Keldysh Institute preprints ¢ Preprint No. 52, 2023

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

A.l. Aptekarev

Hyperbolic volume of 3-d
manifolds, A-polynomials,
numerical hypothesis testing

Distributed under (CC BY)
Creative Commons Attribution 4.0 International BY

Recommended form of bibliographic references: Aptekarev A.l. Hyperbolic volume of 3-d manifolds,
A-polynomials, numerical hypothesis testing // Keldysh Institute Preprints. 2023. No. 52. 36 p.
https://doi.org/10.20948/prepr-2023-52-e

https://library.keldysh.ru/preprint.asp?id=2023-52&Ig=e



https://keldysh.ru/index.en.shtml
https://keldysh.ru/index.en.shtml
https://keldysh.ru/index.en.shtml
https://library.keldysh.ru/prep_qf.asp?lg=e
https://library.keldysh.ru/preprints/default.asp?lg=e
https://library.keldysh.ru/preprint.asp?id=2023-52&lg=e
https://library.keldysh.ru/author_page.asp?aid=1031&lg=e
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.20948/prepr-2023-52-e
https://library.keldysh.ru/preprint.asp?id=2023-52&lg=e

Opanena Jleauna
NHCTUTYT IIPUKJIAJTHOM MATEMATUKN

nmenu M.B.KEJIJIBITITA
Poccuiickoit akageMum HayKk

A.I. Aptekarev

Hyperbolic volume of 3-d manifolds,

A-polynomials, numerical testing of hypothesis

Mocksa — 2023



2010 Mathematics Subject Classification: 57N10; 57M25; 57M27; 11B65
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MbI mpojioizKaeM Hallle 3HaKOMCTBO CO CBSI3IMH T'HMIIEPOOIHUIECKOr0 00bEMA JI0-
MOJIHEHUsT y3J1a B TPEXMEPHOil cdepe ¢ TOMoJOraIecKuMu nHBapruanTaMu y3ia. B
9ToT pas Mbl yaeauM auManue A(M, L) napamerpusaiyu adGUHHOTO MHOTO00-
pasust ¢ KACroM, MOPOXKJIEHHBIM y3JI0M (T.H. A-MHOroujieHaM ). 3areM, UCnosb3ys
M3BECTHDLIE BLIPAXKEHUsT A-MHOTOUIEHOB [IJIsT PsIJjia Y3JI0B, MBI IPUBEIEM Pe3y/IbTa-
Thl YUCJCHHOM IIPOBEPKH I'UIIOTE3 00 aCUMIITOTHKE PEIleHNH ¢-pa3HOCTHBLIX ypaB-
HEHU, CBA3AHHBIX C I'MIEPOOJIMUECKUM 00'bEMOM ITUX Y3JIO0B.

Karoueswie caosa: y3iibl, pyHJIaMeHTaJbHAsS IPYIIa JIONOJHEHUS y3Jia,
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Hue, ['unoresza O0bEMa.
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We continue our study of the connections between the hyperbolic volume of
the complement of a knot in the three dimensional sphere with topological
invariants of this knot. This time we pay attention to A(M, L) parametrization
for the affine variety with casp, produced by a knot (so-called A-polynomials).
Then, using the known expressions of A-polynomials for number of knots we
present results of the numerical tests for the conjectures on asymptotics of
solutions of g-difference equations connected with the hyperbolic volume of
these knots.
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1. Introduction

In this preprint, we continue our earlier (see [I, 2, 3]) acquaintance with
the connections of the hyperbolic volume vol(S? \ K) of the complement of the
knot K in the three-dimensional sphere S* with the topological invariants of the
knot K. These connections between the geometric characteristic: vol(S* \ K)
and the combinatorial, algebraic characteristics of the knot K are established
using analytical methods: asymptotic WKB analysis of g-difference equations for
g-hypergeometric functions.

This time (see Section 2) we will pay attention to well-known algebraic
concepts: the fundamental group of the knot 71 (K), its SLo(S*\ K, C) representation,
and A(M, L) parametrization of SLy as an affine variety with cusp generated by
the knot K (the so-called A-polynomial).

Then (see Section 3), using the known A-polynomials for some knots K, we
present the results of a numerical test of hypotheses about the asymptotics of
solutions of g-difference equations associated with vol(S* \ K).

Now, in continuation of the introduction, we will dwell on the formulation of
the problem and on the main points of the analytical approach to this problem.

1.1. Knot invariants and ¢-difference equations. The famous Kashaev
conjecture (see [4,[5]) relates the hyperbolic volume vol(S*\ K') to some topological
invariant of the knot K. Later (see [6, Theorem 4.9]) this Kashaev invariant
was expressed in terms of a classical invariant: the Jones polynomial J(gq) and
its colors by n-dimensional representations of the quantum group, the so-called
colored Jones polynomials (see |7, §]):

(@) }ols, Ji(g) =1, Jlg)=J@), ... (1.1)

In turn, Garofalidis and Le (see [9]) proved that the colored Jones polynomials
{J.(q)}22, are g-hypergeometric functions and, therefore/lare particular solutions
of the g-difference equations:

d
Y A" a)Qnsjlg) = 0, (1.2)
j=0

satisfying the initial conditions from ([1.1]). That is, assuming in ([1.2)

Qn(q) == Ju(q), n=1,...,d, (1.3)

we obtain the entire sequence (1.1)). We will use this property as the definition of
colored Jones polynomials.

!ike the classical orthogonal polynomials and their generalizations, the jointly orthogonal polynomials with
respect to classical weights satisfying d-term recurrence relations
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Example. For the eight-knot 4; the initial conditions are:

Jilg)=1,  hl@Q=¢—q+1—qg'+q?

and coefficients:

._ql—n(l + qn—l)(l . q2n—1) - (1 . qn—2)(1 o q2n—1)
a/O(Q) T n ’ CLQ(Q) T n 2n—3\ ’
L=q (1= (1 - ¢
. (q) ':q2—2n(1 . qn71)2(1 4 qn—l)(l 4 q4n—4 . qn—l . q2n—3 _ q2n—1 . q3n—3)
1 : (1 . qn)(l _ q2nf3)

using recurrence relationﬂ

2

= aj(q)Jn—j(q) +ao(q), n>3, (1.4)

j=1

define the entire sequence of colored Jones polynomials.

1.2. Volume Hypothesis — Limiting Regimes. Kashaev’s conjecture (VC)
on the volume of hyperbolic knots K states:

o7 Tim —1In [ Ju(g = 2N = vol(S*\ K). (15)
N—oco N

Let’s look at the left-hand side. There is a specific knot K, and for it
the initial colored Jones polynomials and the coefficients of the recurrence
relations are known A large number N is fixed, and using . -
the polynomlals {J,(q)}Y_, are successively calculated. Then in the polynomial
Jn(q) the substitution ¢ = e*™/V is done and the resulting quantity, depending
only on N, grows exponentially with increasing NV, and the rate of its growth is
proportional to the hyperbolic volume S$? \ K.

Thus, we have two connected limits: N — oo and ¢ = e — 1, along the
arc S! in the upper half-plane C,, which motivates us to consider the original
g-difference equation ([1.2) in the following double-scale regime:

2mi/N

d . N — oo,
ZAJ(Q 7Q)Qn+j(q) = 07 2 S te [071]’ qn N e2mt — s c Sl
J=0 N
(1.6)
which in the limit gives the algebraic function \(z) (spectral curve):
d .
=3 AN =0, = A=) = {An(2) o (1.7)
=0

2the inhomogeneous form of the equation (1.4) can easily be reduced to the homogeneous form (1.2)) with
d=3
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1.3. VKB - asymptotics of the general solution of the ¢-difference
equation. On closed arcs [ := {z} C S!, where the roots of the polynomial
(1.7) are separated:

30 >0 : {|A\n(2) = \e(2)]} > 6, Vzel and m#k, (1.8)

there are approaches (see [12, [1, 2, ] ) for obtaining formal (and asymptotic)
expansions in the small parameter 1/N for the general (fundamental) solution
of the g-difference equation ([1.2). If we write the recurrence relations (1.2)) in
matrix form: J,+1 = A, @, where d x d matrix A, is formed by the coefficients
{A;(q", q)}9_ of (1.2), and the vector 571 denotes

an = a q q QTL? QTH-la SR Qn+d—1)T7 n e N7 (19)
then the limiting matrix A = A(q", q)|¢=1,47=- has characteristic polynomial
P(z, ) and eigenvalues {\,,(2)}4 _,, the same as in ((1.7).

