,yi)

over all pairs from which the merging kernel K(r) (which vanishes outside the
integration sphere, i.e. for r > R) selects the close ones. The weight wl,i ≤ 1
where l is the full “length” (the number of vertices) of the joint path and
0 ≤ i ≤ l − 1 is the index of the camera vertex where the subpaths merge can
depend on the joint path. We dropped the fixed points x0 and y−1 from the
arguments of the weight. These weights are needed to avoid multiple counting
because the same joint path can be obtained by different “strategies” i. For
this purpose

l−1∑
i=0

wl,i = 1 (3)

for each l.
REMARK. The averaging over the full paths is a sort of MCRT, though a bit special since

now different paths may be not statistically independent (which is natural since two different
full paths may have the same camera sub-path and thus be related through it). This dependence
of samples affects the variance but not the expectation. Therefore the theorems from [9] still
hold which state that (3) is sufficient for the mathematical expectation of the calculated pixel
luminance be correct. For our particular situation this is derived in Appendix B.

The term with n = 1 is for the direct illumination because the light ray
had not yet scattered before hitting the integration sphere. Meanwhile, usu-
ally in BDPM the direct illumination is taken not from the photon maps but
“deterministically”. In this case the term with n = 1 must be replaced with

wi+n,i(y0,y1, ...,yi,x0)E(y0, ...,yi−1)L0(yi−1,yi)

where L0(yi−1,yi) is the direct luminance at the point yi in direction
−−−−→yiyi−1. The contribution from the camera path (y−1,y0,y1, ...) and light path
(x0,x1,x2, ...) then becomes

C =
∑
i≥0

wi+n,i(y0,y1, ...,yi,x0)E(y0, ...,yi−1)L0(yi−1,yi)

+
∑
i≥0

∑
n≥2

K(yi − xn)wi+n,i(y0,y1, ...,yi,xn−1, ...,x1)

×E(y0, ...,yi−1)f(−−−−→xn−1xn,
−−−−→yiyi−1,yi)
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The pixel luminance is then the average of that contribution over both the
camera and light rays. The contribution C is a function of the camera and light
paths.

Notice that the above formula calculates the estimator of the pixel lumi-
nance (= the value whose average gives that luminance) as the sum over all
“intersections” at different camera vertices with corresponding weights that de-
pend on the index of that vertex. This is nothing but the Multiple Importance
Sampling (MIS for short) because it sums over all possible joint paths i.e. the
“samples” in the path averaging.

3.3 Partial MIS-3

The full MIS mixes intersections at all vertices of the given camera path and
thus includes an infinite number of weights. In spite of several obvious advan-
tages, it is expensive for the practical implementation, because it requires that
we trace camera rays to infinite depth and then store all their numerous vertices
in the (reverse) photon maps. Also it includes an infinite number of weights
which, being the functions of the joint path, may depend on an arbitrary large
number of arguments.

Therefore it makes sense to work with a limited method that operates in-
tersections at the few first camera vertices. Also, the weights in it can depend
only on the few vertices of the joint path that are closer to camera, so they are

wl,i(z0, z1, ...,zi), i = 0, ...,M, l > i

where zj are the vertices of the joint path (numbered from camera end!) which
depending from the intersection type can be taken from either the camera or
the light subpath. We drop x0 (light source position) and y−1 (camera origin)
from this set because they are always the same, fixed points.

In this formulation the weights with large first index l > M all depend on
the same number of arguments. Therefore it is possible impose the limitation
that they are all the same function:

wl,i(z0, z1, ...,zM) = wM,i(z0, z1, ...,zM), l > M, i = 0, ...,M

This means that the weights do not depend on the starting part of the light
path neither through the weight’s index nor through its arguments (the points).

Notice that these restrictions of the weights are compliant with the general
requirements on the weights in MIS [9] which require the weights being deter-
ministic functions of the joint path (but may be effectively independent of its
“tail”!) and that the sum of weight in each “family” be 1.
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Figure 3: The weight is the same in the right panel in spite of the longer initial
part of light path.

In current paper we shall consider the case when we mix contributions from
three first camera vertices (MIS-3). Now the gathering equation becomes

C = L0(y−1,y0)w1,0(y0) + E(y0)L0(y0,y1)w2,1(y0,y1)

+E(y0,y1)L0(y1,y2)w3,2(y0,y1,y2)

+K(y0 − x2)w2,0(y0,x1)f(−−→x1y0,
−−−→y0y−1,y0)

+
∑
n≥3

K(y0 − xn)w3,0(y0,xn−1,xn−2)f(−−−−→xn−1xn,
−−−→y0y−1,y0)

+
∑
n≥2

K(y1 − xn)w3,1(y0,y1,xn−1)E(y0)f(−−−−→xn−1xn,
−−→y1y0,y1)

+
∑
n≥2

K(y2 − xn)w3,2(y0,y1,y2)E(y0,y1)f(−−−−→xn−1xn,
−−→y2y1,y2) (4)

which is an obvious generalization of the case of camera path with just 2 vertices
[10]. The contribution C is a function of the camera and light paths.

Which weights relate to which intersection is depicted in Fig. 4.
These weights obey the usual normalization conditions:

w1,0(z0) = 1

w2,0(z0, z1) + w2,1(z0, z1) = 1 ∀z1

w3,0(z0, z1, z2) + w3,1(z0, z1, z2) + w3,2(z0, z1, z2) = 1 ∀z1, z2

which, as we prove in Appendix B, are sufficient to provide correct average of
pixel luminance.

4 Noise

In BDPM (with or without weights) the variance of the pixel luminance cal-
culated from NF forward rays and NB backward rays (started from the same
pixel) obeys the general law [7]:
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Figure 4: Weights for different intersections in BDPM. Here z−1, z0, z1 etc
denote the vertices of the joint path counted from camera (regardless of which
subpath they are from: camera or light). Obviously, always z−1 = y−1 is the
camera origin and z0 = y0 is the first hit which is fixed for the given pixel.

V =
1

NFNB

(
〈〈C2〉〉 − 〈〈C〉〉2

)
+

1−N−1
F

NB

(
〈〈C〉2F 〉B − 〈〈C〉〉2

)
+

1−N−1
B

NF

(
〈〈C〉2B〉F − 〈〈C〉〉2

)
(5)

Here 〈·〉B is the averaging over the BMCRT ensemble for the fixed FMCRT
ray and 〈·〉F is the averaging over the FMCRT ensemble for the fixed camera
ray. Notice the linear term 〈〈C〉〉 is independent from the order of averaging so
we drop subscripts here. It is also independent from weights, while 〈〈C2〉〉 and
〈〈C〉2F 〉B depend on them.

Averaging over the ensemble of light paths resp. camera paths is

〈·〉F =

∫
(·)pF (x1, ...,xn, ...)dx1 · · · dxn · · · (6)

〈·〉B =

∫
(·)pB(y0,y1,y2)dy1dy2 (7)

where pF and pB are the probability densities of the light and camera paths (the
latter for fixed given pixel). Since we assume that FMCRT uses Russian roulette
to kill rays while keeps ray energy, pF is not normalized. These densities can be
calculated from the recurrence relations similar to that in [4], see Appendix
A. The fixed points x0 and y1 are not included in the averaging. The point
y0 depends on pixel, but for given pixel it is also fixed and thus is not also
included in the averaging.
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Below we shall sometimes use the spatial and sometimes angular probability
densities keeping in mind the obvious relation between differentials

d2(−→xy) = s(x,y)dy (8)

s(−→xy) ≡
∣∣(−→xy · n(y)

)∣∣
|x− y|2

where n(y) is the local normal at the point y and −→xy is the unit vector from
x to y.

Notice that when NF →∞ while NB is fixed the noise does not vanish. This
remaining noise N−1

B

(
〈〈C〉2F 〉B − 〈〈C〉〉2

)
can be naturally termed the BMCRT

noise, and 〈〈C〉2F 〉B named the BMCRT term. Similarly, when NB →∞ while
NF is fixed, the remaining noise N−1

F

(
〈〈C〉2B〉F − 〈〈C〉〉2

)
is termed the FMCRT

noise and 〈〈C〉2B〉F is named the FMCRT term. The last quadratic average
〈〈C2〉〉 will be named the cross term.

