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Мы продолжаем наше знакомство со связями гиперболического объёма до-
полнения узла в трехмерной сфере с топологическими инвариантами узла. В
этот раз мы уделим внимание 𝐴(𝑀,𝐿) параметризации аффинного многооб-
разия с каспом, порожденным узлом (т.н. 𝐴-многочленам). Затем, используя
известные выражения 𝐴-многочленов для ряда узлов, мы приведем результа-
ты численной проверки гипотез об асимптотике решений 𝑞-разностных урав-
нений, связанных с гиперболическим объемом этих узлов.

Ключевые слова: узлы, фундаментальная группа дополнения узла,
SL2-представление, 𝐴-многочлен, WKB-асимптотика, 𝑞-разностное уравне-
ние, Гипотеза Объёма.
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We continue our study of the connections between the hyperbolic volume of
the complement of a knot in the three dimensional sphere with topological
invariants of this knot. This time we pay attention to 𝐴(𝑀,𝐿) parametrization
for the affine variety with casp, produced by a knot (so-called 𝐴-polynomials).
Then, using the known expressions of 𝐴-polynomials for number of knots we
present results of the numerical tests for the conjectures on asymptotics of
solutions of 𝑞-difference equations connected with the hyperbolic volume of
these knots.
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1. Introduction

In this preprint, we continue our earlier (see [1, 2, 3]) acquaintance with
the connections of the hyperbolic volume vol(S3 ∖ 𝐾) of the complement of the
knot 𝐾 in the three-dimensional sphere S3 with the topological invariants of the
knot 𝐾. These connections between the geometric characteristic: vol(S3 ∖ 𝐾)
and the combinatorial, algebraic characteristics of the knot 𝐾 are established
using analytical methods: asymptotic WKB analysis of 𝑞-difference equations for
𝑞-hypergeometric functions.

This time (see Section 2) we will pay attention to well-known algebraic
concepts: the fundamental group of the knot 𝜋1(𝐾), its SL2(S3∖𝐾,C) representation,
and 𝐴(𝑀,𝐿) parametrization of SL2 as an affine variety with cusp generated by
the knot 𝐾 (the so-called 𝐴-polynomial).

Then (see Section 3), using the known 𝐴-polynomials for some knots 𝐾, we
present the results of a numerical test of hypotheses about the asymptotics of
solutions of 𝑞-difference equations associated with vol(S3 ∖𝐾).

Now, in continuation of the introduction, we will dwell on the formulation of
the problem and on the main points of the analytical approach to this problem.

1.1. Knot invariants and 𝑞-difference equations. The famous Kashaev
conjecture (see [4, 5]) relates the hyperbolic volume vol(S3∖𝐾) to some topological
invariant of the knot 𝐾. Later (see [6, Theorem 4.9]) this Kashaev invariant
was expressed in terms of a classical invariant: the Jones polynomial 𝐽(𝑞) and
its colors by 𝑛-dimensional representations of the quantum group, the so-called
colored Jones polynomials (see [7, 8]):

{𝐽𝑛(𝑞)}∞𝑛=1, 𝐽1(𝑞) = 1, 𝐽2(𝑞) = 𝐽(𝑞), . . . . (1.1)

In turn, Garofalidis and Le (see [9]) proved that the colored Jones polynomials
{𝐽𝑛(𝑞)}∞𝑛=1 are 𝑞-hypergeometric functions and, therefore,

1 are particular solutions
of the 𝑞-difference equations:

𝑑∑︁
𝑗=0

𝐴𝑗(𝑞
𝑛, 𝑞)𝑄𝑛+𝑗(𝑞) = 0, (1.2)

satisfying the initial conditions from (1.1). That is, assuming in (1.2)

𝑄𝑛(𝑞) := 𝐽𝑛(𝑞), 𝑛 = 1, . . . , 𝑑 , (1.3)

we obtain the entire sequence (1.1). We will use this property as the definition of
colored Jones polynomials.

1like the classical orthogonal polynomials and their generalizations, the jointly orthogonal polynomials with
respect to classical weights satisfying 𝑑-term recurrence relations
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Example. For the eight -knot 41 the initial conditions are:

𝐽1(𝑞) = 1, 𝐽2(𝑞) = 𝑞2 − 𝑞 + 1 − 𝑞−1 + 𝑞−2

and coefficients:

𝑎0(𝑞) :=
𝑞1−𝑛(1 + 𝑞𝑛−1)(1 − 𝑞2𝑛−1)

1 − 𝑞𝑛
, 𝑎2(𝑞) := −(1 − 𝑞𝑛−2)(1 − 𝑞2𝑛−1)

(1 − 𝑞𝑛)(1 − 𝑞2𝑛−3)
,

𝑎1(𝑞) :=
𝑞2−2𝑛(1 − 𝑞𝑛−1)2(1 + 𝑞𝑛−1)(1 + 𝑞4𝑛−4 − 𝑞𝑛−1 − 𝑞2𝑛−3 − 𝑞2𝑛−1 − 𝑞3𝑛−3)

(1 − 𝑞𝑛)(1 − 𝑞2𝑛−3)

using recurrence relations2

𝐽𝑛(𝑞) =
2∑︁

𝑗=1

𝑎𝑗(𝑞)𝐽𝑛−𝑗(𝑞) + 𝑎0(𝑞), 𝑛 ≥ 3, (1.4)

define the entire sequence of colored Jones polynomials.