According to the general theorems (for detaild see [I], 3]) on the expansion
of the fundamental solution ([1.9)) of the g-difference equation (1.2)) in the zones of
separated eigenvalues (|1.8]), the following asymptotics holds:

@(qn,q)\q:ezm/w,qnzz ch P ( (z)+0(%>), rie  (1.10)

F(2) = e O (1, \(2), - LA ENT QY (et = / In(\;(e2™7)) dr.

ty
Assuming the maximizing (integral above) j := 1, for a particular solution @,, in
general position (i.e. all ¢; # 0) in the zone (|1.8)) started at z = 1 we have:

. ln|Qn(62’”/N)| (1), 2mit t o
1 =R ™) = In | A (e”™7)|dr. 1.11
Noomnst N epa(e) /0 ol dr - (11

Thus, if for some knot K: 1) the limiting eigenvalues are separate on the whole
St, and 2) the particular solution {J,(27i/N)}_; grows exponentially as n :=
[tN],t € (0,1), then (see also [12]) for the left-hand side in (1.5)) we have:

2mi/N
o fim INETTN o / n A () dr & vol($\ &), (112)
N—o0 N 0

1.4. VKB - asymptotics of particular solutions. Turning to the conditions
for the existence of the limit on the left-hand side of , we note:

All known to us spectral curves A(z) have branch points on S!, i.e. cases 1)
- continuation of the zone to the entire circle - were not observedﬂ

3below, in Appendix 1, we present the main points and statements
4by the end of the work on the preprint we encountered case 1), see below point
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In this connection, an important problem arises of rigorously justifying the possibility
of continuing asymptotics of the form ([1.11)) for particular solutions from the
zone I - the separation of the seigenvalues ([1.8) to the zone I - the holomorphic
continuation of the branchﬂ A1, regardless of the presence of branch points of
other branches in the continuation zone I. This problem is more complicated
than the problem of the asymptotic expansion in I of the fundamental solution,
and its general solution is unknown to us. In the particular case of 3- and 4-term
(ordinary, not "g-") recurrence relations, it was solved in [13].

Before continuing to discuss the conditions for the existence of a limit for
the colored Jones polynomials on the left-hand side of , let us dwell on the
second equality on the right-hand side of :

1
o / In | A1 (e2™7) | dr = vol(S? \ K). (1.13)
0

In [3] we numerically investigated the fulfillment of the equality on the
simplest knots 41, 5. To our surprise, we found (with a large number of significant
digits coinciding) that the integral on the left-hand side of is twice as large
as the known volumes on the right:

27 /011n|)\1(62m7)|d7 ~ vol(S*\ K) * 2 (!) (1.14)

This fact, of course, was known before, see [15].
Now let us return to the condition 2) of the existence of a limit on the left-

hand side of (1.12)) for a particular solution of the equation (1.2, (1.3) (which

2mi

assumed exponential growth of {J,(e™ )}, for n := [tN], ¢t € (0,1) and N —
00). Here we note that from the well-known relation, see [6], for ¢ := e ™ we have

Jo(q) = In_n(q), 1<n< N = Ji(q) = Jy_1(q) = 1, (1.15)

and moreover, for the knot 4; it is easy to provéﬂ, and for a number of other
knots it is possible to verify numerically that for all n < N the colored Jones

polynomials (for ¢ := e™ ) are bounded and at the same time for n = N they
grow exponentially, in accordance with the Kashaev conjecture ([1.5)):
273 1 27 VOI(S3 \ K)
(en)] < 1< N lim —1 N)|=——~ (1.1
[Jn(e™)] S C, n < Jim = In | Jy(e) o (1.16)

Thus we see that the particular solution (|1.1)) defined by the Cauchy problem
(1.3) for the g¢-difference equation ([1.2)) (i.e., the colored Jones polynomials)
cannot directly express the value of the limit on the left-hand side of the volume

hypothesis (1.12)) using WKB analysis ((1.11]).

Sthe branch defining the growth rate of this particular solution in the zone I
Ssee Appendix 2 below for the estimate of {.J,,(e’¥ )} for twisted knots
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2me

At the same time, we note that the particular solution {.J,(e ™ )}, has
in the limit regime (1.6 a very interesting local singularity . The study of
this singularity and finding the volume in connection with it seems to be a very
important task, even in the simplest particular case of the knot 4.

Still, let’s return to the WKB asymptotics and try to "make it work"to
find the limit on the left side of and understand the conflict vs. ([1.14).

Let us imagine for N > 1 continualization of a particular solution ([1.1)):

27t

{Jn(@%)}g:h n:=[tN], t€[0,1] — {Jun(€™)}icp.

We can imagine a function Jyn) continuous in ¢ € [0, 1], oscillating with high
frequency, with local (bounded as N grows) "minima" at points ¢, := n/N, n =
1,...,N — 1 and with alternating local "maxima", growing exponentially with
N, at least in the left neighborhood of the maximum of the function Jyy; at
t = 1. Now, if we were to impose a small perturbation on the function, shifting
the neighborhoods of the local "maxima" to the discretization points t,, then
the exponential growth rate at t = 1 could be calculated using the WKB integral
(1.11)) along the growth zone of the perturbed particular solution.

An example of such perturbation could be the following trick. Let us denote

(@)X —q") _ falg)
fulq) = (1 —4q")J,(q) then J,(q) = = : 1.17
(q) = ( )Jn(q) (9) f=rD =D (1.17)
Obviously, the right-hand side here has uncertainty at ¢ — €™/~ n = N, and
therefore, by L’Hopital’s rule, we have

/
~ d
J 2mi/N o fn(q> h ! :
wa=e ) ng" ! n:N#I:e?m'/N, ere fuld) dq

fulg). (1.18)

The following statement is true (For the proof, see [3, Lemma 2]):
The spectral curves for J, and for f! coincide. Besides,

. 1 i . 1 T
lim Nln|f}’v(q:e2 M) = lim Nln\JN(q:e2 M. (1.19)

N—oo N—o00

Let us illustrate the validity of this proposition using the example of knot 4;. Let
us transform the recurrence relations ([1.4)) to the form:

Jn= &1(77/7 Q)fn—l + &Z(n; Q>fn—2 + CNLO(”; Q)a n =3, (1-20)
fi=l=q, for=0-)@—q+1-q¢ +q7)=~¢"+¢~q " +q7
where
aj(nvq)(l — qn)
1—qn

aj(n,q) = ., j1=0,12. (1.21)
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Further, for the derivatives f/ these recurrences take the form:

fo=a1(n, ) fr 1+ aa(n,q) fr o+ Ac(n,q), n >3, (1.22)
fl=—1 fo=—4¢+3¢ +q 7 —2¢",

where a@;, 7 = 1,2, are defined in (|1.21)),

~ d _ d _ d _
Aop(n,q) == —ap + fno1——a1 + fn—zd—qaz-

dq dq
As we see, the homogeneous parts of both recurrence relations ([1.20)) and (1.22)

coincide, and it is easy to verify that in the limit regime ([1.6]) their spectral curves
coincide with the spectral curve of the original recurrence relation (1.2) - (1.4).

Thus, in order to obtain a formula for the limit in in the form of the
WKB integral @D, it is necessary to check whether the terms of the sequence
{f1(q)|j=ezein }A_, exhibit exponential growth as N — oo and n/N =: t €
[t,1],£ < 1. We have not yet been able to strictly prove the corresponding lower
bounds, but numerical calculations for the knots 4; and 59 give a "positive"
answer to this question for some # € (1/2,1). Thus, based on these numerical

calculations, in [3] we proposed a hypothesis about representing the limit on the
left-hand side of ((1.5) as a WKB integral:

. ].n|JN(€27Ti/N)‘
2 1
ﬂ-Nl—I)IéO N

1
=2w/ In | Ay (e2™7)| dr (1.23)
i

where 7 € (1/2,1) defines the branch point Z := e2™ of A(z) closest to (—1) on
S, whose branch \; : (3,!) is holomorphic and |A;| > 1 on the arc (Z, e*™] C Sh.
Since the A(z) known to usﬂ, corresponding to the knots, had for all their branches
{)\;(2)} the unit modulus on the arc (Z, Z) 3 (—1), then the integral in (1.23)) can
be extended (without changing the value) to the entire lower semicircle, and also,
having defined (3,!) the holomorphic branch A} : [A{| > 1 on the arc [1,%) C S,
extend to the upper semicircle:

1/2 . 1 _ 1 ‘
/ In | A[(e*™ )| dr = / In | Ay (e*™7)| dr = / In | A (™) dr,  (1.24)
0 1/2 t

which agrees with ((1.14)).

Tat the time of publication of [3]



2. Obtaining A—polynomials

Along with the polynomial P(z, \), which characterizes the spectral curve
and is related to the (analytic) left-hand side of the volume hypothesis ,
of interest are the so-called A(M, L)-polynomials introduced in [16] and parametrizing
the affine variety for the SLo(S?\ K, C) representation of the fundamental group
of the knot 71 (K), where M is the latitude and L is the longitude of the small
torus (cusp) enclosing the knot K (i.e. the A(M, L)-polynomial is related to the
right-hand (algebraic-geometric) side ((1.5)).

This interest is due to the fact that, according to the AJ conjecturﬁ of
Garofalidis [10, p.297] both of these polynomials coincide after the cancellation of
A(M,L) := A(M, L)/ A(M) of some power of L and a factor A depending only
on M, and the identification 2 = M2, A\ = L = :

P(z,\) = AM, L). (2.1)

Moreover, if we denote by V' the volume of the manifold defined by the parametrization
A(M, L) = 0, then the following formula is known [11, C.D. Hodgson, 1986]:

dV = —2(log|L| d (argM) — log|M]|d (argL)). (2.2)
If, using , we pass to the variables z, A, then we obtain
dV = —log |\ d (argz) + log|z|d (arg)),
while on the boundary torus z := exp(it) we have

dV = —log || dt. (2.3)

Thus, the volume formula (2.2)) in variables demonstrates a direct connection
of the WKB integrals (1.12)), (1.23)), (1.24)) with the geometric right-hand side of
the volume hypothesis (|1.5]).