Now let us calculate the weight-dependent quadratic averages 〈〈C2〉〉,
〈〈C〉2B〉F and 〈〈C〉2F 〉B for the case of the simplest integration kernel K which is
the indicator function

K(r) =

{
1

πR2 , r ≤ R

0, r > R

The area of the integration area is denoted S = πR2 and it is assumed small.

4.1 Cross term

The square of C given by (4) contains
1) Products of kernel K and a smooth function. Since the kernel is weakly

close to the delta-function, the average of this term is O(1)
2) Squares of kernel times a smooth function. Since our kernel is the indi-

cator function and thus the average of that term is S−1O(1), see above
3) Product of kernels with different arguments times a continuous function.

The product of kernels of different arguments can also reach S−1K but only in
the area where the two kernels overlap. Their arguments are random and the
probability of intersection is O(S), so the average of the product of kernels with
different arguments is O(1), which is formally proved in Appendix C.

Therefore for calculations of averages of C2 for small S we can retain in C2

only the squares of kernels:
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C2 =
1

S
K(y0 − x2)w

2
2,0(y0,x1)f

2(−−→x1y0,
−−−→y−1y0,y0)

+
1

S

∑
n≥3

K(y0 − xn)w
2
3,0(y0,xn−1,xn−2)f

2(−−−−→xn−1y0,
−−−→y−1y0,y0)

+
1

S

∑
n≥2

K(y1 − xn)w
2
3,1(y0,y1,xn−1)E

2(y0)f
2(−−−−→xn−1y1,

−−→y0y1,y1)

+
1

S

∑
n≥2

K(y2 − xn)w
2
3,2(y0,y1,y2)E

2(y0,y1)f
2(−−−−→xn−1y2,

−−→y2y1,y2)

+(· · · ) (9)

while the omitted terms (· · · ) are inessential since have much smaller average:
〈〈· · · 〉〉 = O(1).

Now we must average this approximation to C2 over the FMCRT ensemble,
i.e. pF (x1,x2, ...)dx1dx2 · · · . It can be done very similarly to the derivation of
(47) in Appendix B. Indeed, the above expression for C2 differs from the 4
last lines in (9) averaged there only in that weights, BDFs and energies are now
squared. Therefore applying the same derivation we arrive at

〈C2〉F ≈
1

S

∫ (
w2,0(y0,x1)f(−−→x1y0,

−−−→y−1y0,y0)
)2
L0(y0,x1)

×
∣∣(n(y0) · −−→x1y0)

∣∣ s(y0,x1)dx1

+
1

S

∫ (
w3,0(y0,x1,x2)f(−−→x1y0,

−−−→y−1y0,y0)
)2 ∣∣(n(y0) · −−→y1y0)

∣∣L(x1,x2)

×f(−−→x2x1,
−−→x1y0,x1)

∣∣(n(x1) · −−→x2x1)
∣∣ s(y0,x1)s(x1,x2)dx1dx2

+
1

S
E2(y0)

∫ (
w3,1(y0,y1,x2)f(−−→x2y1,

−−→y0y1,y1)
)2
L(y1,y2)

×
∣∣(n(y1) · −−→x2y1)

∣∣ s(y1,x2)dx2

+
1

S
w2

3,2(y0,y1,y2)E
2(y0,y1)

×
∫
f 2(−−→x3y2,

−−→y2y1,y2)L(y2,x3)
∣∣(n(y2) · −−→x3y2)

∣∣ s(y2,x3)dx3

+O(1)

The last integral for which we introduce notation

b(x1,x2) ≡
∫
f 2(−−→x3x2,

−−→x2x1,x2)L(x2,x3)
∣∣(n(x2) · −−→x3x2)

∣∣ s(x2,x3)dx3
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is independent of weights and is much similar to the integral which gives diffuse
luminance of x2 towards x1

Ld(x1,x2) =

∫
f(−−→x3x2,

−−→x2x1,x2)L(x2,x3)
∣∣(n(x2) · −−→x3x2)

∣∣ s(x2,x3)dx3

Now we must average this 〈C2〉F over the BMCRT ensemble i.e. over
pB(y0,y1,y2)dy1dy2. Substituting pB(y0,y1) and pB(y0,y1,y2) from (40) one
finally arrives at

〈〈C2〉〉 ≈ S−1

∫
w2

2,0(z0, z1)f
2(−−→z1z0,

−−−→y−1z0, z0)L0(z0, z1)

×
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

+S−1

∫
w2

3,0(z0, z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)ρ(z0, z1, z2)dz1dz2

+S−1

∫
w2

3,1(z0, z1, z2)E(z0)f(−−→z2z1,
−−→z0z1, z1)ρ(z0, z1, z2)dz1dz2

+S−1

∫
w2

3,2(z0, z1, z2)E(z0, z1)
b(z1, z2)

L(z1, z2)
ρ(z0, z1, z2)dz1dz2

+O(1) (10)

where z−1, z0, z1 and z2 denote the vertices of the joint path counted from
camera (regardless of which subpath they are from: camera or light). Obviously,
always z−1 = y−1 is the camera origin and z0 = y0 is the first hit which is fixed
for the given pixel. The function ρ is defined as

ρ(z0, z1, z2) ≡ L(z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)f(−−→z2z1,

−−→z0z1, z1) (11)

×(n(z0) · −−→z1z0)(n(z1) · −−→z2z1)s(z0, z1)s(z1, z2)

4.2 FMCRT term

Averaging (4) over the BMCRT ensemble, i.e. over pB(y0,y1,y2)dy1dy2, one
has
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〈C〉B = L0(x−1,y0)

+K(y0 − x2)w2,0(y0,x1)f(−−→x1y0,
−−−→y0y−1,y0)

+

∫
w2,1(x0,y1)E(y0)L0(y0,y1)pB(y0,y1)d

2y1

+

∫
w3,2(y0,y1,y2)E(y0,y1)L0(y1,y2)pB(y0,y1,y2)d

2y1d
2y2

+
∑
n≥3

K(y0 − xn)w3,0(y0,xn−1,xn−2)f(−−−−→xn−1y0,
−−−→y0y−1,y0)

+
∑
n≥2

w3,1(y0,xn,xn−1)E(y0)f(−−−−→xn−1xn,
−−−→xny0,xn)pB(y0,xn)

+
∑
n≥2

∫
w3,2(y0,y1,xn)E(y0,y1)f(−−−−→xn−1xn,

−−−→xny1,xn)

×pB(y0,y1,xn)d
2y1

Repeating the reasoning from Section 4.1, we conclude that for small S the
main contribution to 〈〈C〉2B〉F comes from squares of the kernel, so

〈C〉2B ≈ S−1K(y0 − x2)w
2
2,0(y0,x1)f

2(−−→x1y0,
−−−→y0y−1,y0)

+S−1
∑
n≥3

K(y0 − xn)w
2
3,0(y0,xn−1,xn−2)f

2(−−−−→xn−1y0,
−−−→y0y−1,y0)

+O(1)

and averaging over the FMCRT ensemble, i.e. pF (x1,x2, ...)dx1dx2 · · · one
arrives at

〈〈C〉2B〉F ≈ S−1

∫
w2

0(y0,x1,x2)f
2(−−→x1y0,

−−−→y0y−1,y0)p̄F (x2,x1,y0)dx1dx2

+S−1

∫
w2

0(y0,x1)f
2(−−→x1y0,

−−−→y0y−1,y0)pF (x1,y0)dx1

+O(1)

where p̄F was defined in (44) and pF in (41), so using (46)
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〈〈C〉2B〉F ≈ S−1

∫
w2

2,0(z0, z1)f
2(−−→z1z0,

−−−→y−1z0, z0)

×L0(z0, z1)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

+S−1

∫
w2

3,0(z0, z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)ρ(z0, z1, z2)dz1dz2

+O(1) (12)

where z0 = y0, z1 and z2 denote the vertices of the joint path counted from
camera (regardless of which subpath they are from: camera or light). Notice
these are the same terms with w2

2,0 and w2
3,0 as in (10).