1.2. Volume Hypothesis – Limiting Regimes. Kashaev’s conjecture (VC)
on the volume of hyperbolic knots 𝐾 states:

2𝜋 lim
𝑁→∞

1

𝑁
ln |𝐽𝑁(𝑞 = 𝑒2𝜋𝑖/𝑁)| = vol(S3 ∖𝐾). (1.5)

Let’s look at the left-hand side. There is a specific knot 𝐾, and for it
the initial colored Jones polynomials (1.1) and the coefficients of the recurrence
relations (1.2) are known. A large number 𝑁 is fixed, and using (1.3), (1.2)
the polynomials {𝐽𝑛(𝑞)}𝑁𝑛=1 are successively calculated. Then in the polynomial
𝐽𝑁(𝑞) the substitution 𝑞 = 𝑒2𝜋𝑖/𝑁 is done and the resulting quantity, depending
only on 𝑁 , grows exponentially with increasing 𝑁 , and the rate of its growth is
proportional to the hyperbolic volume S3 ∖𝐾.

Thus, we have two connected limits: 𝑁 → ∞ and 𝑞 = 𝑒2𝜋𝑖/𝑁 → 1, along the
arc S1 in the upper half-plane C+, which motivates us to consider the original
𝑞-difference equation (1.2) in the following double-scale regime:

𝑑∑︁
𝑗=0

𝐴𝑗(𝑞
𝑛, 𝑞)𝑄𝑛+𝑗(𝑞) = 0,

{︃
𝑁 → ∞,
𝑛

𝑁
→ 𝑡 ∈ [0,1], 𝑞𝑛 → 𝑒2𝜋𝑖𝑡 =: 𝑧 ∈ S1,

(1.6)
which in the limit gives the algebraic function 𝜆(𝑧) (spectral curve):

𝑃 (𝑧, 𝜆) :=
𝑑∑︁

𝑗=0

𝐴𝑗(𝑧,1)𝜆𝑗 = 0, → 𝜆(𝑧) := {𝜆𝑚(𝑧)}𝑑𝑚=1. (1.7)

2the inhomogeneous form of the equation (1.4) can easily be reduced to the homogeneous form (1.2) with
𝑑 = 3
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1.3. VKB - asymptotics of the general solution of the 𝑞-difference
equation. On closed arcs 𝐼 := {𝑧} ⊆ S1, where the roots of the polynomial
(1.7) are separated:

∃ 𝛿 > 0 : {|𝜆𝑚(𝑧) − 𝜆𝑘(𝑧)|} ≥ 𝛿, ∀ 𝑧 ∈ 𝐼 and 𝑚 ̸= 𝑘, (1.8)

there are approaches (see [12, 1, 2, 3] ) for obtaining formal (and asymptotic)
expansions in the small parameter 1/𝑁 for the general (fundamental) solution
of the 𝑞-difference equation (1.2). If we write the recurrence relations (1.2) in

matrix form:
−→
𝑄𝑛+1 = 𝒜𝑛

−→
𝑄𝑛, where 𝑑×𝑑 matrix 𝒜𝑛 is formed by the coefficients

{𝐴𝑗(𝑞
𝑛, 𝑞)}𝑑𝑗=0 of (1.2), and the vector

−→
𝑄𝑛 denotes

−→
𝑄𝑛 ≡

−→
𝑄𝑛(𝑞𝑛, 𝑞) := (𝑄𝑛, 𝑄𝑛+1, . . . , 𝑄𝑛+𝑑−1)

𝑇 , 𝑛 ∈ N, (1.9)

then the limiting matrix 𝒜 := 𝒜(𝑞𝑛, 𝑞)|𝑞=1,𝑞𝑛=𝑧 has characteristic polynomial
𝑃 (𝑧, 𝜆) and eigenvalues {𝜆𝑚(𝑧)}𝑑𝑚=1, the same as in (1.7).

According to the general theorems (for details3 see [1, 3]) on the expansion
of the fundamental solution (1.9) of the 𝑞-difference equation (1.2) in the zones of
separated eigenvalues (1.8), the following asymptotics holds:

−→
𝑄𝑛(𝑞𝑛, 𝑞)|𝑞=𝑒2𝜋𝑖/𝑁 ,𝑞𝑛=𝑧 =

𝑑∑︁
𝑗=1

𝑐𝑗 𝑒
𝑁𝜙

(𝑗)
−1(𝑧)

(︂
−→
𝐹 𝑗(𝑧) + 𝑂

(︂
1

𝑁

)︂)︂
, где (1.10)

−→
𝐹 𝑗(𝑧) := 𝑒𝜙

(𝑗)
0 (𝑧)(1, 𝜆𝑗(𝑧), . . . , 𝜆𝑑−1

𝑗 (𝑧))𝑇 , 𝜙
(𝑗)
−1(𝑒

2𝜋𝑖𝑡) =

∫︁ 𝑡

𝑡1

ln(𝜆𝑗(𝑒
2𝜋𝑖𝜏)) 𝑑𝜏.