This section is of a methodological nature. In it, using known sources, starting
from the simplest knots, we will sequentially construct their fundamental group
m1(K), SLy(S3*\ K, C)-representations and obtain an explicit form of the corresponding
A—polynomials.

2.1. Fundamental group m(K) of knot K. For the definition of m (M, x¢)
for a manifold M with respect to a point zy € M, see [17, p. 534].

We are interested in manifolds M := S?\ K, where g = co € §?, and K is a
knot. Using the example of knot K := 3, following [17, p. 655], we W111 construct
generators of this group and obtain relations connecting them.

8 AJ — the initial letters A— of the polynomial and the Jones polynomials J
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d
o0 ————
K-3,
R3

Puc. 1. Basic paths for the group m1(K) for “trefoil” 3,

Consider K - the projection of K onto R? (the direction of “general position”
d — the projection is chosen so that K is a planar graph with vertices {A, B, ...}
and edges {K1, Ko, ...}, and exactly four edges converge at each vertex, their ends
are labeled + or — depending on the location of the projected section of the knot
K: (4) — “above” or (—) — “below”. The direction and numbering of the edges is
induced by the fixed direction of traversal of K C S?. For example, for K = 3;
the graph has the form, see Fig. [I]

K ={A,B,C} U{Ky,... K¢} : K = [BCl, Kp:=[CihA),
K3 = [A(_)B(+)], K4 = [B(+)C(_)], K5 = [O(_)A(+)], K6 = [A(+)B(_)]

Generators (basic) of the pathes of the group m (we denote a; € 1) are defined
as follows: path a; starts from point oo € S* in direction d, reaches point K,
corresponding to the middle of edge K;, goes around K and returns back to
point co. We obtain relations connecting the generators of the group 7. Let 4
edges converge at a vertex: K;,, ..., K;,, and in one pair, say in (ji, j2), the ends
of the edges have the same sign, and in the other — (js3, j4) — the sign of the ends
is opposite to the sign of (71, j2). If (j1,j2) has the sign (+), then we obviously
have:

aj, = @j,,  J2=J1+ 1, (2'4)

in this case the pair (js, j4) has the sign (—), and for the generators we obtain
-1
aj, = @, a;,a;,. (2.5)

The set of relations ([2.4)), (2.5]) generates all relations in the group m1(S*\ K, 00).
For the trefoill K = 3; we have:

B —a3=a4 =z, a, = a§1a6a3 = Yy = xiluflx,
C —a=ay=:1, as = al_la4a1 = w = y_las_ly,
A= ay=ag= w ', as = aglagag) = r=wyw
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Thus, the representation of the fundamental group will be:
T (S?\ 31,00) = (z,y: 2w =wy, w=y 'z y). (2.6)

We note a wide class of knots (the so-called two-bridge knots, see [1§]), for

which the fundamental group is generated by two generators, and its representation
has the form ([2.6)):

m(S*\ K, 00) = (2,y: aw = wy, w=W(z,y,z"",y ")), (2.7)

where W are some words with the letters (z,y, 271,y !). For example, for the
simplest hyperbolic knots 41 (the “eight” knot) and 5, see Fig. 2, the fundamental
group ([2.7)) is defined by the words:

4y = Wy =y toya ! (2.8)

and
5y — Wi, i=yax tyxy ‘o, (2.9)

and also, see Fig. 2, the so-called twisted knots K, have

K, = Wk, = (zy 'z 'y)" (2.10)

(S//BKXJ\

/
g_//‘\ I
Puc. 2. K =44, K =5y and K := K- twisted knots

<D

2.2. Representation p : m1(S? \ K,00) — SLy(C) and the algorithm for
constructing A—polynomial. In [16] for an oriented three-dimensional manifold
X C H3, whose boundary can be enclosed inside a torus, i.e. 0X C T? (for
example, X = S*\ K), using the representation p of the fundamental group
m(X) as a group SL(2,C) = {U} — unimodular (detU = 1) matrices 2 X 2, an
isometric to the hyperbolic metric H? parametrization of (m,[) in the form of
an algebraic curve A(m,l) = 0 is proposed. In this case, the variable m in the
polynomial A has even degrees and corresponds to the points of the circle of the
meridional section of the boundary torus M — latitude, and [ — to the points of
the cycle L transversal to the meridian (intersecting it at one point) — longitude.
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The general idea of this approach is the following. Cycles M and L in the
manifold X are identified as products of generators of the group m(X). Then,
for these generators, their representations from SLo(C) are determined so that
the elements of the corresponding matrices contain coordinates m € M and
[ € L. Finally, considering the required number of non-trivial representations
corresponding to trivial cycles, all undefined parameters except m and [ are
eliminated, leaving a polynomial dependence A(m, 1) = 0.

We describe this procedure for the two-bridge knots given above, see .
Following [16], we turn to (2.7) and assume

M:=x2 and L:=z2"wuw",

where the word w* is a mirror permutation of the word w, and n is chosen so that
the sum of the exponents of L is zero. Defining the representation of generators

0 m~ t m~

00 = st i= o ) o= [y ) e

Next, substituting into (2.7)) a specific word w, corresponding to the knot under
consideration, we generate a matrix

Pl t)i= [P 22| = o) = plan) = plaloto) = plwlpls). (212)

which for hyperbolic two-bridge knots must have a zero main diagonal

p11 =p22 = 0. (2.13)
Let us denote the Laurent polynomial in m:

p(m,t) == pi2,

generate matrix

Qm, 1) = [3; 3;;] = (L) = pla")p(w)p(w?),

and denote
q(m,t) == qu1. (2.14)
Finally, from the system of equations
p(m,t) =0
{ g(m, 1) = 1 (2.15)

we exclude t (by calculating the resultant of the polynomials m"p and m*(q — )
with respect to t) and obtain the desired polynomial A(m, ).
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Let us illustrate this procedure on specific knots (2.6)), (2.7)), (2.8)), (2.9).

2.3. A(m,l) is a polynomial for the 3; trefoil knot. Substituting into (2.6)
the representations ([2.11)) for y~1, 271, y, we obtain SLy(C) the representation for
w:

m+tm™! m—2

137_19) = P(?J_l) . p(x_l) -p(y) = —tm2 + (1—t)t (1— t)m_l .

p(w) = p(y~

Next, according to the procedure described above, we find the representation
p(zw) — p(wy) - matrix P(m,t). Here we have a surprise’| — condition (2.13) is
not satisfied, but, although pss = 0, we have

pii=—(m*+m*t —m?+1) +m 2 #£0. (2.16)

After thinking a little about the fundamental group (2.6]), we have

y=w lzw=(y zy)r(y 'z ly) = (y layz a(zy T2 ly),

thus the groups (2.6) and the fundamental group of the twisted knot K7, see

(2.10]), coincide
(x,y: 20 = by, © =y 'z 'y) = m(S*\ Ky, 00), (2.17)

as well as the knots that generate themﬂ 31 and Ky. Now, applying the above
procedure from [16] to the group (2.17)), we obtain the following expressions for
the matrices p(w) and p(w)*:

(t—12+tm*> (t—-1)mt+m tm? + 1 (t—1)m+m™!
(t—DtmL+tm  tm2+1 = Dtm+tm™t (= 1) +tm 2

For the matrix P(m,t), as expected, we have (2.13): p;1 = pee = 0, and for the
Laurent polynomial pis we obtain

p(m,t) :== pia = (m* + m* —m? + )m ™2 (2.18)

Having calculated the matrix Q(m,t) := p(ww*) = p(w)p(w*), we have for the
element ¢q1:

q(m,t) ;== qui = (M + m*'t® —m* + mt + m2 - +m? 17— t)m

Thus, the system ([2.15) is obtained. From the first equation we immediately
express t:

p(m,t)) =0 = to=1-m’>—m > (2.19)
Substituting the obtained ¢ into the second equation, we obtain (after all reductions):
q(m, t)|i—t, =1 =  Am, 1) = —(m®+1). (2.20)

9Knot 3;— is not hyperbolic, so (2.13) is not guaranteed
Owhich can be easily verified by comparing Fig. 1 and K,,, n = 1 in Fig. 2
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2.4. A(m,l) polynomial for the figure-eight knot 4;. Substituting into
(2.8) the representations (2.11)) for z,y and their inverses, we obtain the SLy(C)
representation for w and w*:

plw) = ol oteplulpla ™) = | CH I T

p(w*) _ (( — tiQ .m? 4 t)m‘Q ((1 B t)m2 B l)m_l

1
(1 —t)m?t —t)m™1 m2t + 1

We calculate the matrix P(m,t) := p(zw) — p(wy). The test p1; = pas = 0 is
passed, and for the Laurent polynomial p1o we have:

p(m,t) == (m* —m* + m?** = 3m*t +3m?* +t — 1)m 2%
Calculating the matrix Q(m,t) := p(ww*), we have for the element ¢i;:
q(m,t) == qu = (m6t2 — mSt +m*? — m? + mt — m* + mPt+ tQ)m_4.

