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V.D. Lakhno  

On the linear dependence of cuprates magnetoresistance on magnetic field  

The actual problems of Fermi systems theory are considered. A simple explanation is 

given to the linear dependence of electrical resistance on temperature and the linear 

dependence of the magnetoresistance on the magnetic field in high-temperature 

superconducting cuprates, which has been mysterious for many years. It is shown that 

this dependence stems from the treatment of a gas of translationally invariant polarons 

as a system with heavy fermions for wave vectors close to nesting. The destruction of 

such polarons at finite temperature and an external magnetic field leads to a linear 

dependence of the magnetoresistance on the magnetic field and temperature. It is 

shown that the relationship between the slopes of the magnetoresistance curves at zero 

magnetic field and at zero temperature is determined by the universal ratio of 

Boltzmann constant and Bohr magneton. A relation between the existence of 

translationally invariant polarons and the "Planck" time of their relaxation is discussed. 

Key words: bipolarons, strange metals, nesting, Kohler rule 

В.Д. Лахно 

О линейной зависимости магнетосопротивления купратов от магнитного 

поля  

Рассматриваются актуальные вопросы теории Ферми систем. Дается простое 

объяснение в течение многих лет являвшейся загадочной линейной зависимости 

магнетосопротивления от температуры и линейной зависимости 

магнетосопротивления от магнитного поля в высокотемпературных 

сверхпроводящих купратах. Показано, что к такой зависимости приводит 

представление о газе трансляционно-инвариантных поляронов как о системе с 

тяжелыми фермионами для волновых векторов близких к нестингу. Разрушение 

таких поляронов при наличии температуры и внешнего магнитного поля приводит 

к линейной зависимости магнетосопротивления от магнитного поля и 

температуры. Показано, что связь между наклонами кривых 

магнетосопротивления при нулевом магнитном поле и при нулевой температуре 

определяется универсальным отношением постоянной Больцмана и магнетона 

Бора. Обсуждается связь между трансляционно-инвариантными поляронами и 

планковским временем релаксации. 

Ключевые слова: биполяроны, странные металлы, нестинг, правило Колера
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1. Introduction 

 
Transport properties are the most prominent features of condensed matter 

which determining their applications. An important part of condensed matter 

constitutes metals the description of which is based on the Fermi liquid theory. It 

was quite extraordinary that for bad metals of cuprates in the pseudogap phase 

and for some strongly correlated systems the well - established laws are in 

violation. These extraordinary features are usually explained by the fact that 

these metals are in a special quantum states which defies the known laws. 

The well-known example is the so-called “bad“ or “strange“ metals which 

exhibit the nonstandard  linear low temperature dependence observed for many 

years and yet agreement of reasonable understanding is still lacking. The goal of 

this paper is to explain these unusual properties. 

 

2. Linear temperature dependence of electrical resistance in cuprates 

and systems with heavy fermions 
 

One of the most topical problems in the theory of condensed matter is the 

description of the properties of metals to which the Fermi liquid (FL) approach is 

inapplicable. In the theory of condensed matter, such systems have received a 

common name: strongly correlated electronic systems, since the Fermi-liquid 

approach is based on the opposite limiting case of independent or weakly 

correlated electronic states. Alternatively, they are also called non-Fermi liquid 

systems (NFL) 

One of the brightest predictions of the FL theory was the conclusion about 

the quadratic temperature dependence of the electrical resistance in ordinary 

metals. Indeed, according to the FL approach, near the Fermi surface, at low 

temperatures 𝑇 ≪ 𝐸𝐹, where EF is the Fermi energy electrons in a metal can be 

considered as independent quasiparticles, the number of which is ∝ 𝑇. Such 

electrons can only be scattered into non-occupied states under the Fermi surface, 

the number of which is also ∝ 𝑇. Thus, the probability of electron scattering will 

be ∝ 𝑇2. Accordingly, the electrical resistance of the metal in the limit of low 

temperatures will be 𝜌 ∝ 𝑇2. The quadratic law of the dependence of 

magnetoresistance on the magnitude of the magnetic field H also immediately 

follows from the FL theory.  