4.3 BMCRT term

Introducing

F̂m ≡
∫
w2,m(y0, z1)L0(y0, z1)f(−−→y0z1,

−−−→y−1y0,y0)

×
∣∣(n(y0) · −−→z1y0)

∣∣ s(y0, z1)dz1 (13)

Fm ≡
∫
w3,m(y0, z1, z2)ρ(y0, z1, z2)dz1dz2

=

∫
Gm(z1)f(−−→z0z1,

−−−→y−1y0,y0)
∣∣(n(y0) · −−→y1y0)

∣∣ s(y0, z1)dz1

Gm(z1) ≡
∫
w3,m(y0, z1, z2)L(z1, z2)f(−−→z1z2,

−−→y0z1, z1)

×
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2 (14)

one can write (47) as (notice that by normalization conditions w1,0 = 1):

〈C〉F =
(
L0(y−1,y0) + F̂0 + F0

)
+w2,1(y0,y1)E(y0)L0(y0,y1) + E(y0)G1(y1)

+w3,2(y0,y1,y2)E(y0,y1)L(y1,y2)

Squaring it and averaging over BMCRT ensemble, i.e. over
pB(y0,y1,y2)dy1dy2 gives
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〈〈C〉2F 〉B =
(
L0(z−1, z0) + F̂0 + F0

)2

+

∫
w2

2,1(z0, z1)E
2(z0)L

2
0(z0, z1)pB(z1)dz1

+2

∫
w2,1(z0, z1)L0(z0, z1)G1(z1)E

2(z0)pB(z1)dz1

+

∫
G2

1(z1)E
2(z0)pB(z1)dz1

+

∫
w2

3,2(z0, z1, z2)E
2(z0, z1)L

2(z1, z2)pB(z1, z2)dz1dz2

+2
(
L0(z−1, z0) + F̂0 + F0

)(
F̂1 + F1 + F2

)
+2

∫
w2,1(z0, z1)L0(z0, z1)G2(z1)E

2(z0)pB(z1)dz1

+2

∫
G1(z1)G2(z1)E

2(z0)pB(z1)dz1 (15)

where z0 = y0, z1, z2 denote the vertices of the joint path counted from camera.

5 Optimal weights and variation of noise

Optimal weights are such that any change of them only increases the noise.
In other words, these weights are an extremum of the noise functional. By
definition, these are the weights which minimize the noise functional V , and
thus the variation of it (caused by variation of weights) must vanish.

Since 〈〈C〉〉 is independent of weight (provided that they sum to 1, see
Appendix B), (5) implies that the variation of the pixel RMS is the sum of
variations of the three averages, 〈〈C2〉〉, 〈〈C〉2B〉F and 〈〈C〉2F 〉B

δmV =
1

NBNF
δm〈〈C2〉〉+

(
1−N−1

B

)
NF

δm〈〈C〉2B〉F +
(1−N−1

F )

NB
δm〈〈C〉2F 〉B (16)

where δm is variation with respect to the m-th weight. The optimal weights are
those for which δmV for an arbitrary δwm.

Because of the normalization condition (50) there are only 3 independent
weights: one from the family {w2,0(z0, z1), w2,1(z0, z1)} and two from the family
{w3,0(z0, z1, z2), w3,1(z0, z1, z2), w3,2(z0, z1, z2)}. We decided to choose

w2,0(z0, z1), w3,1(z0, z1, z2), w3,2(z0, z1, z2)
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When calculating the variation δ1〈〈C2〉〉 against w3,1(z0, z1, z2), one must
remember that when w3,1(z0, z1, z2) is varied while w3,2(z0, z1, z2) is kept, then
(since the sum of weights is fixed), w3,0(z0, z1, z2) also varies:

w3,1(z0, z1, z2) 7→ w3,1(z0, z1, z2) + δw3,1(z0, z1, z2)

w3,0(z0, z1, z2) 7→ w3,0(z0, z1, z2)− δw3,1(z0, z1, z2)

and similarly, when we calculate the variation δ2〈〈C2〉〉 against w3,2(z0, z1, z2).
When w2,0(z0, z1) is varied the second weight of this family, i.e. w2,1(z0, z1),
also changes by −δw2,0(z0, z1).

Now let us calculate variation of our three terms (10), (12), (15) with respect
to these independent weights.

5.1 Cross term

The change of 〈〈C2〉〉 from (10) in response to the variation of w3,1(z0, z1, z2)
(keeping w3,2(z0, z1, z2) and w2,0(z0, z1) fixed) is

δ1〈〈C2〉〉 ≈ −2S−1

∫
δw3,1(z0, z1, z2)w3,0(z0, z1, z2)f(−−→z1z0,

−−−→y−1z0, z0)

×ρ(z0, z1, z2)dz1dz2

+2S−1

∫
δw3,1(z0, z1, z2)w3,1(z0, z1, z2)E(z0)f(−−→z2z1,

−−→z0z1, z1)

×ρ(z0, z1, z2)dz1dz2

= 2S−1

∫
δw3,1(z0, z1, z2)ρ(z0, z1, z2)

×
(
w3,1(z0, z1, z2)f(−−→z2z1,

−−→z1z0, z1)E(z0)

−w3,0(z0, z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)

)
dz1dz2 (17)

Here, as in the previous Section, z0, z1, z1 denote the vertices of the joint path
counted from camera (regardless of which subpath they are from: camera or
light).

Similarly, the change of 〈〈C2〉〉 in response to the variation of w3,2(z0, z1, z2)
(keeping w3,1(z0, z1, z2) and w2,0(z0, z1) fixed) is
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δ2〈〈C2〉〉 ≈ −2S−1

∫
δw3,2(z0, z1, z2)w3,0(z0, z1, z2)f(−−→z0z1,

−−−→y−1z0, z0)

×ρ(z0, z1, z2)dz1dz2

+2S−1

∫
δw3,2(z0, z1, z2)w3,2(z0, z1, z2)E(z0, z1)

b(z1, z2)

L(z1, z2)

×ρ(z0, z1, z2)dz1dz2

= 2S−1

∫
δw3,2(z0, z1, z2)ρ(z0, z1, z2)

×
(
w3,2(z0, z1, z2)E(z0, z1)

b(z1, z2)

L(z1, z2)

−w3,0(z0, z1, z2)f(−−→z0z1,
−−−→y−1z0, z0)

)
dz1dz2 (18)

At last, variation δw2,0(z0, z1) results in

δ0〈〈C2〉〉 ≈ 2S−1

∫
δw2,0(z0, z1)w2,0(z0, z1)

×f 2(−−→z1z0,
−−−→y−1z0, z0)L0(z0, z1)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1(19)

5.2 FMCRT term

The change of 〈〈C〉2B〉F from (12) in response to the variation of w3,1(z0, z1, z2)
(keeping w3,2(z0, z1, z2) and w2,0(z0, z1) fixed so δw3,0(z0, z1, z2) =
−δw3,1(z0, z1, z2)) is

δ1〈〈C〉2B〉F ≈ −2S−1

∫
δw3,1(z0, z1, z2)w3,0(z0, z1, z2)

×f(−−→z1z0,
−−−→y−1z0, z0)ρ(z0, z1, z2)dz1dz2 (20)

Similarly, variation δw3,2(z0, z1, z2) results in

δ2〈〈C〉2B〉F ≈ −2S−1

∫
δw3,2(z0, z1, z2)ρ(z0, z1, z2)

×w3,0(z0, z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)dz1dz2 (21)

Variation δw2,0(z0, z1) results in



22

δ0〈〈C2〉〉 ≈ 2S−1

∫
δw2,0(z0, z1)w2,0(z0, z1)f

2(−−→z1z0,
−−−→y−1z0, z0)

×L0(z0, z1)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1 (22)