Finally, we get rid of ¢ in the system (2.15) by calculating the resultant of the
polynomials m?p and m*q with respect to t. We obtain the desired polynomial

Ay, (m, 1) = —Im® 4+ Im® + Pm* 4 20m* + m* + Im? — . (2.21)

2.5. A(m,l) is a polynomial for knot 5;. As before, starting from ([2.9)), we
obtain a SLo(C) representation for w and w*:

(t—1)(m?t—2m2 +1)

m2t2 —2m2t+m2+t

m
w) =
p(w) t(m2t2 —=3m2t+2m?+t—1) m?t? —4m? 2 +4m?t +t2 -2t + 1
m m?2
2 2 2
t— t2 —3t+2
M2 —2m2 i+ B4 m? A pap DT il
* m
plw) =
(") (t—1)t(m*+t—2) m2t+1*—2t+1
m m2

We calculate the matrix P(m,t) := p(xw) — p(wy), and for p;o we have:

m*t2—3mit+mie+2mr —5m22 +8mit—3m2+12 —3t+2

p(m,t) := 5

m

9
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Next, for the element g17 of the matrix Q(m,t) := p(ww*), we get g(m, t) =

— (m2t> —5mP2tt % L om2 3 — 510 — T2 L 9Ot - 2mB O
+2m2t—6m —11mP e+ 23mP ! + 2mO 0 + mt — 21mB P — 10m°#°
+7mP 4+ 1TmOtt - 2m S —8mO 3 —12m* > — 6 mO 2 + 28 mt tt + m2 O
+6mit —31m 't —6m*t° — m® + 16m* t* + 14m?*t* — 3m*t —16m>** + 1°
+10m* 2 — 6t* —dm?t + 13¢> — 12¢* + 41)/m".

Calculating the resultant (m? - p,m5(q — 1),t), we obtain:

As,(m, 1) = Pm"* =12 (m"* 21 m"2 42 mP —mSmh)+1 (m'O—mB2m*+2m>—1)+1.

2.6. A(m,!) is a polynomial for the knot 7,. Using MAPLE we have calculated
A-polynomials for other knots as well. For example, for knot 7, we know the
representation (2.7)) of the fundamental group, where

Ty — Wrq, = yrty zy tey ey ey oyt

From it, as before, we arrive at the resultant (p, (¢ — 1), t), which turns out to be
factorized: Az, (m,l) := Az, (m, )M A7, (m,1)®, where

AD (m, 1) =P m™ 4 (—2m™ + 6m!? +2m!° — Tm® 4 2m8 + 3mt - 2m? + 1)
+(m" —2m? 4 3m0 +2m® —Tm® +2m* +6m? —2)1 + 1.
AP (m, 1) = m® + (—m® +mS + 2m* +m? — 1)1 + 1) (2.22)

2.7. A note on the AJ - conjecture. This conjecture has been proved for the
knots 31,44, 74 (cf. Garoufalidis [10] and Koutschan-Garoufalidis [32]); for torus
knots (cf. Hikami [33], Tran [34]), for some classes of two-bridge knots, including
all twist knots and pretzels (cf. Le [35], [36], [37]).

The explicit form of the A—polynomials for various knots can be found in
(40, 39].

3. Roots of P(z,\) at |z| =1 and WKB integrals

This section is the central one in our preprint. In it we present new material:
for various knots with known A—polynomiald'| and volumes, we analyze the
branches {\;(z)} for |z| = 1 of the algebraic function (1.7 and integrate them

numerically to test our conjecture ([1.23)), (1.24) about (3,!) of the holomorphic
branch A; : |A;] > 1 on the arc of the upper semicircle S!:

. lnle((ng'/N)'
2m lim
N—o0 N
assuming the AJ-hypothesis

(1/2) |
- / In A (2 dr & vosP K). (3.1)
0

11
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3.1. Knot 6,: branches {);} and volume. As we have already noted, we take
the explicit form of the characteristic polynomials from the known A(M, L)-
polynomials, setting 2 = M? X\ = L in (2.1)). In view of the interest in (3.1)), we
study for |z|=1 the branches {\;(2)}9_; of the algebraic function A(z) defined by
. Let us note the general propertieﬂ of the roots of colored Jones polynomials
(in A) of the polynomial P(z, ) for |z|—1:
1) M(z) = A(%), i.e. the sets {Aj(2)}92, and {X;(2)})_; coincide;
2)Vj Jk#j: NEMR)| =1, jk=1,.4d |z|=1
For the knot 6; we have:

Pz, ) =22 X (—220 432" + 32  + 2 — 1) + A(=2° + 27 + 327+ 32° — 227)+
M =32" =25 4322 +62 4322 22 -3+ 1) +2" =0, (3.2

and  P(=1,\)=(\—1)4 P(1,A) = A+ D)%
The analysis of branches {;(2) ?:1 is enough to do on the S! -upper semicircle.
The discriminant in (3.2)) is equal to D(z) := 2% (z — 1)!?(2 + 1)12A, where A :=

521232211 456210 11827 4+1242% 4322741232432, 41242*— 11823 +5622—3224-5

Of all the zeros of A on the upper semicircle there are two branch points A(2):
2 1= —0.84.. +30.53.. =: e, t; = 2.57.., 2z = 0.052.. +70.99.. =: €2 t, =
1.51.. We have X\;(—1) = 1, j = 1,2,3,4. Moving from z = €™ clockwise, we
calculate the roots of the polynomial and obtain that |A\;j(z)] = 1,5 =
1,2,3,4, on the arc {z = €'/t € [r,#1]}. At point 25 we have: A\i(z1) = \y(21),
and |\ (2)] > |A2(2)] = 1 = |A3(2)| > |Aa(2)] for points z = e, t € (t1,1a].

7

0.0 05 1.0 15 2.0 25
t

Puc. 3. [M(2)],|A2(2)] > 1 at z=¢€"t=0,...,t, for knot 6;

2follow from the general properties of the roots of colored Jones polynomials
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At point 2o the branches Ao = A3 coincide, and at the output (clockwise) from
2o we have: [M\1(2)] > [Ma(2)] > 1 > [M3(2)] > [M(2)|,2 = €', t € (t2,1*]. Note
that point t* = 1.047... on arc (f2,0), in which [\ (2)| = [Aa(2)] > 1 > |A3(2)| =
|A4(2)] and then at z = e, ¢ € (¢*,0) the order of branches is rebuilt according to
the magnitude of the modulus: [A2(2)| > [A1(2)] > 1 > |A4(2)] > |A3(2)|. Finally,
for z =1, \;(1) = —1, j = 1,2,3 4.

Note that on the upper semicircle we have |A1(2)||A4(2)| = 1 and |A3(2)||\2(2)| =
1. It is also obvious that on the lower semicircle (going counterclockwise from
p.z = —1) there will be the same structure of branches of the algebraic function
A(2).

Let us proceed to the calculation of the integra]ﬁ in (3.1). The integral sum
gives:

t 99
1 . ‘ t
In[da(e")] de~ 3 In Xy (e s =3.161001...
/0 n|A(e")] 2 n|A\(e ) 100 3.16100

Known volume value for knot 6;:
vol(S? \ 6;) = 3.16396322...

A. B. Batkhin developed a special numerical method for identifying branches and
calculating integrals (in the neighborhoods of branching points), which allows
obtaining results with a fairly high accuracy (see in [2] the calculations of the
integral for knot 57). For knot 6; the numerical value of the integral is:

/ In |A;(e")] dt ~ 3.163963228883...
0

3.2. Knot 7,: branches {);} and volume. We continue the numerical verification
of the hypothesis (3.1]) for various knots. We present the characteristic polynomial (|1.7))
that defines the spectral curve A(z) for knot 7s:

Pz, A) =X 4+ May(2) + Mas(2) + Nag(2) + dai(2) + 2 =0, (3.3)
ap i=2% — 2% + 327 + 4210 — 221,
g = — 22° +52° + 24 — 425 + 627 + 525 + 220 — 4210 4 M,
ag =1 —4z + 222 + 523 + 62 — 420 + 27 4+ 528 — 227
ayi=—24+4z+322 — 20+ 7.

Note:  P(=1,\) = (A — 1) P(1,0) = A+ 14

Bgince [\| =1 on (t1, ), then the upper limit in the integral can be replaced by m
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The discriminant of the polynomial P(z, ) is D(z) := 216 (22 — 1)*A, where

A =202 — 19221 + 58121 — 882213 + 1649212 — 221421 +
11462 + 73027 + 27332% + 73027 4 11462° — 22142°+
16492* — 8822° + 5812% — 192z + 20. (3.4)

Of the 16 zeros of A on the circle - 8, on S} lie two branch points of A(z2): z; =
—0.89.. +10.45.. =: €' [t} = 2.67.., 25 := —0.28.. +10.96.. =: €2ty = 1.85..

The branches {)\j(z)}?zl of the spectral curve for the knot 75 on the
circle S! behave in the same way as the branches A(z) for 6;. One exception: an
additional branch has appeared (denote it by A3(z)), which is holomorphic and
equal in absolute value to one on the whole S'. Moving along St from z = "
clockwise, we have:

N(=1) =1, NR)|=1, j=1234}5, z=¢€", temty;
Ai(z1) = As(21),  [M(2)] > 1=[N(2)] > [Xs(2)], =234, t € (t1,ta;
Ao(22) = Aa(22),  [Mi(2)] > [Aa(2)] > 1 = [A3(2)] > [Ma(2)] > [As(2)], T € (o, 87];
IAML(Z9)] = [M2(29)] > 1 = | \3(2%)| > [Aa(27)] = | A5(27)], =€ " =145
[A2(2)] > [A1(2)] > 1= [A3(2)] > [As(2)] > [Ma(2)], te (¢, 0];

A1) =—1, j=12345.