This picture could be changed by taking into account the scattering of 

electrons on phonons. Indeed, consideration of such scattering in ordinary metals 
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at low temperatures leads to a temperature dependence of the electrical 

resistance 𝜌(𝑇) of the form: 

 

𝜌(𝑇) = 𝜌0 + 𝑎𝑒𝑒 (
𝑇

𝐸𝐹
)

2
+ 𝑎𝑒𝑝 (

𝑇

𝜔0
)

5
                                           (1) 

𝑇 < 0,2ℏ𝜔0 ≪ 𝐸𝐹, 

 

where 𝜌0 is the residual resistance at zero temperature, the second term in the 

right-hand side is the contribution of electron-electron scattering discussed 

above, the third one is the contribution of electron-phonon scattering, 𝜔0 is the 

Debye frequency of phonons [1]. 

At high temperatures, when the condition 𝑇 ≥ 0,2ℏ𝜔0 is satisfied, 

scattering on phonons becomes dominant, which, for 𝑇 > 0,2ℏ𝜔0, being 

proportional to the number of phonons, increases linearly with temperature:  

 

𝜌 ∝ 𝑇
𝜔0

⁄ , 𝑇 > 0,2ℏ𝜔0                                           (2) 

 

Thus, the fact that the electrical resistance of metals increases linearly in 

temperature with increasing temperature is not surprising. In ordinary metals, it 

is observed almost always at sufficiently high temperatures 𝑇 > 0,2ℏ𝜔0. 

Surprising is the fact that in cuprates and systems with heavy fermions a 

linear dependence of electrical resistance arises even at very low temperatures. 

An explanation of this behavior of the electrical resistance in cuprates was 

given in [2]. According to [2], in cuprates and systems with heavy fermions, due to 

the Kohn anomaly, the value of 𝜔0can be very small (for heavy fermions, their 

polaron mass tends to infinity as 𝜔0 → 0). As a result, the temperature 

dependence of the electrical resistance, according to (2), turns out to be linear 

even at very low temperatures. 

The above explanation of the linear temperature dependence of the 

electrical resistance does not require any revision of the existing concepts and, in 

fact, is associated only with the peculiarities of the phonon spectrum of cuprates. 

However, surprising are the experiments on measuring the dependence of 

the magnetoresistance of cuprates on the magnetic field, in which at low 

temperatures, instead of a quadratic dependence of the magnetoresistance on 

the magnetic field, its linear dependence is observed. In particular, it was found 

that: firstly, the linear dependence of the resistance on the magnitude of the 

external magnetic field H takes place only at low temperatures. Secondly, at 

sufficiently large field values, the resistance is practically independent of 

temperature. This leads to some symmetry between H and T: a linear dependence 
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on H exists only for 𝑇~0 and vice versa, a linear dependence on T exists only for 

𝐻~0. 

Next section is devoted to the explanation of this phenomenon. 

 

3. Linear magnetic field dependence of manetoresistanse 

in cuprates and systems with heavy fermions 
 

The linear in a magnetic field increase of the magnetoresistance of cuprates 

and a number of other correlated electronic systems in a wide range of magnetic 

fields, from the lowest to quite high ones, discovered in recent experiments [3]-

[7], is one of the biggest mysteries in the physics of high-temperature 

superconductors (HTSC). The electrical resistance of these compounds linear in 

temperature at low temperatures, which has been observed since early 

experiments [8]–[9], also remains no less of a mystery. 

In strongly correlated electronic systems, this behavior of the 

magnetoresistance is attributed to the existence of a strange metal phase (SM) in 

them, in particular, a fermionic phase in 𝐵𝑎𝐹𝑒2(𝐴𝑠1−𝑥𝑃𝑥)2 [3]-[4], 𝐹𝑒𝑆𝑒1−𝑥𝑆𝑥 [5] 

and a bosonic phase in 𝑌𝐵𝑎2𝐶𝑢3𝑂7−𝑥 (𝑌𝐵𝐶𝑂) [6], 𝐿𝑎2−𝑥𝑆𝑟𝑥𝐶𝑢𝑂4 [7], the 

appearance of which in itself is a mysterious phenomenon. It is believed that, in 

contrast to ordinary metals, in which at low temperatures the magnetoresistance 

is quadratic in temperature and magnetic field, which corresponds to their 

description based on quasiparticles, the description of the strange metal phase 

based on the idea of well-defined quasiparticles is impossible [10]. The purpose of 

this paper is to point out the possibility of a simple explanation of the strange 

behavior of magnetoresistance based on the concept of translation-invariant (TI) 

polarons and bipolarons used to describe HTSC [2]. 