Assuming the maximizing (integral above) 𝑗 := 1, for a particular solution 𝑄𝑛 in
general position (i.e. all 𝑐𝑗 ̸= 0) in the zone (1.8) started at 𝑧 = 1 we have:

lim
𝑁→∞, 𝑛/𝑁→𝑡

ln |𝑄𝑛(𝑒2𝜋𝑖/𝑁)|
𝑁

= Re𝜙
(1)
−1(𝑒

2𝜋𝑖𝑡) =

∫︁ 𝑡

0

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏. (1.11)

Thus, if for some knot 𝐾: 1) the limiting eigenvalues are separate on the whole
S1, and 2) the particular solution {𝐽𝑛(2𝜋𝑖/𝑁)}𝑁𝑛=1 grows exponentially as 𝑛 :=
[𝑡𝑁 ], 𝑡 ∈ (0, 1), then (see also [12]) for the left-hand side in (1.5) we have:

2𝜋 lim
𝑁→∞

ln |𝐽𝑁(𝑒2𝜋𝑖/𝑁)|
𝑁

= 2𝜋

∫︁ 1

0

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏 (1.5)

= vol(S3 ∖𝐾). (1.12)

1.4. VKB - asymptotics of particular solutions. Turning to the conditions
for the existence of the limit on the left-hand side of (1.12), we note:

All known to us spectral curves 𝜆(𝑧) have branch points on S1, i.e. cases 1)
- continuation of the zone (1.8) to the entire circle - were not observed4.

3below, in Appendix 1, we present the main points and statements
4by the end of the work on the preprint we encountered case 1), see below point 3.10
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In this connection, an important problem arises of rigorously justifying the possibility
of continuing asymptotics of the form (1.11) for particular solutions from the
zone 𝐼 - the separation of the seigenvalues (1.8) to the zone 𝐼 - the holomorphic
continuation of the branch5 𝜆1, regardless of the presence of branch points of
other branches in the continuation zone 𝐼. This problem is more complicated
than the problem of the asymptotic expansion in 𝐼 of the fundamental solution,
and its general solution is unknown to us. In the particular case of 3- and 4-term
(ordinary, not "q-") recurrence relations, it was solved in [13].

Before continuing to discuss the conditions for the existence of a limit for
the colored Jones polynomials on the left-hand side of (1.12), let us dwell on the
second equality on the right-hand side of (1.12):

2𝜋

∫︁ 1

0

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏 ?

= vol(S3 ∖𝐾). (1.13)

In [3] we numerically investigated the fulfillment of the equality (1.13) on the
simplest knots 41, 52. To our surprise, we found (with a large number of significant
digits coinciding) that the integral on the left-hand side of (1.13) is twice as large
as the known volumes on the right:

2𝜋

∫︁ 1

0

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏 ≈ vol(S3 ∖𝐾) * 2 (!) (1.14)

This fact, of course, was known before, see [15].
Now let us return to the condition 2) of the existence of a limit on the left-

hand side of (1.12) for a particular solution of the equation (1.2), (1.3) (which

assumed exponential growth of {𝐽𝑛(𝑒
2𝜋𝑖
𝑁 )}𝑁𝑛=1 for 𝑛 := [𝑡𝑁 ], 𝑡 ∈ (0, 1) and 𝑁 →

∞). Here we note that from the well-known relation, see [6], for 𝑞 := 𝑒
2𝜋𝑖
𝑁 we have

𝐽𝑛(𝑞) = 𝐽𝑁−𝑛(𝑞), 1 6 𝑛 < 𝑁 ⇒ 𝐽1(𝑞) = 𝐽𝑁−1(𝑞) = 1, (1.15)

and moreover, for the knot 41 it is easy to prove6, and for a number of other
knots it is possible to verify numerically that for all 𝑛 < 𝑁 the colored Jones
polynomials (for 𝑞 := 𝑒

2𝜋𝑖
𝑁 ) are bounded and at the same time for 𝑛 = 𝑁 they

grow exponentially, in accordance with the Kashaev conjecture (1.5):

|𝐽𝑛(𝑒
2𝜋𝑖
𝑁 )| . 𝐶, 1 6 𝑛 < 𝑁 lim

𝑁→∞

1

𝑁
ln |𝐽𝑁(𝑒

2𝜋𝑖
𝑁 )| =

vol(S3 ∖𝐾)

2𝜋
. (1.16)

Thus we see that the particular solution (1.1) defined by the Cauchy problem
(1.3) for the 𝑞-difference equation (1.2) (i.e., the colored Jones polynomials)
cannot directly express the value of the limit on the left-hand side of the volume
hypothesis (1.12) using WKB analysis (1.11).

5the branch defining the growth rate of this particular solution in the zone 𝐼
6see Appendix 2 below for the estimate of {𝐽𝑛(𝑒

2𝜋𝑖
𝑁 )} for twisted knots
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At the same time, we note that the particular solution {𝐽𝑛(𝑒
2𝜋𝑖
𝑁 )}𝑁𝑛=1 has

in the limit regime (1.6) a very interesting local singularity (1.16). The study of
this singularity and finding the volume in connection with it seems to be a very
important task, even in the simplest particular case of the knot 41.