Puc. 4. [M(2)],|A2(2)] > 1 at z=¢€"t=0,...,t, for the knot 75
Known volume value for knot 75: vol(S? \ 75) = 3.331744232...

For knot 75 the numerical value of the integral is:

/ In | A\p(e™)| dt ~3.3317442316411...
0
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3.3. Knot 74: branches {);} and volume. This knot has a peculiarity — its
characteristic polynomial is factorize P(z,\) = PY (2, \) PP (2, \): deg, [PV (2, \)] =
3, deg. [PW] = 7, deg,[P?) (2, \)] = 2, deg,[P®] = 4. This circumstance facilitates
the analysis of the structure of the 5 branches of the spectral curve A(z), since

the branches of the factors can be considered independently.
The discriminant of P(M(z, \) is equal to D;(z) := z (2% — 1)5A;, where

Ap = (42° 4+ 1227 4+ 2723 + 1222 + 4) (227 — 52% + 822 — 52 + 2)2,

and P?)(z, \) has discriminant Dy(z) 1= (22 — 1)2Ag, Ag := (22 4+ 2z + 1)(2% —
3z +1). On S}, A; has a single zero z; := —0.94.. +i.032.. =: "', ; = 2.81...

There, on S}F and Ay there is only one zero z9 := —% +1 \/73 = e ty = 2{

Denote by {Aox_1(2)}3_, the branches of the curve AV (2) defined by the
equation PM(z,\) = 0, and by {Aax(2)}2_, the branches of A\2): P3)(z, \) = 0.
Moving clockwise along S! from z = e/, we have for AV (2):

T T T T T
03 1 15 2 25

Puc. 5. |M(2)], | A2(2)| > 1at z=€",t =0,..., 1, for knot 74
/\j(_l) = 17 ] = 173757 |>\](Z)‘ = 17 = eita te [ﬂ'atl]7 )\1(21) - A5(’21)7
Ai(2)] > 1= [N(2)] > [As(2)], 2 =€, t€(t1,0), N\(1)=-1, j=135;
Similarly, for A®)(2):

)‘J(_]-) - ]-7 ] = 2747 ‘)‘j(z)| - 17 Z = eitn le [ﬂ_at2]7 /\2(22) - )\4(22)7
Mo(2)]| > 1> [M(2)], 2= e, te (t,0), ML) =1, j=24.

4 ; ; (2)
HMsee , following [32] we omit the square of A7,
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Note that in the neighborhood of the point z = 1, 3z* = e we have:
|A1(2)] > [Aa(2)] for 0 < t € (t%,0), and |Ai(2) < |A2(2)| for m >t € (7, t*).

Known volume value for the knot 7,: vol(S? \ 74) = 5.13794120....
For the knot 7, the numerical value of the integral is:

/ In | A1 (e™)] dt = 5.137941201873417769...
0

3.4. Knot 75: branches {);} and volume. Starting from this point, we will
not give in the main text] the explicit form of the polynomials P(z, ) that define
the spectral curve A(z) in (L.7). For the knot 75, we only note that

deg,[P(z,\)] = 8, deg,[P(z,\)] = 34, P(E£1,\) = (A £ 1)5
The discriminant P(z, A) has degree 50, not counting the zeros of high even
multiplicity at the points +1, 0. However, only three branch points z; := e/, j=1,...,3
and one more point 2y := e’ : fall on the upper semicircle S}F.
to := 2.237035759..;t1 := 2.848733829..; t5 := 2.233540134..; t3 := 2.190746731..,
two branches intersect holomorphically, and in the neighborhood of the point z
their modulus is equal to 1.

All branches {\;(2) §:1 of the spectral curve of knot 75 on the circle S! in the
neighborhood of point €™ have a modulus equal to 1, and two branches preserve
this property throughout S, while in the neighborhood of point 1 the other three
branches have moduli greater than 1, and the three remaining ones have moduli
equal to the inverse values of the previous moduli. Moving along S! from 2z = e’

Abs values of branches knot7-5.pdf

— Branch1

254

204

T T T T T T
0.0 0.5 1.0 15 2.0 25

Puc. 6. [N\j(2)| > 1,7 =123, at z = €'t € (0,7), for the knot 7

5see http://katlas.math.toronto.edu/wiki/Data:7_5/A-polynomial
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clockwise, we select branches modulo greater than one. At the point zq, the only
such branch branches, denoted by A\;(z), the remaining branches remain equal to
(or less than) one in modulo). This branch will preserve the maximum modulus
on the path from z; to 1, on this path it is holomorphic (does not branch) and
forms the answer. The other two branches A\o(z) and A3(z), branching at points
29 and z3, respectively, and having a modulus greater than 1 on the holomorphy
regions from 25 to 1 and from z3 to 1, preserve the ordering of the modules on
these regions: [A\1(2)]| > [Aa(2)]| > |A3(2)| > 1.

Known volume value for the knot 75: vol(S? \ 75) = 6.443537381.....

For the knot 75 the numerical value of the integral is:

/ In | A; ()] dt ~ 6.4435373808505754761...
0

3.5. Knot 75: branches {);} and volume. For the polynomials P(z, /\) that
define in the spectral curve A(z) of the knot 7¢ we have

deg,\[P(z,\)] =9, deg.[P(z, \)] = 27, P(£1,\) = (A £ 1)°
The discriminant P(z, \) has degree 84, not counting the zeros of high even
multiplicity at the points 1, 0. However, only four branch points z; := e, j=1,...,4
fall on the upper semicircle S}r:
t1 := 2.880078732..;ty := 2.321655981..; t3 := 2.305603863.., 14 := 1.827810801;
and at two more points zgj 1= €07 :  ty; := 2.3814402100..; tpy := 2.3464745745..,
intersect holomorphically two branches with equal 1 moduli.

All branches {);(z)}}_; of the spectral curve of knot 75 on the circle S'
in the neighborhood of point €™ have modulus = 1, and one branch preserves
this property on the whole S', and in the neighborhood of point 1 the other four
branches have moduli > 1, and the four remaining moduli are equal to the inverse
values of the previous moduli, i.e. <1.

Moving along S}r from 2z = €™ clockwise, we select branches whose absolute
value is greater than one. At the point z1, the only such branch branches, denoted
by A1(z), the remaining branches remain equal (or <) to one absolute value. This
branch will preserve its maximum absolute value on the path from z; to 1, on this
path it is holomorphic (does not branch) and forms the answer. The other two
branches A2(z) and A3(z), branching at points z5 and z3, respectively, and having
modulus > 1 on the holomorphy sections from 25 to 1 and from z3 to 1, preserve
the ordering of the modules on these sections: |A1(2)| > [Aa(2)] > |A3(2)] > 1.

Finally, the branch \4(z), branching at point z4, having modulus > 1 on the
holomorphy region from z4 to 1, increases its modulus as it moves (clockwise), so

16see http://katlas.math.toronto.edu/wiki/Data:7_6/A-polynomial
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that first |A1(2)] > |A2(2)] > |Aa(2)]| > [As(2)] > 1, and then |\ (2)] > [\(2)] >
A2(2)] > |A3(2)] > 1, see Figl7]

Abs values of branches knot7-6.pdf

351

301

254

201

154

10+

0.0 0.5 1.0 15 2.0 25 3.0

t

Puc. 7. [1M\j(2)| > 1,7 =1,...4, at z = €'t € (0, ), for the knot 7

Known volume value for the knot 7g: vol(S? \ 75) = 7.084925954....

For the knot 74 the numerical value of the integral is:

/ In |A;(e")] dt = 7.0849259535109686484. ..
0

3.6. Knot 7;: branches {);} and volume. This knot, like 7, has a factorization
of the characteristic polynomial[] P(z, \) = PM (2, \)P?)(z, A): deg,[PM) (2, \)] =
4, deg.[PY] = 14, deg, [P (2, \)] = 3,deg,[P?] = 5. This circumstance facilitates
the analysis of the 7 branches of the spectral curve A(z), since the branches
A9)(2), 5 = 1,2 of the factors P can be considered independently.

The discriminant of the polynomial PM(z, \) is Dy(z) := 2'6(2? — 1)12Aq,
where Ay = (162° — 6827 + 4420 +1202° 4 332% + 12023 + 4422 — 682 + 16)
(2210 — 2229 + 912 — 17627 + 1632% — 1082° + 16321 — 17623 + 9122 — 222 + 2)%;
and P®)(z, \) has the discriminant Dy(z) := (2% — 1)5A,, where

Ag =28 — 62"+ 1120 — 122° — 112" — 122° + 112° — 62 + 1.

. . . L)
On S}, A; has two single zeros (branch points) at points: et ,6”21 and

: ) : : ne)
one doble zero at point e’ Ay on SL has a single zero at point e’ tgl) =

2.905300..., ¢\ := 2.407169.... §") := 1.535100..., £ := 2.216967... .