According to [2], [11], TI polarons are formed in cuprates when their 

momentum corresponds to nesting, that is, the wave vector of the charge density 

wave  𝑃𝑐𝑑𝑤. Due to the Kohn anomaly, their mass 𝑚𝑝𝑜𝑙 is very large in this case 

(heavy fermions), and under the Fermi surface they form a nondegenerate 

fermionic gas.  At a temperature 𝑇 > |𝐸𝑝𝑜𝑙(𝑃𝑐𝑑𝑤)|, where 𝐸𝑝𝑜𝑙 is the energy of a 

TI polaron (reckoned from the Fermi level), the decay of TI polarons into free 

electronic states becomes possible. The lifetime of such free electrons will be 

determined by scattering on phonons, that is 𝜏 ∝ 𝜔0/𝑇, where 𝜔0 is the phonon 

frequency, thereby determining the linear dependence of the electrical resistance 

on temperature: 𝜌 = 𝑚/𝑒2𝑛𝜏 ∝  𝑇/𝜔0, where n is the concentration of free 

electrons, m is the mass of a free electron. In an external magnetic field H, the 

concentration of free electrons depends on H and, according to [12], is equal to 
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𝑛𝐻 = 𝑛 ∙ (𝑘𝐵𝑇/𝜇𝐵𝐻) ∙ 𝑡ℎ(𝜇𝐵𝐻/𝑘𝐵𝑇) (see Supplement). Hence, the 

magnetoresistance 𝜌𝐻 = 𝑚/𝑛𝐻𝑒2𝜏 of the fermion bulk system is written as: 

𝜌𝐻(𝑇, 𝐻) ∝  𝜇𝐵𝐻 𝑐𝑡ℎ
𝜇𝐵𝐻

𝑘𝐵𝑇
                                              (3) 

 

It follows that for H=0:  𝜌 ∝ 𝑇 , which is the well-known linear temperature law 

for the electrical resistance of fermionic compounds, and for  𝜇𝐵𝐻 > 𝑘𝐵𝑇: 𝜌 ∝ 𝐻- 

linear in a magnetic field law for their magnetoresistance. 

It is important to emphasize that expression (1) obtained for the 

magnetoresistance satisfies the Kohler rule [13]: 

 

𝜌𝐻(𝑇, 𝐻) − 𝜌(𝑇, 0) =  𝜌(𝑇, 0) 𝑓[𝐻/𝜌(𝑇, 0)] 

 

According to [3]-[5], the experimental dependence of the magnetoresistance of 

fermionic correlated systems 𝜌(𝑇, 𝐻) in the case of a strong magnetic field is well 

approximated by the hyperbolic expression: 

 

𝜌(𝑇, 𝐻)  ∝ √(𝛼𝑘𝐵𝑇)2 + (𝛾𝜇𝐵𝐻)2                                     (4) 

 

where α and γ are constants satisfying the relation 𝛾/𝛼 = 1,01 ± 0,07 . 

Figure 1 shows a comparison of 𝜌𝑒𝑥𝑝 which is the experimental dependence 

𝜌(𝑇, 𝐻) determined by the right side of expression (4) with the theoretical 

dependence 𝜌𝑡ℎ𝑒𝑜𝑟  determined by the right side of expression (3), for the case 

𝛾 = 𝛼. It follows from Fig. 1 that both the approximations are in agreement with 

the experimental dependance within the accuracy of the experiment [3].  

The fact that, according to [3], the linear dependence for the 

magnetoresistance is most clearly expressed near the optimal doping is 

apparently due to the fact that under these conditions the concentration of TI 

polarons reaches maximum [2].  

