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Galina Vasil’evna Shpatakovskaya

Atomic number similarity law in individual electronic shells of all
natural elements

Experimental data on the electronic binding energies in individual K, L,
M, N, O, P shells for all atoms from hydrogen to uranium are analyzed using
special reduced coordinates. The atomic number similarity law is revealed in
every subshell and it is expressed through two smooth functions. The violation of
smoothness usually indicates measurement errors and a change in slope indicates
a filling subshell. The polynomial approximation of the functions allows to recover
missing or erroneous data with an accuracy of 1–2%.

Key words: periodic table of elements, orbital energy, electron binding energy,
electron shell, atomic number self-similarity, semi-classical method.

Шпатаковская Г.В.

Закон подобия по атомному номеру в отдельных электронных
оболочках всех естественных элементов

Экспериментальные данные по электронным энергиям связи в отдельных
K, L, M, N, O, P оболочках для всех атомов от водорода до урана проанали-
зированы в специальных приведенных координатах. В каждой под-оболочке
обнаружен закон подобия по атомному номеру, который выражается через
две монотонные функции. Нарушение монотонности указывает на ошибки из-
мерения, а изменение наклона свидетельствует о заполнении под-оболочки.
Полиномиальная аппроксимация этих функций позволяет восстанавливать
отсутствующие или ошибочные данные с точностью 1–2%.

Ключевые слова: периодическая таблица элементов, орбитальная энер-
гия, энергия связи электрона, электронная оболочка, подобие по атомному
номеру, квазиклассический метод
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1 Introduction
The data on electron orbital binding energies in atoms are necessary for many
applications: optic and x-ray research methods, scattering problems, astrophysics
and so on. One can use theoretical results (for example, [1, 2]) or experimental
measurements [3, 4, 5] as a source of the data. But a comparison of different data
sources reveals lack or scatter of experimental data, difference between experiment
and theory [6]. In the latter case, the question arises about the reason for the
difference: is this an inaccuracy of measurement or is some effect not taken into
account in the theory? Obviously, the binding energy dependence on the atomic
number Z could provide an answer to this question.

In our previous paper [7], a semiclassical method was proposed to find such
dependence. Application of the method to the analysis of K and L shells in
many-electron atoms (Z ≥ 10) [8] revealed a similarity in the atomic number
of measured electronic orbital energies and made it possible not only to describe
experimental K, LI , LII , LIII X-ray levels with an accuracy better than one
percent but also to control their reliability. The method has shown its efficiency
in the analysis of the internal and outer electron shells of lanthanides [9], detected
patterns in the measured first ionization potentials of lanthanides and actinides
[10].

In present paper we apply the method to study the available experimental and
some theoretical electronic binding energies in all natural atoms of the periodic
table (1 ≤ Z ≤ 92). Our goal is to show the general picture of the dependence
of the measured binding energies on the atomic number in individual electron
subshells, detect patterns and explain deviations from them and thus provide a
way to recover missing or erroneous data.

We use experimental data on binding energies for elements in their natural
forms which are summarized in the booklet [3] and theoretical orbital energies
calculated by relativistic local density approximation (RLDA) [2] from the database
[11]. Experimental data from other sources [4, 5] are used also for comparison.

The base of experimental binding energies [3] was chosen as the main one,
since it contains data for all natural elements, but these data are taken from the
publications 40–50 years ago. In database [5], the orbital binding energies for all
elements from hydrogen to lawrencium (Z = 103) are given, but there are no
references to sources and the spin-orbit interaction is not taken into account. The
most recent and accurate data can be found in database [4], but they are not
available for all atoms and not for all subshells.

As far as theoretical models are concerned, the multi-configuration Dirac–Fock
method (MCDF) [1] is considered more accurate for such calculations, but its
application to middle and outer shells for all atoms has not yet been implemented.
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Fig. 1: The functions lg |e1(σ1)| (red solid ▽), lg |e2(σ2)| (green open ◦) (a) and
lg d2p1/2(σ2) (green open ♢), lg d2p3/2(σ2) (green solid △) according to the data
from [3] (b).

The results [11] of the RLDA model [2] used by us cannot be considered standard,
but their advantage is in the completeness of information for all shells of all atoms
from hydrogen to fermium (Z = 100) with allowance for relativistic effects.