5.3 BMCRT term

Variation δw3,1(z0, z1, z2) results in (recall that since w3,2(z0, z1, z2) is kept
fixed, w3,0(z0, z1, z2) also varies by −δw3,1(z0, z1, z2))

δ1〈〈C〉2F 〉B = 2
(
L0(y−1, z0) + F̂0 + F0

)
F [δw3,1]

−2
(
L0(y−1, z0) + F̂0 + F0

)
F [δw3,1]

−2
(
F̂1 + F1 + F2

)
F [δw3,1]

+2

∫
w1(z0, z1)L0(z0, z1)G[δw3,1](z1)E

2(z0)pB(z1)dz1

+2

∫
(G1(z1) +G2(z1))G[δw3,1]E

2(z0)pB(z1)dz1

= −2FΣF [δw3,1]

+2

∫
(w2,1(z0, z1)L0(z0, z1) +G1(z1) +G2(z1))

× (G[δw3,1]) (z1)E
2(z0)pB(z1)dz1

where
FΣ ≡ F̂1 + F1 + F2 (23)

and

F [h] ≡
∫
h(z0, z1, z2)ρ(z0, z1, z2)dz1dz2

=

∫
(G[h])(z1)f(−−→z1z0,

−−−→z0y−1, z0)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

(G[h])(z1) ≡
∫
h(z0, z1, z2L(z1, z2)f(−−→z2z1,

−−→z1z0, z1)

×
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2 (24)

generalize (14) by integral operators acting on an arbitrary function of 3 argu-
ments h(z0, z1, z2).

After some trivial algebra this δ1〈〈C〉2F 〉B can be written as
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δ1〈〈C〉2F 〉B = −2FΣ

∫
δw3,1(z0, z1, z2)L(z1, z2)

×f(−−→z1z0,
−−−→z0y−1, z0)f(−−→z2z1,

−−→z1z0, z1)

×(n(z0) · −−→z1z0)(n(z1) · −−→z2z1)s(z0, z1)s(z1, z2)dz1dz2

+2

∫
δw3,1(z0, z1, z2)E(z0, z1)

× (w1(z0, z1)L0(z0, z1) +G1(z1) +G2(z1))L(z1, z2)

×f(−−→z2z1,
−−→z1z0, z1)f(−−→z1z0,

−−−→z0y−1, z0)

×(n(z0) · −−→z1z0)(n(z1) · −−→z2z1)s(z0, z1)s(z1, z2)dz1dz2

= 2

∫
δw3,1(z0, z1, z2)ρ(z0, z1, z2)

×

(
E(z0, z1) (w2,1(z0, z1)L0(z0, z1) +G1(z1) +G2(z1))

−FΣ

)
dz1dz2 (25)

Similarly, variation δw2(z0, z1, z2) results in

δ2〈〈C〉2F 〉B = −2
(
L0(y−1, z0) + F̂0 + F0

)
F [δw3,2]

+2
(
L0(y−1, z0) + F̂0 + F0

)
F [δw3,2]

−2FΣF [δw3,2]

+2

∫
(w2,1(z0, z1)L0(z0, z1) +G1(z1))

× (G[δw3,2]) (z1)E
2(z0)pB(z1)dz1

+2

∫
δw3,2(z0, z1, z2)w3,2(z0, z1, z2)E

2(z0, z1)

×L2(z1, z2)pB(z1, z2)dz1dz2

= 2

∫
δw3,2(z0, z1, z2)ρ(z0, z1, z2)

×

(
E(z0, z1) (w2,1(z0, z1)L0(z0, z1) +G1(z1))

+w2(z0, z1, z2)E(z0, z1, z2)L(z1, z2)− FΣ

)
dz1dz2(26)

Variation δw2,0(z0, z1) results in
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δ0〈〈C〉2F 〉B = +2FΣF̂ [δw2,0]

−2

∫
δw2,0(z0, z1)L0(z0, z1)E

2(z0)pB(z1)

× (G1(z1) +G2(z1) + w1(z0, z1)L0(z0, z1)) dz1

= 2

∫
δw2,0(z0, z1)L0(z0, z1)

× (FΣ − (G1(z1) +G2(z1) + w1(z0, z1)L0(z0, z1))E(z0))

×f(−−→z0z1,
−−−→y−1z0, z0)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1 (27)

where

F̂ [h] ≡
∫
h(z0, z1)L0(z0, z1)f(−−→z0z1,

−−−→y−1z0, z0)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

(28)

generalizes F̂1 from (13) by the integral operator acting on an arbitrary function
h(z0, z1) of two arguments.

5.4 Summing all up: variation of the total noise

Substituting variations of 〈〈C2〉〉, 〈〈C〉2B〉F and 〈〈C〉2F 〉B from (17), (20) and
(25) into (16) and neglecting N−1

F � 1, we have

δ1V

2
≈ 1

NBnF

∫
δw3,1(z0, z1, z2)ρ(z0, z1, z2)

×

(
w3,1(z0, z1, z2)f(−−→z2z1,

−−→z1z0, z1)E(z0)

−w3,0(z0, z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)

)
dz1dz2

−1−N−1
B

nF

∫
δw3,1(z0, z1, z2)ρ(z0, z1, z2)

×w3,0(z0, z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)dz1dz2

+
1

NB

∫
δw3,1(z0, z1, z2)ρ(z0, z1, z2)

× (E(z0) (w2,1(z0, z1)L0(z0, z1) +G1(z1) +G2(z1))− FΣ) dz1dz2

where nF ≡ SNF . This variation vanishes for an arbitrary δw3,1 if and only if
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w3,1(z0, z1, z2)f(−−→z2z1,
−−→z1z0, z1)E(z0)−NBw3,0(z0, z1, z2)f(−−→z1z0,

−−−→y−1z0, z0)

+nFw2,1(z0, z1)E(z0)L0(z0, z1)

= nF (FΣ − E(z0) (G1(z1) +G2(z1))) (29)

Similarly, substituting variations of 〈〈C2〉〉, 〈〈C〉2B〉F and 〈〈C〉2F 〉B from (18),
(21) and (26) into (16) and neglecting N−1

F � 1, we have

δ2V

2
≈ 1

NBnF

∫
δw3,2(z0, z1, z2)ρ(z0, z1, z2)

×

(
w3,2(z0, z1, z2)E(z0, z1)

b(z1, z2)

L(z1, z2)

−w3,0(z0, z1, z2)f(−−→z0z1,
−−−→y−1z0, z0)

)
dz1dz2

−1−N−1
B

nF

∫
δw3,2(z0, z1, z2)ρ(z0, z1, z2)w0(z0, z1, z2)

×f(−−→z1z0,
−−−→y−1z0, z0)dz1dz2

+
1

NB

∫
δw3,2(z0, z1, z2)ρ(z0, z1, z2)

×

(
E(z0) (w2,1(z0, z1)L0(z0, z1) +G1(z1))

+w3,2(z0, z1, z2)E(z0, z1)L(z1, z2)− FΣ

)
dz1dz2

which vanishes for an arbitrary δw2 if and only if

w3,2(z0, z1, z2)E(z0, z1)c(z1, z2)−NBw3,0(z0, z1, z2)f(−−→z0z1,
−−−→y−1z0, z0)

+nFw2,1(z0, z1)E(z0)L0(z0, z1)

= nF (FΣ − E(z0)G1(z1)) (30)

where

c(z1, z2) ≡
b(z1, z2)

L(z1, z2)
+ nFL(z1, z2)

and the integrals G and F are given by (14).
Similarly, substituting variations of 〈〈C2〉〉, 〈〈C〉2B〉F and 〈〈C〉2F 〉B from (19),

(22) and (27) into (16) and neglecting N−1
F � 1, we have
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δ0V

2
=

1

NBnF

∫
δw2,0(z0, z1)w2,0(z0, z1)L0(z0, z1)

×f 2(−−→z1z0,
−−−→y−1z0, z0)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1

+
1−N−1

B

nF

∫
δw2,0(z0, z1)w2,0(z0, z1)L0(z0, z1)