Still, let’s return to the WKB asymptotics (1.12) and try to "make it work"to
find the limit on the left side of (1.12) and understand the conflict (1.13) vs. (1.14).

Let us imagine for 𝑁 ≫ 1 continualization of a particular solution (1.1):

{𝐽𝑛(𝑒
2𝜋𝑖
𝑁 )}𝑁𝑛=1, 𝑛 := [𝑡𝑁 ], 𝑡 ∈ [0, 1] −→ {𝐽[𝑡𝑁 ](𝑒

2𝜋𝑖
𝑁 )}𝑡∈[0,1].

We can imagine a function 𝐽[𝑡𝑁 ] continuous in 𝑡 ∈ [0, 1], oscillating with high
frequency, with local (bounded as 𝑁 grows) "minima" at points 𝑡𝑛 := 𝑛/𝑁, 𝑛 =
1, ..., 𝑁 − 1 and with alternating local "maxima" , growing exponentially with
𝑁 , at least in the left neighborhood of the maximum of the function 𝐽[𝑡𝑁 ] at
𝑡 = 1. Now, if we were to impose a small perturbation on the function, shifting
the neighborhoods of the local "maxima" to the discretization points 𝑡𝑛, then
the exponential growth rate at 𝑡 = 1 could be calculated using the WKB integral
(1.11) along the growth zone of the perturbed particular solution.

An example of such perturbation could be the following trick. Let us denote

𝑓𝑛(𝑞) := (1 − 𝑞𝑛)𝐽𝑛(𝑞) then 𝐽𝑛(𝑞) =
𝐽𝑛(𝑞)(1 − 𝑞𝑛)

(1 − 𝑞𝑛)
=

𝑓𝑛(𝑞)

(1 − 𝑞𝑛)
. (1.17)

Obviously, the right-hand side here has uncertainty at 𝑞 → 𝑒2𝜋𝑖/𝑁 , 𝑛 = 𝑁 , and
therefore, by L’Hôpital’s rule, we have

𝐽𝑁(𝑞 = 𝑒2𝜋𝑖/𝑁) = − 𝑓 ′
𝑛(𝑞)

𝑛𝑞𝑛−1

⃒⃒⃒⃒
𝑛=𝑁,𝑞=𝑒2𝜋𝑖/𝑁

, where 𝑓 ′
𝑛(𝑞) :=

𝑑

𝑑𝑞
𝑓𝑛(𝑞). (1.18)

The following statement is true (For the proof, see [3, Lemma 2]):
The spectral curves for 𝐽𝑛 and for 𝑓 ′

𝑛 coincide. Besides,

lim
𝑁→∞

1

𝑁
ln |𝑓 ′

𝑁(𝑞 = 𝑒2𝜋𝑖/𝑁)| = lim
𝑁→∞

1

𝑁
ln |𝐽𝑁(𝑞 = 𝑒2𝜋𝑖/𝑁)|. (1.19)

Let us illustrate the validity of this proposition using the example of knot 41. Let
us transform the recurrence relations (1.4) to the form:

𝑓𝑛 = 𝑎̃1(𝑛, 𝑞)𝑓𝑛−1 + 𝑎̃2(𝑛, 𝑞)𝑓𝑛−2 + 𝑎̃0(𝑛, 𝑞), 𝑛 ≥ 3, (1.20)

𝑓1 := 1 − 𝑞, 𝑓2 := (1 − 𝑞2)(𝑞2 − 𝑞 + 1 − 𝑞−1 + 𝑞−2) = −𝑞4 + 𝑞3 − 𝑞−1 + 𝑞−2,

where

𝑎̃𝑗(𝑛, 𝑞) :=
𝑎𝑗(𝑛, 𝑞)(1 − 𝑞𝑛)

1 − 𝑞𝑛−𝑗
, 𝑗 = 0,1,2. (1.21)
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Further, for the derivatives 𝑓 ′
𝑛 these recurrences take the form:

𝑓 ′
𝑛 = 𝑎̃1(𝑛, 𝑞)𝑓 ′

𝑛−1 + 𝑎̃2(𝑛, 𝑞)𝑓 ′
𝑛−2 + 𝐴0(𝑛, 𝑞), 𝑛 ≥ 3, (1.22)

𝑓 ′
1 := −1, 𝑓 ′

2 := −4𝑞3 + 3𝑞2 + 𝑞−2 − 2𝑞−3,

where 𝑎̃𝑗, 𝑗 = 1,2, are defined in (1.21),

𝐴0(𝑛, 𝑞) :=
𝑑

𝑑𝑞
𝑎̃0 + 𝑓𝑛−1

𝑑

𝑑𝑞
𝑎̃1 + 𝑓𝑛−2

𝑑

𝑑𝑞
𝑎̃2.

As we see, the homogeneous parts of both recurrence relations (1.20) and (1.22)
coincide, and it is easy to verify that in the limit regime (1.6) their spectral curves
coincide with the spectral curve of the original recurrence relation (1.2) - (1.4).