In section 2 there are experimental K, L, M shells analysis. In section 3
experimental data in N , O and P shells from [3] compare with RLDA results. In
section 4 polynomial interpolations are used to approximate experimental binding
energies and the estimates obtained are compared with experimental data from
other sources.

2 Experimental electron binding energies in the
K, L and M shells

To analyze a large array of data on the orbital binding energies of many atoms,
special reduced values in atomic units (h̄ = me = e = 1) are used:

en = En0Z
−4/3, σn = πnZ−1/3, (1)

dnlj = (Enlj − En0)/Z
2/3/λ2. (2)
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Here Enlj is orbital energy level in atomic units (the binding energy is |Enlj|), n, l, j
are quantum numbers, En0 is an electronic energy in s-state (l = 0), λ = l+1/2,
j = l ∓ 1/2 is a total electron momentum with account for a relativistic spin-
orbital interaction.

Expressions (1), (2) were prompted by the form of the dependence on the
atomic number of the orbital energy levels in the Thomas–Fermi (TF) atom.
When deriving the latter, the Bohr–Sommerfeld quantization condition was used
(for more details see [7]). In accordance with our method, we assign pairs of
quantities: en − σn, dnlj − σn and thus construct the dependence en(σn) and
dnlj(σn). In the TF atom, the functions e(σ) and d(σ) do not depend on quantum
numbers; they are universal and are calculated from the TF potential.

The functions e1(σ1) and e2(σ2) are shown in figure 1(a) on a semilog scale.
Numbers under or above a symbol in this and further figures mean the atomic
number Z. Compared to the article [8], light elements (1 ≤ Z ≤ 9) are also
considered. Both functions are smooth except lg |e1| for Z = 1 and lg |e2| for
Z = 7, 8. Deviation in the first case corresponds to unfilled K shell, in the second
case to unfilled L shell.

The smooth behavior is also confirmed in figure 1(b) for the functions lg d2p1/2(σ2)
and lg d2p3/2(σ2) except for Z = 15, 16, 32. In contrast to [8], where the functions
lg d2pj were built based on data for only 11 elements, figure 1(b) shows the results
for all elements from neon to uranium. The influence of relativistic spin-orbital
interaction is clearly visible, which increases with increasing atomic number (from
right to left).

Figure 2(a) shows the function lg |e3(σ3)| for all elements 18 ≤ Z ≤ 92,
with main and different transition atomic groups denoted by different colors and
symbols. One can see their continuous smooth behavior. However unlike 1s and
2s curves (see figure 1(a)) there are sharp bends near Z = 20 and Z = 28. The
change in the slope coincides with the position of the iron group 21 ≤ Z ≤ 28 in
which the 3d subshell is filling.

In figure 2(b) functions lg d3pj(σ3), j = 1/2, 3/2 are shown. Compared to the
behavior of an overall smooth function, there are some points (Z = 27, 31, 37, 43,
56, 59, 68, 84) falling out of continuous dependence. It is assumed that the reason
for these deviations is inaccuracy of measurements.

3 Experimental and theoretical binding energies
in N , O, P shells

In the previous section 2, it was shown that the filling of 3d states in the first
transition iron group was expressed in a change in the slope of the function
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Fig. 2: The function lg |e3(σ3)| for different atomic groups, denoted by different
colors and symbols: main (red solid ▽), Fe (pink solid △), Pd (khaki solid ▹),
rare-earth (green solid ♢), Pt (blue open square), Ac (brown solid ◦)(a) and
functions lg d3p1/2(σ3) (green open ♢), lg d3p3/2(σ3) (blue solid △) according to
the data from [3] (b).

lg |e3(σ3)|. Figure 3(a) reflects the change in the slope of the lg |e4(σ4)| dependence
where the 4d states are filling in the palladium transition group. In figure 3(b)
the experimental function e4(σ4) is shown again in comparison with the theoretical
results by RLDA [2, 11]. The smooth behavior of both curves and some discrepancy
between the theoretical and experimental values are seen.

The same figure 3(b) shows theoretical and experimental functions d4pj(σ4).
Both RLDA curves turn out to be perfectly smooth and their behavior contrasts
with the chaotic spread of experimental data for 4p1/2 energies of the rare-earth
elements (57 ≤ Z ≤ 70). The coincidence of the experimental energies E4pj for
different j in the range 48 ≤ Z ≤ 54 is also in doubt.