×f 2(−−→z1z0,
−−−→y−1z0, z0)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1

+
1

NB

∫
δw2,0(z0, z1)L0(z0, z1)

× (FΣ − (G1(z1) +G2(z1) + w2,1(z0, z1)L0(z0, z1))E(z0))

×f(−−→z1z0,
−−−→y−1z0, z0)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1

which vanishes for an arbitrary δw0(z0, z1) if and only if

(
NBf(−−→z1z0,

−−−→y−1z0, z0) + nFL0(z0, z1)E(z0)
)
w2,0(z0, z1)

= nF ((G1(z1) +G2(z1) + L0(z0, z1))E(z0)− FΣ)

which yields

w2,0(y0, z1) = W2,0(y0, z1)

+nF
(G1(z1) +G2(z1))E(y0)− FΣ

NBf(−−→z1y0,
−−−→y−1y0,y0) + nFL0(y0, z1)E(y0)

(31)

W2,0(y0, z1) ≡
nFL0(y0, z1)E(y0)

NBf(−−→z1y0,
−−−→y−1y0,y0) + nFL0(y0, z1)E(y0)

(32)

W2,1(y0, z1) ≡
NBf(−−→z1y0,

−−−→y−1y0,y0)

NBf(−−→z1y0,
−−−→y−1y0,y0) + nFL0(y0, z1)E(y0)

Substituting w2,0(z0, z1) from (31) into the (29) and (30) and recalling that
w3,0(z0, z1, z2) = 1− w3,1(z0, z1, z2)− w3,2(z0, z1, z2) one has
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(
f(−−→z2z1,

−−→z1z0, z1)E(z0) +NBf(−−→z1z0,
−−−→y−1z0, z0)

)
w3,1(z0, z1, z2)

+NBw3,2(z0, z1, z2)f(−−→z1z0,
−−−→y−1z0, z0)

= NBf(−−→z1z0,
−−−→y−1z0, z0)− nFE(z0)L0(z0, z1)W2,1(z0, z1)

+nF (FΣ − E(z0) (G1(z1) +G2(z1)))W2,1(z0, z1)

NBf(−−→z0z1,
−−−→y−1z0, z0)w3,1(z0, z1, z2)

+w3,2(z0, z1, z2)
(
E(z0, z1)c(z1, z2) +NBf(−−→z0z1,

−−−→y−1z0, z0)
)

= NBf(−−→z0z1,
−−−→y−1z0, z0)− nFE(z0)L0(z0, z1)W2,1(z0, z1)

+nFW2,1(z0, z1)FΣ − nFE(z0)W2,1(z0, z1)G1(z1)

+nFE(z0)W2,0(z0, z1)G2(z1)

Denoting

A11(z0, z1, z2) ≡ f(−−→z2z1,
−−→z1z0, z1)E(z0) +NBf(−−→z1z0,

−−−→y−1z0, z0)

A12(z0, z1) ≡ NBf(−−→z1z0,
−−−→y−1z0, z0)

A22(z0, z1, z2) ≡ E(z0, z1)c(z1, z2) +NBf(−−→z0z1,
−−−→y−1z0, z0)

Φ(z0, z1) ≡ NBf(−−→z0z1,
−−−→y−1z0, z0)− nFW2,1(z0, z1)E(z0)L0(z0, z1)

= NBf(−−→z0z1,
−−−→y−1z0, z0)W2,1(z0, z1)

it takes the form

(
A11 A12

A12 A22

)(
w3,1(z0, z1, z2)
w3,2(z0, z1, z2)

)
=

(
Φ(z1) + nFW2,1(z0, z1)FΣ

−nFE(z0)W2,1(z0, z1)G1(z1)

)(
1
1

)
−nFE(z0)G2(z1)

(
W2,1(z0, z1)
−W2,0(z0, z1)

)
so
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w3,1 = W3,1(z0, z1, z2) + nFW2,1(z0, z1)
A22 − A12

A11A22 − A2
12

FΣ

−nFE(z0)W2,1(z0, z1)
A22 − A12

A11A22 − A2
12

G1(z1)

−nFE(z0)
A22W2,1 + A12W2,0

A11A22 − A2
12

G2(z1) (33)

w3,2 = W3,2(z0, z1, z2) + nFW2,1(z0, z1)
A11 − A12

A11A22 − A2
12

FΣ

−nFE(z0)W2,1(z0, z1)
A11 − A12

A11A22 − A2
12

G1(z1)

+nFE(z0)
A11W2,0 + A12W2,1

A11A22 − A2
12

G2(z1) (34)

where

W3,1(z0, z1, z2) ≡
A22 − A12

A11A22 − A2
12

Φ

=
1

1 + nFL0(z0,z1)

NB f̃(−−→z0z1,
−−−−→y−1z0,z0)

× 1

1 + f(−−→z2z1,
−−→z1z0,z1)E(z0)

NBf(−−→z0z1,
−−−−→y−1z0,z0)

+ f(−−→z2z1,
−−→z1z0,z1)E(z0)

E(z0,z1)c(z1,z2)

(35)

W3,2(z0, z1, z2) ≡
A11 − A12

A11A22 − A2
12

Φ

=
1

1 + nFL0(z0,z1)

NB f̃(−−→z0z1,
−−−−→y−1z0,z0)

=

f(−−→z2z1,
−−→z1z0,z1)E(z0)

E(z0,z1)c(z1,z2)

1 + f(−−→z2z1,
−−→z1z0,z1)E(z0)

NBf(−−→z1z0,
−−−−→y−1z0,z0)

+ f(−−→z2z1,
−−→z1z0,z1)E(z0)

E(z0,z1)c(z1,z2)

(36)

Here

f̃(v,u, z) ≡ f(v,u, z)∫
f(v,u, z) |(v · n(z))| d2v

(37)

is the normalized BDF used in our BMCRT without ray killing (all rays are
scattered).
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6 Solution of the integral equations in weights

Its integral terms G1, G2 and F are averages that reduce the number of argu-
ments and this allows to find the solution in a close form.

6.1 The idea of solution

The idea is very simple. Let us consider a simplified equation of the same type:

w(z1, z2) = W (z1, z2) + a(z1, z2)G(z1)

G(z1) ≡
∫
b(z1, z2)w(z1, z2)dz2

where w is the sought-for function while a and b and W are known. Multiplying
this equation by b(z1, z2) and integrating over z2 we have

G(z1) =

∫
b(z1, z2)W (z1, z2)dz2 +G(z1)

∫
a(z1, z2)b(z1, z2)dz2

because g depends only on z and thus can be moved outside the integral. This
is the principal feature allowing solution in a closed form. From this equation
we immediately find that

G(z1) =

∫
b(z1, z2)W (z1, z2)dz2

1−
∫
a(z1, z2)b(z1, z2)dz2

and then

w(z1, z2) = W (z1, z2) +
a(z1, z2)

∫
b(z1, z2)W (z1, z2)dz2

1−
∫
a(z1, z2)b(z1, z2)dz2

6.2 Application of the method to the real system

Now let us apply this idea to the system in weights (33)–(34) which is slightly
more complex because the solution is a 3-vector and it also contains the integrals
of Gm(z1)i.e. Fm defined by 14. This makes the solution more tedious though
the driving idea is the same. According to this idea we substitute w3,1 and w3,2

from (33)–(34) into the definition (14) of Gm which gives
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G1 = (A22(z1)−A12(z1)) (Φ(z0, z1) + nFW2,1(z0, z1)FΣ)

−nFE(z0)W2,1(z0, z1) (A22 −A12)G1(z1)

−nFE(z0) (A22W2,1 +A12W2,0)G2(z1)

G2 = (A11(z1)−A12(z1)) (Φ(z0, z1) + nFW2,1(z0, z1)FΣ)

−nFE(z0)W2,1(z0, z1) (A11 −A12)G1(z1)

+nFE(z0) (A11W2,0 +A12W2,1)G2(z1)

where

Amn(z1) ≡
∫

Amn

A11A22 − A2
12

L(z1, z2)f(−−→z2z1,
−−→z1z0, z1)