Thus, in order to obtain a formula for the limit in (1.19) in the form of the
WKB integral (1.12), it is necessary to check whether the terms of the sequence
{𝑓 ′

𝑛(𝑞)|𝑞=𝑒2𝜋𝑖/𝑁}𝑁𝑛=1 exhibit exponential growth as 𝑁 → ∞ and 𝑛/𝑁 =: 𝑡 ∈
[𝑡, 1], 𝑡 < 1. We have not yet been able to strictly prove the corresponding lower
bounds, but numerical calculations for the knots 41 and 52 give a "positive"
answer to this question for some 𝑡 ∈ (1/2, 1). Thus, based on these numerical
calculations, in [3] we proposed a hypothesis about representing the limit on the
left-hand side of (1.5) as a WKB integral:

2𝜋 lim
𝑁→∞

ln |𝐽𝑁(𝑒2𝜋𝑖/𝑁)|
𝑁

= 2𝜋

∫︁ 1

𝑡

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏 (1.23)

where 𝑡 ∈ (1/2, 1) defines the branch point 𝑧 := 𝑒2𝜋𝑖𝑡 of 𝜆(𝑧) closest to (−1) on
S1, whose branch 𝜆1 : (∃, !) is holomorphic and |𝜆1| > 1 on the arc (𝑧, 𝑒2𝜋𝑖] ⊂ S1.
Since the 𝜆(𝑧) known to us7, corresponding to the knots, had for all their branches
{𝜆𝑗(𝑧)} the unit modulus on the arc (𝑧, 𝑧) ∋ (−1), then the integral in (1.23) can
be extended (without changing the value) to the entire lower semicircle, and also,
having defined (∃, !) the holomorphic branch 𝜆*

1 : |𝜆*
1| > 1 on the arc [1, 𝑧) ⊂ S1,

extend to the upper semicircle:∫︁ 1/2

0

ln |𝜆*
1(𝑒

2𝜋𝑖𝜏)| 𝑑𝜏 =

∫︁ 1

1/2

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏 =

∫︁ 1

𝑡

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏, (1.24)

which agrees with (1.14).

7at the time of publication of [3]
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2. Obtaining 𝐴−polynomials

Along with the polynomial 𝑃 (𝑧, 𝜆), which characterizes the spectral curve
(2.7) and is related to the (analytic) left-hand side of the volume hypothesis (1.5),

of interest are the so-called𝐴(𝑀,𝐿)-polynomials introduced in [16] and parametrizing
the affine variety for the 𝑆𝐿2(S3 ∖𝐾,C) representation of the fundamental group
of the knot 𝜋1(𝐾), where 𝑀 is the latitude and 𝐿 is the longitude of the small
torus (cusp) enclosing the knot 𝐾 (i.e. the 𝐴(𝑀,𝐿)-polynomial is related to the
right-hand (algebraic-geometric) side (1.5)).

This interest is due to the fact that, according to the AJ conjecture8 of
Garofalidis [10, p.297] both of these polynomials coincide after the cancellation of
𝐴(𝑀,𝐿) := 𝐴(𝑀,𝐿)/𝐴(𝑀) of some power of 𝐿 and a factor 𝐴 depending only
on 𝑀 , and the identification 𝑧 ≡ 𝑀 2, 𝜆 ≡ 𝐿 ⇒ :

𝑃 (𝑧, 𝜆) ≡ 𝐴(𝑀,𝐿). (2.1)

Moreover, if we denote by 𝑉 the volume of the manifold defined by the parametrization
𝐴(𝑀,𝐿) = 0, then the following formula is known [11, C.D. Hodgson, 1986]:

𝑑𝑉 = −2(log |𝐿| 𝑑 (arg𝑀) − log |𝑀 | 𝑑 (arg𝐿)). (2.2)

If, using (2.1), we pass to the variables 𝑧, 𝜆, then we obtain

𝑑𝑉 = − log |𝜆| 𝑑 (arg𝑧) + log |𝑧| 𝑑 (arg𝜆),

while on the boundary torus 𝑧 := exp(𝑖𝑡) we have

𝑑𝑉 = − log |𝜆| 𝑑𝑡. (2.3)

Thus, the volume formula (2.2) in variables (2.3) demonstrates a direct connection
of the WKB integrals (1.12), (1.23), (1.24) with the geometric right-hand side of
the volume hypothesis (1.5).

This section is of a methodological nature. In it, using known sources, starting
from the simplest knots, we will sequentially construct their fundamental group
𝜋1(𝐾), SL2(S3∖𝐾,C)-representations and obtain an explicit form of the corresponding
𝐴−polynomials.

2.1. Fundamental group 𝜋1(𝐾) of knot 𝐾. For the definition of 𝜋1(𝑀,𝑥0)
for a manifold 𝑀 with respect to a point 𝑥0 ∈ 𝑀 , see [17, p. 534].

We are interested in manifolds𝑀 := S3∖𝐾, where 𝑥0 = ∞ ∈ S3, and 𝐾 is a
knot. Using the example of knot 𝐾 := 31, following [17, p. 655], we will construct
generators of this group and obtain relations connecting them.