We note that the presence of a strong temperature dependence of the Hall 

effect in fermionic compounds has little to do with the presence of TI polarons in 

them, since the concentration of the latter is much lower than the concentration 

of ordinary current carriers.  
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Fig.1 Comparison of the theoretical dependence 𝜌(𝑥) =

𝜌𝑡ℎ𝑒𝑜𝑟(𝑥),  determined by (3) with the approximation of the 

experimental dependence 𝜌(𝑥) = 𝜌𝑒𝑥𝑝(𝑥), determined by 

(4). The maximum difference for 𝑥 = 𝜇𝐵𝐻/𝑘𝐵𝑇 = 1.432 is 

8.8 percent.  

 

In the case of bosonic cuprates, TI bipolarons are the dominant current carriers. 

Each decaying TI - bipolaron will now lead to the appearance of two free 

electrons. Accordingly, in the expression for 𝑛𝐻 , 𝜇𝐵 should be replaced by 2𝜇𝐵. 

As a result, for the magnetoresistance, instead of (3), we obtain: 

 

𝜌 ∝ 2𝜇𝐵𝐻 𝑐𝑡ℎ 2𝜇𝐵𝐻/𝑘𝐵𝑇                                    (5) 

 

According to [6], the experimental dependence of the magnetoresistance of 

bosonic thin cuprate films is well approximated by the expression: 

 

𝜌 ∝ 𝑘𝐵𝑇 + 2𝜇𝐵𝐻                                        (6) 

 

The proof of the bosonic nature of current carriers in YBCO and LSCO in [6] was 

based on measurements of the Little and Parks effect near the critical 

superconducting transition temperature Tc, which, generally speaking, is not a 
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strong argument in favor of the bosonic nature of current carriers at 

temperatures above 𝑇𝑐 . A stronger argument is the validity of the relations:  

  

𝜌𝑇
′ (𝑇, 0)/𝜌𝐻

′ (0, 𝐻) = 𝑘𝐵/𝜇𝐵                                 (7) 

for fermionic systems and: 

𝜌𝑇
′ (𝑇, 0)/𝜌𝐻

′ (0, 𝐻) = 𝑘𝐵/2𝜇𝐵                              (8) 

 

for bosonic ones which follow from (3) – (6), and are confirmed by experiments 

[3],[6]. 

As noted above, there is currently not a generally accepted explanation for 

the dependence of the magnetoresistance linear in T and H. In particular, such 

behavior is often observed for systems in the vicinity of their quantum critical 

points. In this regard, in [14] a concept of the universal "Planck" relaxation time 

1/𝜏𝑃~𝑘𝐵𝑇/ћ was introduced. In the case of metallic systems, this means that the 

Fermi energy ceases to play the role of a scaling quantity in describing the 

electronic properties near the quantum critical point and, accordingly, the 

temperature takes on the role of a scaling energy. In the case of a TI polaron 

(bipolaron) gas under consideration, the characteristic frequency of fluctuations 

near the critical point 𝜔0, according to [11], tends to zero due to the Kohn 

anomaly, i.e for 𝑇 > 0, phase transitions can be described in terms of classical 

statistical mechanics, since in this case the inequality 𝑇 > 𝜔0 always takes place, 

which explains the nature of the occurrence of the "Planck" time in strongly 

correlated electronic systems near their quantum phase transitions. In this case, 

the participation of the magnetic field in the scaling relations of quantum phase 

transitions also becomes clear, since it plays the role of an external control 

parameter in them. 

 

4. Discussion 
 

It is now generally recognized that polarons, which are electrons or holes 

dressed by the lattice deformations or perturbations caused by them, are the key 

objects in explaining the properties of transition metal oxides, such as high-

temperature superconductors, nickelates, manganites, and systems with heavy 

fermions [15-19]. In particular, according to [2], the microscopic description of 

HTSC is based on the bipolar mechanism. 

Since most HTSC materials have a magnetic order, the question of the type 

of polarons (phonon or magnon) responsible for HTSC remains open. 
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It was shown in [2], [20] that numerous properties of HTSC in the 

pseudogap phase can be explained on the basis of the concept of phonon 

translationally invariant polarons and bipolarons. In the approach considered, the 

type of interaction between the current carriers and the lattice has not been 

specified anywhere. For this reason, the above consideration is also applicable in 

the case of magnetic polarons. Its universality is demonstrated by experimental 

observations in a wide variety of types of compounds. 