×(n(z1) · −−→z2z1)s(z1, z2)dz2

We therefore obtain a 2x2 linear system in G1, G2:

(
B11(z1) B11(z1)
B21(z1) B22(z1)

)(
G1(z1)
G2(z1)

)
= (Φ(z0, z1) + nFFΣW2,1(z0, z1))

(
H1(z1)
H2(z1)

)
(38)

where

B11(z1) ≡ 1 + nFE(z0)W2,1(z0, z1) (A22(z1)−A12(z1))

B12(z1) ≡ nFE(z0) (A22(z1)W2,1(z0, z1) +A12(z1)W2,0(z0, z1))

B21(z1) ≡ nFE(z0)W2,1(z0, z1) (A11(z1)−A12(z1))

B22(z1) ≡ 1− nFE(z0) (A12(z1)W2,1(z0, z1) +A11(z1)W2,0(z0, z1))

H1(z1) ≡ A22(z1)−A12(z1)

H2(z1) ≡ A11(z1)−A12(z1)

Therefore

Gm(z1) = (Φ(z0, z1) + nFFΣW1(z0, z1))Hm(z1)

=
(
NBf(−−→z0z1,

−−−→y−1z0, z0) + nFFΣ

)
W1(z0, z1)Hm(z1) (39)

where
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(
H1(z1)
H2(z1)

)
≡
(
B11(z1) B12(z1)
B21(z1) B22(z1)

)−1(
H1(z1)
H2(z1)

)
Then, according to definitions (14), (13) of Fm and F̂1 one has

FΣ = F1 + F2 + F̂1

=

∫
(G1(z1) +G2(z1)) f(v,u0, z0)(n(z0) · v)V d2v

+

∫
w2,1(z0, z1(v))L0(z0, z1)f(v,u0, z0)(v · n(z0))d

2v

where u0 ≡ −−−→y−1y0 and v ≡ −−→z1y0; naturally d2v = s(y0, z1)dz1.
Substituting w2,1(z0, z1) = 1 − w2,0(z0, z1) with w2,0(z0, z1) from (31) be-

comes

FΣ =

∫
W2,1(z0, z1)L0(z0, z1)f(v,u0, z0)(v · n(z0))d

2v

+

∫
W2,1(z0, z1) (G1(z1) +G2(z1)) f(v,u0, z0)(v · n(z0))d

2v

+FΣ
1

E(z0)

∫
W2,0(z0, z1)f(v,u0, z0)(v · n(z0))d

2v

Substituting here Gm(z1) from (39) we arrive at

FΣ =

∫
W2,1(z0, z1)L0(z0, z1)f(v,u0, z0)(v · n(z0))d

2v

+NB

∫
W 2

2,1(z0, z1) (H1(z1) + H2(z1)) f
2(v,u0, z0)(v · n(z0))d

2v

+nFF

∫
W 2

2,1(z0, z1) (H1(z1) + H2(z1)) f(v,u0, z0)(v · n(z0))d
2v

+FΣ
1

E(z0)

∫
W2,0(z0, z1)f(v,u0, z0)(v · n(z0))d

2v

which implies

FΣ(z0) =

∫
W2,1(z0, z1)L0(z0, z1)f(v,u0, z0)(v · n(z0))d

2v +NBD2(z0)
1

E(z0)

∫
W2,1(z0, z1)f(v,u0, z0)(v · n(z0))d2v − nFD1(z0)

where
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Dm(z0) ≡
∫
W 2

2,1(z0, z1) (H1(z1) + H2(z1)) f
m(v,u0, z0)(v · n(z0))d

2v

Here all the functions are known (they depend only on BRDF and illumi-
nation, but not on the weights).

We then substitute this FΣ into (39) and G1(z) and G2(z) become known.
Then they together with FΣ are in their turn substituted into (33)–(34) and we
obtain w3,1(z0, z1, z2) and w3,2(z0, z1, z2).

At last we substitute the above FΣ and G1(z) and G2(z) into (31) and
obtain w2,0(z0, z1) which completes the solution.

7 Conclusion

We investigated how the “partial MIS” which mixes just two strategies for
BDPM [10] and extends to the case of mixing three strategies. It happens that
this case has several qualitative differences from mixing only two strategies.
Meanwhile further increase of the number of strategies past three already brings
no qualitatively changes.

We derive the system of integral equations which couples weights from the
two different families. This system extends the single integral equation in the
single independent weight from [10]. It has a special type which admits solution
in close form, i.e. as an analytic formula which includes some integrals of known
functions that must be calculated numerically. Qualitatively these integrals are
similar to those which arise while mixing two strategies, and therefore also can
be calculated during ray tracing.

The above system of integral equations replaces the algebraic system of
the famous Veach heuristic [9, 4] for the optimal weights in MCRT. In the bi-
directional ray tracing the noise functional is different from that in MCRT and
therefore the system for weights differs from the Veach heuristic. For example,
while the latter depends only on BDFs at the path vertices, our formulae also
include illumination (or luminance) of that points. Also our system of equations
is not local, i.e. the weights for a given path depend on the scene properties
not only at the vertices of that path but outside of it also.

A Appendix. MCRT densities

The densities pF and pB can be calculated from the simple recurrence relations
(similar to that in [4] ).

Below we shall sometimes use the spatial and sometimes angular probability
densities keeping in mind the obvious relation between differentials (8)
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A.1 BMCRT density

In our variant of BMCRT direction u of the next segment [ym,ym+1] of the cam-
era ray is chosen with probability density proportional to the normalized BDF to
exclude ray killing, i.e. with probability density f̃(u,−−−−−→ym−1ym,ym) |(n(ym) · u| ,
where f̃ is BDF normalized for BMCRT (37). Therefore, the probability density
for the path obeys the recurrence relation

pB(y0, ...,ym+1) = pB(y0, ...,ym)

×f̃(−−−−−→ym+1ym,
−−−−−→ym−1ym,ym)

∣∣(n(ym) · −−−−−→ym+1ym)
∣∣ s(ym,ym+1),

where we dropped the fixed point y−1 which is the same for all pixels = the
camera origin. In other words,

pB(y0,y1) = f̃(−−→y1y0,
−−−→y0y−1,y0)

∣∣(n(y0) · −−→y1y0)
∣∣ s(y0,y1)

=
1

E(y0)
f(−−→y1y0,

−−−→y0y−1,y0)
∣∣(n(y0) · −−→y0y1)

∣∣ s(y0,y1)

pB(y0,y1,y2) = pB(y0,y1)× f̃(−−→y2y1,
−−→y0y1,y1)

∣∣(−−→y2y1 · n(y1))
∣∣ s(y1,y2)

=
1

E(y0,y1)
f(−−→y1y0,

−−−→y0y−1,y0)
∣∣(n(y0) · −−→y0y1)

∣∣ f(−−→y2y1,
−−→y0y1,y1)

×
∣∣(−−→y2y1 · n(y1))

∣∣ s(y0,y1)s(y1,y2)

= f̃(−−→y1y0,
−−−→y0y−1,y0)f̃(−−→y2y1,

−−→y0y1,y1)

×
∣∣(n(y0) · −−→y1y0)

∣∣ ∣∣(n(y1) · −−→y2y1)
∣∣

|y0 − y1|
2

×
∣∣(n(y1) · −−→y0y1)

∣∣ ∣∣(n(y2) · −−→y1y2)
∣∣

|y1 − y2|
2 (40)

A.2 FMCRT density

In our variant of FMCRT with its Russian roulette, direction v of the next
segment [xm,xm+1] of light ray is chosen with probability density proportional
to BDF (not normalized to provide ray killing) f(−−−−−→xm−1xm,v,xm) |(n(xm) · v)|.
Therefore, the probability density for the path obeys the recurrence relation

pF (x1, ...,xm+1) = pF (x1, ...,xm)

×f(−−−−−→xm−1xm,
−−−−−→xmxm+1,xm)

∣∣(n(xm) · −−−−−→xmxm+1)
∣∣ s(xm,xm+1)

where we dropped the fixed point x0, i.e. the light source position.
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The first term of this recurrencepF (x1,x2) can be also calculated from an-
other considerations. It is the density for the light (sub)path x0 → x1 → x2

in which x1 is illuminated directly. Meanwhile, by definition L(x2,x1)(n(x1) ·−−→x2x1) is the intensity of emission from x1 towards x2 which in FMCRT equals
the (angular) density of segments [x1,x2] rays. So,

pF (x1,x2) = L0(x2,x1)(n(x1) · −−→x2x1)s(x1,x2)

= L0(x2,x1)(n(x2) · −−→x2x1)s(x2,x1) (41)

where L0(x2,x1) is the direct luminance of the point x1 towards x2 and s(x1,x2)
transforms it into the spatial density.