Analogous consideration of the theoretical and experimental data is presented
in figures 4 for the 5s and 5pj energies in the elements from xenon to uranium.
In figure 4(a), there is a deviation from the general dependence for the osmium
atom (Z = 76). The most chaotic scatter of points is again visible in the region of
rare-earth elements. This scatter, due to relation (2), also manifests itself in the
scatter of points lg d5pj(σ5) in figure 4(b). There are also some disruptions in the
theoretic curve lg |e5(σ5)| at Z = 57, 58, 64. These and the deviations described
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Fig. 3: The function lg |e4(σ4)| for different atomic groups, denoted by different
colors and symbols: main (red solid ▽), Pd (khaki solid ▹), rare-earth (green solid
♢), Pt (blue open square), Ac (brown solid ◦) (a) and functions lg |e4(σ4)| (red
solid and open ▽), lg d4p1/2(σ4) (green solid and open ♢), lg d4p3/2(σ4) (blue solid
and open △). Solid symbols are experimental data [3], open ones are theoretic
RLDA data [11] (b).

above required a separate consideration of the rare-earth elements, which was
carried out for all shells in [10].

All the experimental data available in [3] for the P shell and the corresponding
theoretical RLDA-results are shown in figure 5. The theoretical points, in contrast
to the experimental ones, form rather smooth curves. Note here that the disruptions
in d6pj curve repeat the deviations in lg |e6| curve due to the relation (2).

Figure 6 shows the functions dnlj for electronic states with l = 2, 3 in M(n =
3), N(n = 4), O(n = 5) shells. First, it is clearly seen that the influence of
the spin-orbital interaction on these electronic states is far less than on p states
(l = 1). Second, a constant difference of the 4dj-curves in the upper part and
their coincidence in the middle part seem to indicate measurement errors.
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Fig. 4: The function lg |e5(σ5)| for the different atomic groups, denoted by different
colors and symbols: main (red solid ▽), rare-earth (green solid ♢), Pt (blue open
square), Ac (brown solid ◦) (a) and functions lg |e5(σ5)| (red open and solid ▽),
lg d5p1/2(σ5) (green open and solid ♢), lg d5p3/2(σ5) (blue open and solid △). Solid
symbols are experimental data [3], open ones are theoretic RLDA data [11] (b).

4 Recovering missing or erroneous electron binding
energies

The above analysis of the binding energies from the experimental data [3] found
certain patterns. It is assumed that the violation of the patterns in most cases is
associated with measurement errors. This section provides examples of recovering
missing or questionable measurement results using the found patterns.

The patterns are expressed in smooth dependence of the reduced quantities
lg |en(σn)| and lg dnlj(σn) which allow their approximation by qubic polynomials:

lg |en(σn)| =
3∑

k=0

a
(n)
k σk

n, lg dnlj(σn) =
3∑

k=0

b
(nlj)
k σk

n. (3)

The coefficients a(n)k and b
(nlj)
k for certain subshells n, l, j within various Z-ranges

are presented in table 1 (see section 6).
One can estimate the orbital binding energies (in atomic units) using the
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inverse relations to equation (1), (2):

En0 = Z4/3en(σn), if l = 0; σn = πnZ−1/3. (4)

Enlj(Z) = Z4/3en(σn) + Z2/3dnlj(σn)λ
2, λ = l + 1/2, if l > 0. (5)

and the function interpolations (3) with coefficients from table 1.
In table 2 (see section 6) some estimated energies are shown in comparison

with experimental results from the different database [3, 4, 5]. In particular, the
error of energy E1s estimates for the light atoms 2 ≤ Z ≤ 10 is within 1-2%,
table 2 provides a comparison for Z = 2, 5, 10.

The polynomial lg |e2| and lg |d2pj| interpolation in the range 10 ≤ Z ≤ 23
are used to correct 2s and 2pj electron energies in the atoms 15P and 16S from
[3] and restore missing value for 9F. The estimates agree well with the data from
the database [4].