1"We have P(+1,\) = (A£1)"; A-polynomial in http://katlas.math.toronto.edu/wiki/Data:7_7/A-polynomial
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At point e two branches of curve A(l)(z) intersect holomorphically with equal
1 moduli, and also at each of points eitéllm,t(()llz) = 2.408663.. and e”gl;),tél?z) =
1.700625.. the branch A?)(z) and the branch AV (2) with equal moduli are intersected.
All branches {Agl)(z) i—; and {/\52)(2) 2_, of the spectral curve of knot 77
on the circle S' in the neighborhood of point €™ have modulus = 1, and one
branch of the curve )\(2)(2) preserves this property on the whole S', and in the
neighborhood of point 1 on S! the other branch A?)(z) and two branches AV (z)
have moduli >1, and the three remaining branches A(z) modules are equal to the
reciprocals of the previous modules.
Moving along S! from z = €™ clockwise, we select branches whose absolute

value is greater than one. At the point z; := eitgl), the only such branch branches,
denoted by Ai(2) := )\gl)(z), the remaining branches remain equal (or <) to one
absolute value. This branch will preserve its maximum absolute value on the path
from z; to 1, on this path it is holomorphic and forms the answer.

Let us fix two other branches Ao(2) := /\?)(z) and A\3(z) := /\gl)(z), branching

at points 29 1= e and 23 1= e“él), respectively, and having modulus > 1 on the
holomorphy regions from z, to 1 and from 23 to 1. Moreover, their modulus there
is less than the modulus of the branch A\;(z). We add that on the arc S% from 23
to 1 Jz, @ |A2(2)] > |A3(2)| from 25 to z,, but [Aa(2)| < [A3(2)| from z, to 1.

Abs values of branches knot7-7
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301
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Puc. 8. |\j(2)] > 1,7 =1,2,3, at z = €t € (0, ), for the knot 77

Known volume value for the knot 77: vol(S? \ 7;) = 7.643375172...
For the knot 77 the numerical value of the integral is:

/ In |A; ()| dt ~ 7.6433751723599555...
0



— 924 —

3.7. WKB integrals and Mahler measures. Before moving on to the final
series of knots considered, we note that the connection between WKB integrals in
and special functions expressing hyperbolic volumes was noted in D. Boyd’
papers, see [14] [15], devoted to Mahler measures. The logarithmic Mahler measure
of the polynomial P(xy,...,x,) is called

/ /log\P (1) e(b)) [ty -y, e(t) = exp(2rit).

Accordingly, simply the Mahler measure of a polynomial is exp(m(P)).
For a polynomial of two variables P(z, A) the Mahler measure is m(P) :=

/01 /Ollog |P (e(t1), e(ta)) | dtadt; = / (/ logH\ (t2)) (tl))|dt2> dt,.

Applying Jensen’s formula to the inner integral,

_ /01 ; (/Ollog e(ts) — )\j(e(tl))\dtg) dt, = g/ol log™ A, (€271)|dty

we obtain the sum of the integrals (1.12) over all branches A\.(z) : [Ax] > 1, 2 € SL.

In the paper by D. Boyd [15] (as polynomials of two variables) A(M, L)— are
considered. Examples of three knots are given: k515, k57 and 10795, for which the
integrals of the logarithms of the moduli of the branches of the algebraic functions
A(M,L) = 0 are calculated["¥| In the next three sections, we will also analyze
these examples under the assumption that the AJ-hypothesis is valid (2.1)).

3.8. Knot 10;95: branches {);} and volume. This knot was considered in
[15, Example 3]. Besides the number 10195 in the Rolfsen classification, it is also
called the k699 knot and the K(—2,3, —5) pretzel. For the polynomials P(z, A)H,
defining in the spectral curve A(z) of the 10195 knot, we have deg, [P(z, \)] =
9, deg,[P] =27, P(1,A\) = (A= 1)) (A +1)7, P(=1,\) = (A2 + 1)?(A = 1)°.

The discriminant P(z, ), not counting the zeros of high even multiplicity at the
points £1,0, has 28 single zeros, 32 double zeros, and quadruple zeros at the
roots of the equation (Z4 + 1)* = 0. Moreover, on the upper semicircle S; = 1,
in addition to half of the mentioned quadruple zeros and three double zeros at
the points of the holomorphic intersection of the branches zy; := ety .ty =
2.6551684954..; tpo := 1.4920790567.., ty3 := 1.0826837985.., five branch points

18Unfortunately, in [I5] neither an explicit form nor a clear reference to where the A(M, L) polynomials for
these knots were taken from are given.
Ysee http://katlas.math.toronto.edu/wiki/Data:10_125/A-polynomial
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(single zeros) are encountered: z; := e, j=1,..5: t; := 3.126927230..;t5 :=
2.347421331..;t3 := 2.342125309.., t4 := 1.094478093..; t5 := 0.328860611.. .

In the neighborhood of point €™ (more precisely, on the arc [ty,2m — t1]
of the circle S') all {);(2)}}_; have modulus = 1, and one branch m preserves
this property on the whole S!, and from point 1 there emerge three branches
with moduli > 1, three with moduli equal to the inverse values of the previous
moduli, i.e. <1, and the three remaining ones have moduli =1.

We move along S from z = e'™ clockwise. At branch point z;, two branches
with modulus = 1 bifurcate into branches A; : [A;| > 1P and Ag : [Ao||\1] = 1.
Similarly, at branch points zj,j = 2,34, branches A\; : [A\;j| > 1,7 = 2,34 are
formed, and their partners: A; : |A;| < 1,7 = 8,7,6. Recall that there remains one
branch A5 : |A5| = 1 on the ent1re S'. Thus, all branches {);(z)}7_; on S} are
ﬁxed.@ Note the proximity of points t9,t3 and ty3, t4.

The most interesting thing happens on the arc [t4, 0]. First, at the point ¢3
there is a holomorphic intersection of the branch A3 : [A3(e®)| > 1, t € (t4,to3)
with its partner A7 : [A7| = |A3]~!. Thus, on the arc (fg3,t5) we have |\;| > 1, j =
1,2,4,7. At point t5 A\; branches with its partner A3 and then on the arc (¢5, 0] we
have |A7| = |As] = 1, and for the remaining branches || > |A1| > |A4] > 1. In
Fig. 9.-2) we can trace the change in the order of the modules |\;| > 1, j =1,2/4,7.

Abs values of branches knot 10125 Abs values of branches knot 10355 det

144

124

3.04
10

2,51

A" Al

64 2.04

154

1.04

T T T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0.8 1.0

t t

Puc. 9.1) [N;(2)| > 1,j=1,....,5at z =e€",t € (0,7) for knot 10;25
2) scaling: ¢t € (0,1); |\g|=|\| =|N7| at point t* =0.59...

2we denote it by As
Zthis branch will preserve holomorphy on the arc [t1,0] and form the answer.
22Note that on the considered section [t3,#4] a change occurs: |A\1| > |\2| changes to || < |[Aa].



_26_

Known volume value for the knot 10195: vol(S? \ 10125) =4.611961375....

For the knot 10195 the numerical value of the integral is:

/ In | Ay (e™)| dt ~4.61196.
0

Comparing these results with [15], we note the discrepancy between the values of
deg.[P] and the disagreement with the statement in [15] that Ay, Ao, Ay € H(S).

3.9. Knot k5;5: branches {);} and volume. This knot was considered in |15,
Example 1]. For P(z, \)%] defining in the spectral curve A(z) of the knot
k515, we have deg,[P(z,\)] = 16, deg.[P] = 291, P(1,\) = (A —1)"(A +1)?,
P(—=1,)) = (A\M48AB3 43912 4 24\ 4 5A10 40X+ 19N+ 1607 +19A8 —40A5+5A%+2403+-39A2+-8A+1) (A —1)2.
Moreover, among the roots of P(—1, \) there are A, : |A;(—1)| = 5.80909...,j =
1,2, and [A\j(—1)] = 0.17214..., j = 15,16, the rest have |)\;(=1)| =1,/ =3, ...,14.

The discriminant P(z, A), not counting the zeros of high even multiplicity at
the points 1, 0, has 26 single zeros, and 1 double zero at —1. Moreover, in addition
to the double zero at '™ - the point of holomorphic intersection of branches equal
in modulus to one, one branch point (single zero) falls on the upper semicircle S}P
23 1= €' : t5 := 3.1098279565.. .

We move along S from z = €™ clockwise. Recall that at this point two
holomorphic branches are conjugate. Fix Ay with increasing modulus, A\ with
decreasing modulus. At the branch point z3 two branches with modulus = 1
branch into branches As : |A3] > 1 and Ay4 : [A14]|A3] = 1, which are holomorphic
at (t3, 0]

Abs values of branches knot K5-15

Al

0.0 0.5 1.0 15 2.0 25 3.0
t

Puc. 10. |N\j(2)] > 1,5 =1,2,3, at z = €', ¢ € (0, 7), for the knot k55

23 A-polynomials for the knot k55 will be given in the Appendix, see section
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Thus, for the first time we have faced an example of a knot whose spectral
curve A(e") has branches that are holomorphic on the entire circle and not equal
in absolute value to one: X\;(e") € H(S'), |N\;j(e")] > 1, 7 = 1,2. Moreover,
A1 (2) = Ag(2). There are also 12 branches {)\,} that are holomorphic on the entire
circle: |\;] = 1, j = 4,...,13. The remaining two branches A3, \jy € H(S') \
{23, 23}. Here also A\3(z) = A4(2), where [A3(e™)| > 1 > |A\4(e”)| on the arc
t € (t3,0,2m — t3) and |A3(e™)| = 1 = [A4(e)] on the arc t € (27 — 3,27, t3).