8𝐴𝐽 – the initial letters 𝐴− of the polynomial and the Jones polynomials 𝐽
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Рис. 1. Basic paths for the group 𝜋1(𝐾) for “trefoil” 31

Consider ̃︀𝐾 - the projection of 𝐾 onto R2 (the direction of “general position”

𝑑 – the projection is chosen so that ̃︀𝐾 is a planar graph with vertices {𝐴,𝐵, . . .}
and edges {K1,K2, . . .}, and exactly four edges converge at each vertex, their ends
are labeled + or − depending on the location of the projected section of the knot
𝐾: (+) – “above” or (−) – “below”. The direction and numbering of the edges is
induced by the fixed direction of traversal of 𝐾 ⊂ S3. For example, for 𝐾 := 31
the graph has the form, see Fig. 1:

𝐾 = {𝐴,𝐵,𝐶} ⊔ {K1, . . . ,K6} : K1 := [𝐵(−)𝐶(+)], K2 := [𝐶(+)𝐴(−)],

K3 := [𝐴(−)𝐵(+)], K4 := [𝐵(+)𝐶(−)], K5 := [𝐶(−)𝐴(+)], K6 := [𝐴(+)𝐵(−)].

Generators (basic) of the pathes of the group 𝜋1 (we denote 𝑎𝑗 ∈ 𝜋1) are defined
as follows: path 𝑎𝑗 starts from point ∞ ∈ S3 in direction 𝑑, reaches point 𝐾,
corresponding to the middle of edge K𝑗, goes around 𝐾 and returns back to
point ∞. We obtain relations connecting the generators of the group 𝜋1. Let 4
edges converge at a vertex: K𝑗1, . . . ,K𝑗𝐾 , and in one pair, say in (𝑗1, 𝑗2), the ends
of the edges have the same sign, and in the other – (𝑗3, 𝑗4) – the sign of the ends
is opposite to the sign of (𝑗1, 𝑗2). If (𝑗1, 𝑗2) has the sign (+), then we obviously
have:

𝑎𝑗1 = 𝑎𝑗2, 𝑗2 = 𝑗1 + 1, (2.4)

in this case the pair (𝑗3, 𝑗4) has the sign (−), and for the generators we obtain

𝑎𝑗4 = 𝑎−1
𝑗1
𝑎𝑗3𝑎𝑗1. (2.5)

The set of relations (2.4), (2.5) generates all relations in the group 𝜋1(S3 ∖𝐾,∞).
For the trefoil 𝐾 = 31 we have:

𝐵 → 𝑎3 = 𝑎4 =: 𝑥, 𝑎1 = 𝑎−1
3 𝑎6𝑎3 ⇒ 𝑦 = 𝑥−1𝑤−1𝑥,

𝐶 → 𝑎1 = 𝑎2 =: 𝑦, 𝑎5 = 𝑎−1
1 𝑎4𝑎1 ⇒ 𝑤 = 𝑦−1𝑥−1𝑦,

𝐴 → 𝑎5 = 𝑎6 =: 𝑤−1, 𝑎3 = 𝑎−1
5 𝑎2𝑎5 ⇒ 𝑥 = 𝑤 𝑦 𝑤−1.
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Thus, the representation of the fundamental group will be:

𝜋1(S3 ∖ 31,∞) = ⟨𝑥, 𝑦 : 𝑥𝑤 = 𝑤𝑦, 𝑤 = 𝑦−1𝑥−1𝑦⟩. (2.6)

We note a wide class of knots (the so-called two-bridge knots, see [18]), for
which the fundamental group is generated by two generators, and its representation
has the form (2.6):

𝜋1(S3 ∖𝐾,∞) = ⟨𝑥, 𝑦 : 𝑥𝑤 = 𝑤𝑦, 𝑤 = 𝑊 (𝑥, 𝑦, 𝑥−1, 𝑦−1)⟩, (2.7)

where 𝑊 are some words with the letters (𝑥, 𝑦, 𝑥−1, 𝑦−1). For example, for the
simplest hyperbolic knots 41 (the “eight” knot) and 52, see Fig. 2, the fundamental
group (2.7) is defined by the words:

41 → 𝑊41 := 𝑦−1 𝑥 𝑦 𝑥−1, (2.8)

and
52 → 𝑊52 := 𝑦 𝑥−1 𝑦 𝑥 𝑦−1 𝑥, (2.9)

and also, see Fig. 2, the so-called twisted knots 𝐾𝑝 have

𝐾𝑝 → 𝑊𝐾𝑝
:= (𝑥 𝑦−1 𝑥−1𝑦)𝑝. (2.10)

Рис. 2. 𝐾 = 41, 𝐾 := 52 and 𝐾 := 𝐾𝑝 - twisted knots

2.2. Representation 𝜌 : 𝜋1(S3 ∖ 𝐾,∞) → SL2(C) and the algorithm for
constructing 𝐴–polynomial. In [16] for an oriented three-dimensional manifold
𝑋 ⊂ H3, whose boundary can be enclosed inside a torus, i.e. 𝜕𝑋 ⊂ T2 (for
example, 𝑋 = S2 ∖ 𝐾), using the representation 𝜌 of the fundamental group
𝜋1(𝑋) as a group SL(2,C) = {𝑈} – unimodular (det𝑈 = 1) matrices 2 × 2, an
isometric to the hyperbolic metric H3 parametrization of (𝑚, 𝑙) in the form of
an algebraic curve 𝐴(𝑚, 𝑙) = 0 is proposed. In this case, the variable 𝑚 in the
polynomial 𝐴 has even degrees and corresponds to the points of the circle of the
meridional section of the boundary torus 𝑀 – latitude, and 𝑙 – to the points of
the cycle 𝐿 transversal to the meridian (intersecting it at one point) – longitude.
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The general idea of this approach is the following. Cycles 𝑀 and 𝐿 in the
manifold 𝑋 are identified as products of generators of the group 𝜋1(𝑋). Then,
for these generators, their representations from SL2(C) are determined so that
the elements of the corresponding matrices contain coordinates 𝑚 ∈ 𝑀 and
𝑙 ∈ 𝐿. Finally, considering the required number of non-trivial representations
corresponding to trivial cycles, all undefined parameters except 𝑚 and 𝑙 are
eliminated, leaving a polynomial dependence 𝐴(𝑚, 𝑙) = 0.