The above recurrence can also be written as

pF (X(m),y) = pF (X(m))

×f(−−−−−→xm−1xm,
−−→xmy,xm)

∣∣(n(xm) · −−→xmy)
∣∣ s(xm,y) (42)

where

X(0) ≡ null

X(m) ≡ (x1, ...,xm), m = 1, 2, ... (43)

is light sub-path and y is the next hit point.
Besides pF (x1, ...) which accounts for the whole light path, we shall also

need the densityp̄F of its “end” (regardless of the initial part):

p̄F (z1, z2) ≡
∑
m≥0

∫
pF (X(m), z1, z2)dX

(m)

p̄F (z1, z2, z3) ≡
∑
m≥0

∫
pF (X(m), z1, z2, z3)dX

(m) (44)

We used notations z1, ... for the tail vertices because x1 is reserved for the first
hit point etc.

By construction p̄F (z1, z2)dz1dz2 is the fraction of the light rays that hit
the surface element dz1 near z1 and then hit the surface element dz2 near z2.
On the other hand L(z2, z1)

∣∣(n(z1) · −−→z1z2)
∣∣ dz1 is the angular density of light

rays emitted from z1 towards z2. Therefore

p̄F (z1, z2) = L(z2, z1)
∣∣(n(z1) · −−→z1z2)

∣∣ s(z1, z2) (45)
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Notice that since p̄F includes all rays that hit near z1 and go towards z2, L is
the full luminance (direct+indirect).

Also, applying (42) to (44) we have

p̄F (z1, z2, z3) = L(z2, z1)
∣∣(n(z1) · −−→z1z2)

∣∣
×f(−−→z1z2,

−−→z2z3, z2)s(z1, z2)s(z2, z3) (46)

B Appendix. Normalization condition (sum of
weights)

Let us calculate the limiting luminance of the pixel 〈〈C〉F 〉B as a functional on
weights. Averaging the contribution C given by (4) over the FMCRT ensemble
we have

〈C〉F = L0(y−1,y0)w1,0(y0)

+E(x0)L0(x0,x1)w2,1(y0,y1)

+

∫
K(y0 − x2)w2,0(y0,x1)f(−−→x1y0,

−−−→y0y−1,y0)pF (x1,x2)dx1dx2

+E(y0,y1)L0(y1,y2)w3,2(y0,y1,y2)

+
∑
n≥3

∫
K(y0 − xn)w3,0(y0,xn−1,xn−2)

×f(−−−−→xn−1xn,
−−−→y0y−1,y0)pF (x1, ...,xn)dx1 · · · dxn

+
∑
n≥2

∫
K(y1 − xn)w3,1(y0,y1,xn−1)E(y0)

×f(−−−−→xn−1xn,
−−→y1y0,y1)pF (x1, ...,xn)dx1 · · · dxn

+
∑
n≥2

∫
K(y2 − xn)w3,2(y0,y1,y2)E(y0,y1)

×f(−−−−→xn−1xn,
−−→y2y1,y2)pF (x1, ...,xn)dx1 · · · dxn

where

pF (x1, ...,xn)

is the density (not normalized, i.e. with account for absorption!) at the light
(sub)path x0 → x1 → · · · → xn where we drop the fixed light source position
x0.
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Neglecting the difference between the kernel and the delta-function, we ar-
rive at

〈C〉F ≈ L0(y−1,y0)w1,0(y0)

+E(y0)L0(y0,y1)w2,1(y0,y1)

+

∫
w2,0(y0,x1)f(−−→x1y0,

−−−→y0y−1,y0)pF (x1,y0)dx1

+E(y0,y1)L0(y1,y2)w3,2(y0,y1,y2)

+
∑
n≥3

∫
w3,0(y0,xn−1,xn−2)f(−−−−→xn−1y0,

−−−→y0y−1,y0)

×pF (X(n−3),xn−2,xn−1,y0)dX
(n−3)dxn−2dxn−1

+
∑
n≥2

∫
w3,1(y0,y1,xn−1)E(y0)f(−−−−→xn−1y1,

−−→y1y0,y1)

×pF (X(n−2),xn−1,y1)dX
(n−2)dxn−1

+
∑
n≥2

∫
w3,2(y0,y1,y2)E(y0,y1)f(−−−−→xn−1y2,

−−→y2y1,y2)

×pF (X(n−2),xn−1,y2)dX
(n−2)dxn−1

(where X(m) is the starting part of the light path, see (43)), or
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〈C〉F ≈ L0(y−1,y0)w1,0(y0)

+E(y0)L0(y0,y1)w2,1(y0,y1)

+

∫
w2,0(y0,x1)f(−−→x1y0,

−−−→y0y−1,y0)pF (x1,y0)dx1

+E(y0,y1)L(y1,y2)w3,2(y0,y1,y2)

+

∫
w3,0(y0, z1, z2)f(−−→x1y0,

−−−→y0y−1,y0)

×

(∑
m≥0

∫
pF (X(m), z2, z1,y0)dX

(m)

)
dz1dz2

+

∫
w3,1(y0,y1, z2)E(y0)f(−−→z2y1,

−−→y1y0,y1)

×

(∑
m≥0

∫
pF (X(m), z2,y1)dX

(m)

)
dz2

+w3,2(y0,y1,y2)E(y0,y1)

∫
f(−−→z3y2,

−−→y2y1,y2)

×

(∑
m≥0

∫
pF (X(m), z3,y2)dX

(m)

)
dz3

where z−1, z0, z1 and z2 denote the vertices of the joint path counted from
camera (regardless of which subpath they are from: camera or light). Obviously,
always z−1 = y−1 is the camera origin and z0 = y0 is the first hit which is fixed
for the given pixel.

Using (42) and (44), (45), (46) and (41) we have
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〈C〉F ≈ L0(y−1,y0)w1,0(y0)

+w2,1(y0,y1)E(y0,y1)L0(y0,y1)

+

∫
w2,0(y0,x1)L0(y0,x1)f(−−→x1y0,

−−−→y0y−1,y0)

×
∣∣(n(y0) · −−→y0x1)

∣∣ s(y0,x1)dx1

+w3,2(y0,y1,y2)E(y0,y1)L0(y1,y2)

+

∫ (∫
w3,0(y0, z1, z2)L(z1, z2)f(−−→z2z1,

−−→z1y0, z1)

×
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2

)
×f(−−→z1y0,

−−−→y0y−1,y0)
∣∣(n(y0) · −−→z1y0)

∣∣ s(y0, z1)dz1

+E(y0)

∫
w3,1(y0,y1, z2)L(y1, z2)f(−−→z2y1,

−−→y1y0,y1)

×
∣∣(n(y1) · −−→z2y1)

∣∣ s(y1, z2)dz2

+w2(y0,y1,y2)E(y0,y1)

×
∫
f(−−→z3y2,

−−→y2y1,y2)L(y2, z3)
∣∣(n(y2) · −−→z3y2)

∣∣ s(y2, z3)dz3(47)

The last integral is nothing but the diffuse luminance at x2 towards x1:

∫
f(−−→z3y2,

−−→y2y1,y2)L(y2, z3)
∣∣(n(y2) · −−→z3y2)

∣∣ s(y2, z3)dz3 = Ld(y1,y2)

so its sum with w3,2(y0,y1,y2)E(y0,y1)L0(y1,y2) gives
w3,2(y0,y1,y2)E(y0,y1)L(y1,y2).