Known volume value for the knot k515: vol(S? \ k515) =4.1885842865...
The numerical value of the integrals fot A;, j = 1,2,3 of the knot k55 are

I = / In|A\;(e”)] dt ~4.239491778, I := / In | Ap(e)| dt ~=2.538974570,
0 0

I = / In | Ag(e™)] dt ~ 1.649603.
0

3.10. Knot k57: branches {)\;} and volume. This knot was considered in
[15, Example 2|. For the polynomials P(z, \J]] defining in the spectral
curve A(z) of the knot k515, we have deg,[P(z,\)] = 17, deg,[P] = 325,

P(1,A) = (A =13\ +1)°, P(=1,\) = L(\)(A — 1), deg[L(\)] = 16.
Moreover, the roots of P(—1,\) are X; : |[A\;(—=1)] = 3.900505...,7 = 1,2 and
|Aj(=1)| = 3.2043057..., 57 = 3,4, as well as their partners \j7_;, j = 1,2,3,4:
A7 (—=1)| = |\j(=1)|7!, while the rest have [\;(—=1)| =1,7 =5, ...,13.

Abs values of branches knot K57 Abs values knot K57 detailed

4.0

—— Branch 0

3.5
314

3.01

3.04

[ALs Al

2.0 291

2.81

0.0 0.5 1.0 1.5 2.0 2.5 3.0 170 1.75 1.80 1.85 1.90 1.95 2.00

t t

Puc. 11. 1) |N;(2)| > 1, 7 =1, ... 4 at z = €",t € (0, ) for the knot k57
2) scaling: ¢t € (1.7,2.0)

24 A - polynomials for the knot k5,5 will be given in the Appendix, see section
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The discriminant P(z, ), not counting the zeros of high even multiplicity at
the points 1, 0, has 28 single zeros and 8 double zeros. At the same time, except for
2 double zeros at e’ ¢y := +2.46535... - the points of holomorphic intersection
of branches equal in modulus to one, no zeros fall on the circle S'.

We move along S from z = €™ clockwise. Recall that at this point two
k = 1,2 pairs of holomorphic branches with modulus > 1 : Agr_1(—1) = Agi(—1)
are conjugate: (we fix Ag;_1 a branch with increasing modulus, Ao with decreasing
modulus). Thus, their partners are also fixed: \; € H(S') with modulus < 1.
Fixing the remaining branches (with modulus = 1) is not important for us.
Thus, for the knot k57 all branches of the spectral curve A(z) = {A(2)}iL,
are holomorphic on S'. We are interested in the branches {A(z)}j_; modulo
> 1 on the entire arc S*\ {1}. Let us mark the points e”* € S. where the
moduli of the branches \; and A; coincide: t;9 ~ 1.7752568285336, t13 ~
1.84493232546964, to 35 ~ 1.9025733709708. On S} we have the following order
of modules for branches |A;| > 1 (see Fig[l1}2):

‘)\1| > ‘)\2| > ‘)\3| > ‘)\4| Ha (tg’g,O); |)\1‘ > ‘)\3‘ > ‘)\2| > ‘)\4| Ha (tl’g,tlg);

‘)\3' > ‘>\1| > ‘/\2| > ‘)\4| Ha (tlyg,tLg); |)\3‘ > |)\2‘ > |>\1‘ > |>\4‘ Ha (7‘(’,15173).
For branches \;,j = 1,..,4 of the knot k57, the numerical value of the integrals
in S are:

I = / In | A\;(e”)] dt ~=2.652510600, I := / In | Ao (e)| dt ~=2.717740319,
0 0
I3 = / In [As(e™)| dt = 2.644672858, I := / In | Ay(e™)| dt == 2.088765966.
0 0
Known volume value for the knot k57: vol(S? \ k57) =4.0545040273...

3.11. Knots kb7, k515: comparison with [15]. We must to admit the obvious:
for the last two knots the values of the integrals /; calculated by us are in no way
similar to the known values of the volumes taken by us from [7]. Moreover, in [15]
similar integrals (designated there by Vj) are calculated and coincide with the
known volumes with many signs. For the knot k57 in [15] the following is given:

[V1; V2] = [4.054504027..; 1.315746892..] [V3; V4] = [2.436059319..; 2.297379506..].
However, if we take integrals over the entire domain of holomorphy, then

I1+15 ~2.6525106004-2.717740319=4.733438824=4.054504027+1.315746892~V1+4V2
Is+1, ~=2.644672858+-2.088765966=>5.370250919=2.436059319+2.297379506~V 3+ V4

For the knot k515 in [15] it is given: [V1; V2]= [4.188584286..; 2.589882062..]"
Similarly, we have:

I +15 ~4.239491778+2.538974570=6.778466348=[4.188584286+2.589882062~V1+V?2
Pand V3 = 1.64960971..
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4. Appendixes

4.1. WKB basis for solutions of g-recurrences (details). Expansions of
fundamental solutions of difference equations (recurrence relations) — are a classical
section of asymptotic analysis, founded by the works of Poincaré, Perron, and
Birkhoff. Among modern studies, we highlight the work by O. Costin—R. Costin
[25] and the above-mentioned article by S. Garofalidis and D. Geronimo [12], from
which we cite:

«This subject is classical and has been reinvented over the past hundred
years by several groups, often unaware of each others results. ... Our results are
hardly new and are contained or can be obtained by minor modifications from
results of Costin—Costin or from work of Birkhoff and collaborators ... ».

Our «group» (with D.N. Tulyakov) developed its own modification of the
approach to this problem (see [26] — [30] , [13], [31]), which was subsequently (with
«supervision» by S. Garofalidis and with the active participation of T. Dudnikova),
adapted to g-recurrence relations (see [1]-[3]).

For recurrence relations written in matrix form@:

6n+1 = Anana (41)

expansions of basic solutions in overlapping zones are sought: in zones of separated
eigenvalues matrices A,,, see , and in in zones of convergence of some eigenvalues.
Matching bases in overlapping zones allows obtaining global representations of
particular solutions.

In the zone of separated eigenvalues, the main technical point of the approach

is to find a diagonalizing transformation («diagonalizers) of Vj, such that the
-1

matrix n+1AnVn is close to a diagonal matrix
D, = diag[V, 1 AV,] ~ V. LAV, (4.2)
Formally, the basis vectors are the columns of the matrix
n—1
B, :=V, [[ Dr = Vo 1L, (4.3)
k=k,

HeiicTBUTEIBHO,
-1
Aan — Vn+1Vn+1AnVn Hn — Vn—|—1 Hn—i—l — Bn—|—1 .

Thus, the problem of constructing an asymptotic basis of solutions is

reduced to finding expansions of the «diagonalizerss> V;, (the main problem) and

the product I of diagonal operators (the solution follows from the main one).
As a result, in this zone we have

Z6where d x d matrix A, is formed by the coefficients {A4,(¢",q) ?:0 from (1.2), and an is introduced in
(1.9)-
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Theorem 4.1. Let q-difference equations (1.2), (1.9) have in the limit scale (]1.6))
Ny d
the spectral curve (1.7). Then for the basis B, = V, diag {m(f)} of their
j=1

general solutions the following statements are true.
(1) In the zone of separated eigenvalues there are formal decompositions:

1
V(N, t) = Vn(qn7 Q)|n=Nt,q:ez7f“ = VO(t> + _Vl (t) pali

() N (4.4)
. 00 \J . .
() exp {Zzl %N(iz) } —
1 e elements of the matrices Vo(t), Vi(t), ... are algebraic junctions,
i) The el f th ces V Vv lgebraic f '
and
1 1 e 1
A A D) .
Vo(t) = {(Z) 2:('2) dfz) L z=eM detVo(t) £ 0. (4.5)
M7Hz) AN ATHR)
111) The elements of the diagonal matriz diag goqj) d_ are Abelian integrals,
) J=1
and

d . .
ESO(Ji(e%mt) — In )\j(627mt).

Note again that the expansion coefficients obtained here for V,, —are algebraic
functions, and for gpz(.j ) _ are Abelian integrals. Using additional information about
the asymptotics of the coeflicients A;(¢", q) of the recurrence relations or
(1.9), one can prove that the formal series turn out to be asymptotic.

Let us note a detail concerning the coefficients {¢;} in the ({1.10) expansion in
the basis of fundamental solutions . Generally speaking, these constants can
change when passing inside the zone [ - separated by eigenvalues points, where
the order of their (s.v.) moduli changes. That is, let I = Ll,[, : 3 a permutation
op of the set {1,...,d} : ‘)\Up(l)(z)} > ‘)\O—p(z)(Z)‘ > > ‘)\Up(d)(z)‘ , Vzel,.
Then ¢; := c?, z € I,

In the zone of close eigenvalues other approaches are used (see [26, 27,
28]). Here an additional small parameter (closeness of eigenvalues) as it tends
to zero transforms the difference problem into a differential one, and the
obtained coefficients of the asymptotic expansion for V,, are already solutions of
the equations: hypergeometric, Bessel, Airy, Painlevé.
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4.2. On the growth of particular solutions: estimates for twisted knots.
Let us return to Section and recall that numerical calculations forknots 4;,
5o (see in [3]) showed that, despite the demonstration of exponential growth’| for
Jn(e*/N) as N — 00, no corresponding growth was observed for J,(e?™/) in
the two-scale regime (1.11): N — oo, n/N —t € K €(0,1).
This made it impossible to use WKB analysis to prove that the growth rate is
equal to the integral in . Moreover, the integral in for a particular
solution in general position turned out to be twice as large as the corresponding
volume. However, the perturbation of the sequence {J,(q)} of the form {f/(q)} :
fulq) == (1= ¢")Jn(q), see (1.17), (1.18)), which has the same spectral curve and
asymptotics for n = N, ¢ := >N, N — oo, and demonstrates (in numerical
calculations) exponential growth in the regime N — oo,n/N —t € K €(1/2,1),
made it possible to use WKB—analysis for ¢ € (1/2,1) and the hope of halving
the integral in (|1.12]).