 

5. Supplement 
 

According to [2], the conduction pattern in the bad metal phase looks as 

follows. As distinct from the pseudogap phase, which is determined by the TI 

bipolarons existing in this phase, the TI polaron states dominate in the higher 

temperature phase of a strange metal. Formed near the momentum 

corresponding to the momentum of the charge density wave 𝑃𝐶𝐷𝑊, TI polarons 

turn out to be almost immobile (bad metal). Hence, in the strange metal phase, 

the current carriers are “bare” electrons which are formed as a result of the decay 

of TI polarons under the influence of temperature and an external magnetic field. 

Their concentration can be found from the condition of instability of the TI-

polaron gas:  

 

𝑍𝑒𝑙𝑍𝑝ℎ ≥ 𝑍𝑝.                                                              (S.1) 

 

Where 𝑍𝑒𝑙 is the statistical sum of electrons, 𝑍𝑝ℎ -of phonons, 𝑍𝑝 - of TI polarons. 

Relation (S.1) is a criterion when the free energy of the TI polaron gas is lower 

than the free energy of the electron and phonon gases formed as a result of the 

decay of TI polarons. For 𝑍𝑒𝑙, 𝑍𝑝ℎ, 𝑍𝑝, in [2] it was obtained:  

 

𝑍𝑝 = [𝑒−(𝜔0+𝐸𝑝)/𝑇 (
2𝜋𝑚∗𝑇

һ2 )
3/2 𝑒𝑉

𝑁𝑝
]

𝑁𝑝

, 

𝑍𝑒𝑙 = [(
2𝜋𝑚𝑇

һ2 )
3/2 𝑒𝑉

𝑁𝑝
]

𝑁𝑝

                                              (S.2) 

𝑍𝑝ℎ = [
𝑒−𝜔0/2𝑇

1 − 𝑒−𝜔0/𝑇
]

𝑁𝑝

 

 

where 𝑁𝑝 is the number of TI polarons, 𝐸𝑝 = 𝐸𝑝(𝑃𝐶𝐷𝑊) is the energy of a TI 

polaron with the wave vector 𝑃𝐶𝐷𝑊, 𝜔0 is the frequency of an optical phonon, 
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𝑚∗is the effective mass of an electron, m is the mass of a free electron, T is the 

temperature, h is Planck's constant (h=2𝜋ћ), e = 2.718 is the Napierian base.  

With the use of (S.2), criterion (S.1) takes on the form: 

 

𝑇𝑙𝑛[(
𝑚∗

𝑚
)

3

2 𝑇

𝜔0
] ≥ |𝐸𝑝|                                           (S.3) 

It follows from (S.3) that, with logarithmic accuracy, the strange metal phase is 

stable up to temperatures of the order of |𝐸𝑝|. 

In the presence of an external magnetic field, the statistical sum for the 

electron gas 𝑍𝑒𝑙, according to [12], should be replaced by the expression: 

 

𝑍𝑒𝑙(𝐻) = 𝑍𝑒𝑙 [
𝜇𝐵𝐻/𝑇

𝑠һ(𝜇𝐵𝐻/𝑇)
𝑐ℎ(𝜇𝐵𝐻/𝑇)]

𝑁𝑝

                        (S.4) 

 

where 𝑍𝑒𝑙 is determined by (S.2). 

From (S.2) and (S.4) it follows that for a given value of the magnetic field H, 

the statistical equilibrium with the polaron gas corresponds to the concentration 

of the electron gas determined by the expression: 

 

𝑛𝐻 = 𝑛𝑃
𝑇

𝜇𝐵𝐻
𝑡ℎ

𝜇𝐵𝐻

𝑇
 ,  𝑛𝑃 = 𝑁𝑃/𝑉                              (S.5) 

 

Hence, the magnetoresistance 𝜌(𝐻) in the strange metal phase will be 

determined by the expression: 

𝜌(𝐻) =
𝑚

𝑒𝑛𝐻𝜏
 ,                                               (S.6) 

 

where 𝑒 is the electron charge, 𝜏 is the relaxation time of current carriers in the 

strange metal phase. 
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