We describe this procedure for the two-bridge knots given above, see (2.7).
Following [16], we turn to (2.7) and assume

𝑀 := 𝑥 and 𝐿 := 𝑥𝑛𝑤𝑤*,

where the word 𝑤* is a mirror permutation of the word 𝑤, and 𝑛 is chosen so that
the sum of the exponents of 𝐿 is zero. Defining the representation of generators

𝜌(𝑀) := 𝜌(𝑥) :=

[︂
𝑚 1
0 𝑚−1

]︂
, 𝜌(𝑦) :=

[︂
𝑚 0
𝑡 𝑚−1

]︂
. (2.11)

Next, substituting into (2.7) a specific word 𝑤, corresponding to the knot under
consideration, we generate a matrix

𝑃 (𝑚, 𝑡) :=

[︂
𝑝11 𝑝12
𝑝21 𝑝22

]︂
:= 𝜌(𝑥𝑤) − 𝜌(𝑤𝑦) = 𝜌(𝑥)𝜌(𝑤) − 𝜌(𝑤)𝜌(𝑦), (2.12)

which for hyperbolic two-bridge knots must have a zero main diagonal

𝑝11 = 𝑝22 = 0. (2.13)

Let us denote the Laurent polynomial in 𝑚:

𝑝(𝑚, 𝑡) := 𝑝12,

generate matrix

𝑄(𝑚, 𝑡) :=

[︂
𝑞11 𝑞12
𝑞21 𝑞22

]︂
:= 𝜌(𝐿) = 𝜌(𝑥𝑛)𝜌(𝑤)𝜌(𝑤*),

and denote
𝑞(𝑚, 𝑡) := 𝑞11. (2.14)

Finally, from the system of equations{︂
𝑝(𝑚, 𝑡) = 0
𝑞(𝑚, 𝑙) = 𝑙

(2.15)

we exclude 𝑡 (by calculating the resultant of the polynomials 𝑚𝑟𝑝 and 𝑚𝑠(𝑞 − 𝑙)
with respect to 𝑡) and obtain the desired polynomial 𝐴(𝑚, 𝑙).
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Let us illustrate this procedure on specific knots (2.6), (2.7), (2.8), (2.9).

2.3. 𝐴(𝑚, 𝑙) is a polynomial for the 31 trefoil knot. Substituting into (2.6)
the representations (2.11) for 𝑦−1, 𝑥−1, 𝑦, we obtain SL2(C) the representation for
𝑤:

𝜌(𝑤) = 𝜌(𝑦−1𝑥−1𝑦) = 𝜌(𝑦−1) · 𝜌(𝑥−1) · 𝜌(𝑦) =

[︂
𝑚 + 𝑡𝑚−1 𝑚−2

−𝑡𝑚2 + (1 − 𝑡)𝑡 (1 − 𝑡)𝑚−1

]︂
.

Next, according to the procedure described above, we find the representation
𝜌(𝑥𝑤) − 𝜌(𝑤𝑦) - matrix 𝑃 (𝑚, 𝑡). Here we have a surprise9 – condition (2.13) is
not satisfied, but, although 𝑝22 = 0, we have

𝑝11 = −(𝑚4 + 𝑚2𝑡−𝑚2 + 1) + 𝑚−2 ̸= 0. (2.16)

After thinking a little about the fundamental group (2.6), we have

𝑦 = 𝑤−1𝑥𝑤 = (𝑦−1𝑥𝑦)𝑥(𝑦−1𝑥−1𝑦) = (𝑦−1𝑥𝑦𝑥−1)𝑥(𝑥𝑦−1𝑥−1𝑦),

thus the groups (2.6) and the fundamental group of the twisted knot 𝐾1, see
(2.10), coincide

⟨𝑥, 𝑦 : 𝑥 ̃︀𝑤 = ̃︀𝑤𝑦, ̃︀𝑤 = 𝑥𝑦−1𝑥−1𝑦⟩ = 𝜋1(S3 ∖𝐾1,∞), (2.17)

as well as the knots that generate them10 31 and 𝐾1. Now, applying the above
procedure from [16] to the group (2.17), we obtain the following expressions for
the matrices 𝜌( ̃︀𝑤) and 𝜌( ̃︀𝑤)*:[︂

(𝑡− 1)2 + 𝑡𝑚2 (𝑡− 1)𝑚−1 + 𝑚
(𝑡− 1)𝑡𝑚−1 + 𝑡𝑚 𝑡𝑚−2 + 1

]︂
,

[︂
𝑡𝑚2 + 1 (𝑡− 1)𝑚 + 𝑚−1

(𝑡− 1)𝑡𝑚 + 𝑡𝑚−1 (𝑡− 1)2 + 𝑡𝑚−2

]︂
.