Thus, for a rigorous justification of (1.23), (even for specific knots) we

need to be able to prove for the sequence

{f/(¢)} in the limit regime N — oo, n/N —t € (0,1) : (4.6)

a) absence of exponential growth and decay when ¢ € (0,1/2); i
b) presence of t € [1/2,1) : exponential growth takes place Vt € K &(¢,1).

The following statement, proved by T. Dudnikova, contains a positive answer to
part of point a) for all twisted knots.

Lemma 4.1. Let K be a twisted knot K, p € N, and

ny(N) := N - {% arccos <2p2; 1)}, (4.7)

where [a] is the integer part of a number a.
Then, for ¢ = e*™™N un=1,... n,(N), the following bounds hold,

o) <nand |f)(q)] < Chn?, (4.8)

where C), := 1+ 2C, +2y/4p — 1, C,, == (9p — 1) /(4p).

2Twith the index ~ Vol(K)/(2r), according to the hypothesis proved for these knots
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4.3. Explicit form of A-polynomials for the knots k55, k5;. One of the
common knot classifications is Rolfsen’s classification, which is based on the
number of crossings in the projection of the knot onto the sphere. For example,
knot 3; is the first (and only) in the series of knots with three crossings, and knot
10195 is in 125th place in the list of knots with 10 crossings. Another classification
(census manifolds) is based on the number of regular tetrahedra into which the
complement of this knot in S? is partitioned. For example, the manifold S\ 10,95
is partitioned into 6 tetrahedra and ranks 20th (among 6 tetrahedral manifolds) in
terms of hyperbolic volume, so knot 10195 has number k69y in this classification.
It happens that a knot, the complement of which consists of a small number
of tetrahedra, has a very large number of intersections in its projection and is
therefore not described in Rolfsen’s classification. Such knots include the knots
k515 and ]4357

For the knots of the Rolfsen classification, the exact and numerical value of
the volume of their complement, as well as the explicit form of the A-polynomial,
can be easily found on the site [39]. For the knots of the classification (census
manifolds), in particular k515, k57, the corresponding volumes can be found in
the classical article [7], and the explicit form of the A-polynomials lies elsewhere:
on the site [40]. Due to the discrepancy between our numerical calculations of the
integrals ((1.24]) and the exact values from [7], we present below the expressions of
the A-polynomials from [40] that we used, in the hope of resolving the discrepancy
that has arisen.

Apsys = (MPTOY (=15 MI2) 1 (L1 % M3 (15 M0 — 55 M2 4 25 MM 415 M6 — 15 M)+ (L2 5 M49)
(1 M8+ 3% MW — 5% M2 412+ M™ — 5% M16) + (L3 % M*62) 5 (=1 % M® 4+ 6% M8 — 6+ M0 +21 % M0 —9x
MY 435 MIO) 4 (L4 % M*26) 5 (=35 MO + 4% M® —T5 M — 125 M2 15 M™ 35 M) + (L5 x M390) x (—4 %
MO+ 1% M8 —25% M0 — 12 M2 — 55 M™ + 3% M) 4 (LE % M35%) % (2 M6 — 115 M8+ 50+ M10 — 34 M2 +
Tk M™) + (L7 % M318) 5 (35 M* — 8% MO +38% M® +19x M1+ 25« M12 — 75 M) + (L8 % M?32) % (6 x M* — 9
MO —18% M8+ 18 MO+ 9% M2 — 6+ M™) + (L % M?46) % (T4 M* — 25 MC® — 19 % M® — 38 M0 + 8 M2 —
3 MM™) + (L0 % M21O) s (=7 % M* + 34 M® — 50 % M8 + 11 % M0 — 2% M'2) + (LM % MY™) % (=3 % M? + 5%
M 4125 MO +25% M — 15 MY 45 M2) 4+ (L2 5 M38) 5 (=35 M? — 15 M* 4125 MO 4+ 7+ M® — 4% M0 4
3k M)+ (L13 5 M1O2) s (=35 M2+ 9% M* — 215 MO + 65 M8 — 65 M0+ 15 M) + (L1 5 M) x (55 M2 — 12
M* 5% MO — 3% M8 — 1% M™O) 4 (LY 5 M30) 5 (1 — 1% M? =25 M* 5% MO — 15 M)+ (L6 % M) % (1% MO);

Aps, = (M) s (15 MB) 4+ (L' M30) s (15 M8) + (L2 % MO3) 5 (=25 M* +6% MOS — 125 M®) 4 (L3 % M106)
(=35 M* 8% MO — 125 M5 — 25 MU0 4 15 MI2) - (L5 M) (1 — 8% M2 4285 M* — 475 MO 4+ 545 M5 — 45 M0 1
5 M2 — 1 M™) 4 (Lo % M'82) s (=15 M2+ 105 M* — 135 MO+ 55 MB35+ M0 — 75 M2 — 15 M)+ (LOx M?20) %
(4% M* —15% MO —40% M0 — 65 M2 + 15 M™) + (L7 % M) % (1% M? — 6 M* — 4% MC® +5% M8 —35% M0 —
32x M2 4165 MM — 15 M) 4 (L8 % M296) 5 (=15 M* — 155 MO +65% M® — 105 M0 +30% M2 + 15 M) 4 (L2 %
M33%) 5 (1 MO +30% M8 —10% M1 4655 M2 — 15+ MM — 15 M)+ (LO0% M372) 5 (=15 MA+16% M6 — 32 M8 —
354 MO0 455 M2 —4s MY — 65 M6+ 15 M) 4 (L1 5 MAO) s (156 MO — 65 ME —40% M0 — 155 M 44 M) +
(LY2 5 MA48) s (— 15 MO — T MB+35% MO 455 M2 — 13 M +10% M6 — 15 M18) 4 (L35 M*86) 5 (— 1% MO + 5%
M8 — 45 MO 4545 M2 — 475 M™ 4285 M6 — 8% M 4+ 15 M20) + (L1 % M%) 5 (15 M® — 2% M0 — 12 M 12 +8x
MM — 35 M)+ (LY MO2) s (=125 M2+ 6% M — 25 MO) 4 (L1605 MOOO) s (15 M2) 4+ (L7 5 MO38) % (1% M'2)

Let us recall connection ([2.1)) between the polynomials P(z, \) and A(M, L):
z=M*N=L: = P(z,\)=AM,L).
Also note that the A(M, L) polynomials for 1055 that we used in section
are the same as those given in both [39] and [40].
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4.4. Concluding remarks. Finally, we note that

1) Our goal is to find the limit on the left-hand side of VC (volume
hypothesis), based on the fact that the g-polynomials J,(q) are a solution of
the Cauchy problem (i.e. a particular solution) of the homogeneous g-difference
equation ([1.2]).

2) As an approach to the goal, we consider the WKB asymptotics of the
fundamental solutions of this equation, the leading terms of which have exponential

growth (decrease) with exponents of the form ((1.10]), determined by the integrals
of the logarithms of the moduli of the branches A(z) — the spectral curve ([1.7)).

3) However, the left-hand side in VC - for all knots K is the polynomials
Jn(@)| —pomiy as m — N (from the left) are bounded, due to the symmetry
property (L.15)), while Jy(q)] =czwi/v 8TOW exponentially, due to VC. Therefore,
directly, exponentially growing asymptotics of the form ([1.10), ([1.11)) are not
applicable.

However, in ((1.17)) - (1.19)) particular solutions are proposed that do not
have (|1.15)) symmetry and, therefore, have the possibility of exponential growth
for Ju(q)|,=e2mv as m — N (on the left) and, as n = N, achieve a growth rate
equal to the limit on the left-hand side of VC - .

4) The latter circumstance led to the hypothesis that 3! branch A;(2) of the
spectral curve \(z):

1 2mi ! ;
lim 27— In|Jy(e™)| = 277/ In | Ay (e*™7)| dr (4.9)
N—oo N 1/2

5) In this preprint we do not set ourselves the task of testing the hypothesis
([d.9), but simply look at how (under the assumption of the validity of the AJ -
hypothesis for the knot K) the right-hand side in relates to the right-hand
side of VC - ([L.5)), i.e., with the hyperbolic volume S* \ K.

6) In section {4 we perform a numerical analysis of the behavior of the
branches of the spectral curve A(z) and present the values of the (for a number
of knots K') on the right-hand side of (4.9). We note the coincidence (within the
accuracy of the numerical method we use) of these values with the known values
with volumes S? \ K for the knots 61, 7o, 74,75,76,77 and 10125.

7) We are confident that our calculations for knots kbis, kb7 adequately
reflect the input data, but we do not think that the mismatch of the values being
tested can lead to counterexamples to the AJ or VC hypotheses. Rather, we are
talking about a mismatch of the A-polynomials we used with the known volumes
vol(S? \ K) for K := kb5, kbr.

In conclusion the author expresses gratitude to T. Dudnikova and A. Batkhin.
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