The polynomial interpolations of the data in various Z-ranges give a good fit
with an inaccuracy less one percent for the 3s and 3pj energies. The corrected
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energies for atom 31Ga are presented in table 2 with estimates of 4s and 5s
energies for atoms 48Cd, 76Os, 83Bi, 85At. The corrected energy for osmium is in
good agreement with the value from the database [5].

5 Conclusion
The paper analyzes the experimental orbital binding energies in all natural elements
from hydrogen to uranium, presented in the table [3]. For each subshell {n, l, j}, n
= 1–6, the dependence of the orbital energies on the atomic number is expressed
in terms of a pair of functions en(σn) and dnlj(σn) according to algorithm (1),
(2). The continuity of these functions means the existence of an atomic number
similarity law of the electronic binding energies in each individual subshell in
atoms. This law is semi-empirical in nature, since it was discovered from the
analysis of experimental data, but the corresponding dependence on the atomic
number is taken from the Thomas–Fermi model.

The degree of smoothness of the functions en(σn) and dnlj(σn) allows one to
conclude about both the nature of the filling of the subshells and possible measure-
ment errors. In particular, it is shown that the presence of a bend on the curve
lg|en(σ)| associates with filling a new subshell in the corresponding atomic group.
In this case, falling out of the general dependence may also indicate a violation of
the regular order of filling this subshell.

The established accuracy of the law implementation is 1–2%. It may be used
to approximate the experimental binding energies, makes it possible to restore
missing and correct erroneous measurements.

A similar analysis of the orbital binding energies calculated by the relativistic
local density functional (RLDA) method [2] confirmed the smoothness of the
corresponding functions lg|en(σn)| and the reasons for their bends, as well as the
loss of points from the general dependence upon failure in the order of filling the
subshell. Comparison of the results of this model with experimental data shows
that its accuracy increases with increasing atomic number, but remains far from
spectroscopic one, in contrast to the MCDF model [1].
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6 Tables

Table 1: Polynomial coefficients in equation (3).

Z k 0 1 2 3

a
(n)
k , b(nlj)k

2 ≤ Z ≤ 10 a
(1)
k -0.892662 2.897579 -2.042613 0.381917

10 ≤ Z ≤ 23 a
(2)
k -6.664277 8.348604 -3.438796 0.422235

b
(2p1/2)
k 0.478246 -0.890866 0.294542 -0.056753
b
(2p3/2)
k 2.802431 -3.358480 1.172388 -0.161329

29 ≤ Z ≤ 92 a
(3)
k 6.770856 -7.418470 2.708057 -0.374312

b
(3p1/2)
k 5.919896 -6.783210 2.413608 -0.309328
b
(3p3/2)
k 21.415101 -22.179422 7.566332 -0.889071

47 ≤ Z ≤ 56 a
(4)
k 71.437968 -60.264421 16.984158 -1.639032

71 ≤ Z ≤ 92 a
(4)
k 9.865444 -5.870459 0.592445 0.046382

71 ≤ Z ≤ 78 a
(5)
k -26.904410 14.905070 -2.208254 0.000000

80 ≤ Z ≤ 88 a
(5)
k 57.380454 -30.726296 3.969991 0.000000
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Table 2: Orbital binding energies |Enlj| (eV) estimated by Eq.(5) in comparison
with experimental data from [3, 4, 5].

Z n lj Eq.(5) [3] [4] [5]
2 1 s 24.52 24.6 24.59
5 1 s 186.8 188.0 186.4–187.3 192.2
9 1 s 703.2 696.7 684.0–694.0 692.4
9 2 s 33.24 23.70–33.64 37.21
15 2 s 186.3 189.0 187.7–188.0 191.4

p 1/2 129.7 136.0 130.3 135.1a

p 3/2 128.9 135.0 129.4–130.9
16 2 s 228.3 231.0 229.2 232.1

p 1/2 166.0 164.0 162.0–166.1 168.1a

p 3/2 164.3 162.0 162.9–164.8
31 3 s 160.1 159.5 161.0 161.0

p 1/2 107.4 103.5 106.1–108.7 107.1a

p 3/2 103.9 100.0 104.3–105.8
48 4 s 109.4 109.8 109.8 112.4
83 4 s 939.5 939.0 939.0 940.8
76 5 s 87.84 84.0 94.6 87.1
85 5 s 193.2 195.0 194.7

aExcluding spin-orbit splitting.
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