Now let us average over the BMCRT ensemble, i.e. over the points y1,y2

(y0 is fixed for given pixel). Then (47) becomes
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〈〈C〉F 〉B ≈ L0(y−1,y0)w1,0(y0)

+

∫
w2,1(y0,x1)L0(y0,x1)E(y0)pB(y0,x1)dx1

+

∫
w2,0(y0,x1)L0(y0,x1)f(−−→x1y0,

−−−→y0y−1,y0)

×
∣∣(n(y0) · −−→y0x1)

∣∣ s(y0,x1)dx1

+

∫
w3,2(y0,y1,y2)L(y1,y2)E(y0,y1)pB(y0,y1,y2)dy1dy2

+

∫ (∫
w3,0(y0, z1, z2)L(z1, z2)f(−−→z2z1,

−−→z1y0, z1)

×
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2

)
×f(−−→z1y0,

−−−→y0y−1,y0)
∣∣(n(y0) · −−→z1y0)

∣∣ s(z0, z1)dz1

+E(y0)

∫ (∫
w3,1(y0,y1, z2)L(y1, z2)f(−−→z2y1,

−−→y1y0,y1)

×
∣∣(n(y1) · −−→z2y1)

∣∣ s(y1, z2)dz2

)
pB(y0, z1)dz1

where pB(y0,y1) and pB(y0,y1,y2) are the density at the camera (subpath)
y−1 → y0 → y1 or y−1 → y0 → y1 → y2, respectively. So,

〈〈C〉F 〉B ≈ w1,0(y0)L0(y−1,y0)

+

∫
(w2,0(y0, z1) + w2,1(y0, z1))L0(y0, z1)

×f(−−→z1y0,
−−−→y0y−1,y0)

∣∣(n(y0) · −−→y0z1)
∣∣ s(y0, z1)dz1

+

∫
(w3,0(y0, z1, z2) + w3,1(y0, z1, z2) + w3,2(y0, z1, z2))L(z1, z2)

×f(−−→z1y0,
−−−→y0y−1,y0)f(−−→z2z1,

−−→y0z1, z1)

×
∣∣(n(y0) · −−→y0z1)

∣∣ ∣∣(−−→z2z1 · n(z1))
∣∣ s(y0, z1)s(z1, z2)dz1dz2

which can be written as
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〈〈C〉F 〉B ≈ w1,0(y0)L0(y−1,y0)

+

∫
(w2,0(y0, z1) + w2,1(y0, z1))L0(y0, z1)E(y0)pB(y0, z1)dz1

+

∫
(w3,0(y0, z1, z2) + w3,1(y0, z1, z2) + w3,2(y0, z1, z2))

×L(z1, z2)E(y0, z1)pB(y0, z1, z2)dz1dz2 (48)

The “pure” BDD=2 corresponds to weights

w1,0(y0) = 1

w2,0(y0, z1) = 0

w2,1(y0, z1) = 1

w3,0(y0, z1, z2) = 0

w3,1(y0, z1, z2) = 0

w3,2(y0, z1, z2) = 1

so for BDD=2 the expectation of the pixel luminance is

〈〈C〉F 〉B ≈ L0(y−1,y0)

+

∫
L0(y0, z1)E(y0)pB(y0, z1)dz1

+

∫
L(z1, z2)E(y0, z1)pB(y0, z1, z2)dz1dz2 (49)

Meanwhile, the strategy BDD=2 gives a correct result, i.e. 〈〈C〉F 〉B con-
verges to the exact pixel luminance as R→ 0. Comparing (48) and (49) we see
that the 3-point mixed strategy gives correct result if

w2,0(y0) = 1

w2,1(y0, z1) + w2,0(y0, z1) = 1

w3,0(y0, z1, z2) + w3,1(y0, z1, z2) + w3,2(y0, z1, z2) = 1 (50)

Notice that formally this is a sufficient, not a necessary condition.

C Appendix. Average of the product of ker-
nels

Indeed, we have the following terms to be neglected:
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Terms with the same x but different y

K(y0 − xn)K(y1 − xn), n ≥ 2

K(y0 − xn)K(y2 − xn), n ≥ 2

K(y1 − xn)K(y2 − xn), n ≥ 2

Terms with different x but same y; for all of them n 6= m, m ≥ 2

K(y0 − xn)K(y0 − xm), n ≥ 3

K(y1 − xn)K(y1 − xm), n ≥ 2

K(y2 − xn)K(y2 − xm), n ≥ 2

Terms with different x and different y; for all of them n 6= m,

K(y0 − xn)K(y1 − xm), n,m ≥ 3

K(y0 − xn)K(y2 − xm), n,m ≥ 3

K(y1 − xn)K(y2 − xm), n,m ≥ 2

Notice that in the integral these products of kernels are multiplied by a
smooth functions which in all cases we shall denote a(X;Y ) where X ≡
(x1, ...,xn, ..., ) is light path and Y ≡ (y0, ...,yi, ..., ) is camera path.

Obviously for K(yi−xn)K(yi−xm) assuming m > n the average over the
FMCRT ensemble is

∫
K(yi − xn)K(yi − xm)a(X;Y )dX

≈
∫
K(yi − xn)K(yi − xm)dxndxm

×
∫
a(x1, ...,yi,xn+1, ...,xm−1,yi, ...;Y )dX

=

∫
a(x1, ...,yi,xn+1, ...,xm−1,yi, ...;Y )dX

i.e. asymptotically independent of S. So this integral is O(1).
Similarly, for K(yi − xn)K(yj − xm) assuming m > n the average over

FMCRT ensemble is
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∫
K(yi − xn)K(yj − xm)a(X;Y )dX

≈
∫
K(yi − xn)K(yj − xm)dxndxm

×
∫
a(x1, ...,yi,xn+1, ...,xm−1,yj, ...;Y )dX

=

∫
a(x1, ...,yi,xn+1, ...,xm−1,yj, ...;Y )dX

i.e. again asymptotically independent of S. So this integral is O(1).
At last, for K(yi − xn)K(yj − xn) the average over the FMCRT ensemble

is

∫
K(yi − xn)K(yj − xn)a(X;Y )dX

≈
∫
K(yi − xn)K(yj − xn)dxn ×

∫
a(x1, ...,xn−1,yi, ...;Y )dX

Let us calculate ∫
K(yi − z)K(yj − z)dz

Obviously it equals S−2 (squared amplitude of the kernel) times area of
intersection of two circles of radii R with centres at yi and at yj where S = πR2.
The latter was calculated in [17] and using this result,

∫
K(yi − z)K(yj − z)dz = S−22R2

arccos
l

2R
− l

2R

√
1− l

2R

2

 (51)

where l ≡
∣∣yi − yj

∣∣.
The average over the BMCRT ensemble then makes it

∫ (∫
K(yi − z)K(yj − z)dzdyj ×

∫
a(x1, ...,xn−1,xi,xn+1, ...;Y )dX

)
dyi

The integration over yj is over the whole plane, and using (51) we can calculate
it:
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∫
K(yi − z)K(yj − z)dzdyj

= S−22R2

∫ arccos
l

2R
− l

2R

√
1− l

2R

2

 dyj

=
2

πS
× 2π

∫ 2R

0

arccos
l

2R
− l

2R

√
1− l

2R

2

 ldl

=
16

π

∫ 1

0

arccos
l

2R
− l

2R

√
1− l

2R

2

 l

2R
d
l

2R

=
16

π

∫ 1

0

(
arccos t− t

√
1− t2

)
tdt

= 1

(for fixed yi) so

〈〈K(yi − xn)K(yj − xn)a(X,Y 〉F 〉B

≈
∫
a(x1, ...,xn−1,yi,xn+1, ...;Y )dXdyi

= O(1)

Therefore, all the cross terms containing products of different kernel func-
tions are O(1). Meanwhile those containing a square of kernel function which
equals S−1K are naturally O(S−1), i.e. dominate.
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