For the matrix 𝑃 (𝑚, 𝑡), as expected, we have (2.13): 𝑝11 = 𝑝22 = 0, and for the
Laurent polynomial 𝑝12 we obtain

𝑝(𝑚, 𝑡) := 𝑝12 = (𝑚4 + 𝑚2𝑡−𝑚2 + 1)𝑚−2. (2.18)

Having calculated the matrix 𝑄(𝑚, 𝑡) := 𝜌( ̃︀𝑤 ̃︀𝑤*) = 𝜌( ̃︀𝑤)𝜌( ̃︀𝑤*), we have for the
element 𝑞11:

𝑞(𝑚, 𝑡) := 𝑞11 = (𝑚6𝑡2 + 𝑚4𝑡3 −𝑚4𝑡2 + 𝑚4𝑡 + 𝑚2𝑡3 −𝑚2𝑡2 + 𝑚2 + 𝑡2 − 𝑡)𝑚2.

Thus, the system (2.15) is obtained. From the first equation we immediately
express 𝑡:

𝑝(𝑚, 𝑡0) = 0 =⇒ 𝑡0 = 1 −𝑚2 −𝑚−2. (2.19)

Substituting the obtained 𝑡 into the second equation, we obtain (after all reductions):

𝑞(𝑚, 𝑡)|𝑡=𝑡0 = 𝑙 =⇒ 𝐴(𝑚, 𝑙) = −(𝑚6 + 𝑙). (2.20)
9Knot 31− is not hyperbolic, so (2.13) is not guaranteed
10which can be easily verified by comparing Fig. 1 and 𝐾𝑛, 𝑛 = 1 in Fig. 2
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2.4. 𝐴(𝑚, 𝑙) polynomial for the figure-eight knot 41. Substituting into
(2.8) the representations (2.11) for 𝑥, 𝑦 and their inverses, we obtain the SL2(C)
representation for 𝑤 and 𝑤*:

𝜌(𝑤) = 𝜌(𝑦−1)𝜌(𝑥)𝜌(𝑦)𝜌(𝑥−1) =

[︂
(𝑡 + 𝑚2)𝑚−2 (1 − 𝑡−𝑚2)𝑚−1

(𝑡(1 − 𝑡) − 𝑡𝑚2)𝑚−1 (1 − 𝑡)2 + 𝑡𝑚2

]︂
.

𝜌(𝑤*) =

[︂
((1 − 𝑡)2 ·𝑚2 + 𝑡)𝑚−2 ((1 − 𝑡)𝑚2 − 1)𝑚−1

((1 − 𝑡)𝑚2𝑡− 𝑡)𝑚−1 𝑚2𝑡 + 1

]︂
.

We calculate the matrix 𝑃 (𝑚, 𝑡) := 𝜌(𝑥𝑤) − 𝜌(𝑤𝑦). The test 𝑝11 = 𝑝22 = 0 is
passed, and for the Laurent polynomial 𝑝12 we have:

𝑝(𝑚, 𝑡) := (𝑚4𝑡−𝑚4 + 𝑚2𝑡2 − 3𝑚2𝑡 + 3𝑚2 + 𝑡− 1)𝑚−2.

Calculating the matrix 𝑄(𝑚, 𝑡) := 𝜌(𝑤𝑤*), we have for the element 𝑞11:

𝑞(𝑚, 𝑡) := 𝑞11 = (𝑚6𝑡2 −𝑚6𝑡 + 𝑚4𝑡2 −𝑚2𝑡3 + 𝑚4 −𝑚2𝑡2 + 𝑚2𝑡 + 𝑡2)𝑚−4.

Finally, we get rid of 𝑡 in the system (2.15) by calculating the resultant of the
polynomials 𝑚2𝑝 and 𝑚4𝑞 with respect to 𝑡. We obtain the desired polynomial

𝐴41(𝑚, 𝑙) := −𝑙𝑚8 + 𝑙𝑚6 + 𝑙2𝑚4 + 2𝑙𝑚4 + 𝑚4 + 𝑙𝑚2 − 𝑙. (2.21)

2.5. 𝐴(𝑚, 𝑙) is a polynomial for knot 52. As before, starting from (2.9), we
obtain a SL2(C) representation for 𝑤 and 𝑤*:

𝜌(𝑤) :=

⎡⎢⎢⎣ 𝑚2 𝑡2 − 2𝑚2 𝑡 + 𝑚2 + 𝑡
(𝑡− 1) (𝑚2 𝑡− 2𝑚2 + 1)

𝑚

𝑡 (𝑚2 𝑡2 − 3𝑚2 𝑡 + 2𝑚2 + 𝑡− 1)

𝑚

𝑚2 𝑡3 − 4𝑚2 𝑡2 + 4𝑚2 𝑡 + 𝑡2 − 2 𝑡 + 1

𝑚2

⎤⎥⎥⎦ ,

𝜌(𝑤*) :=

⎡⎢⎢⎣ 𝑚2 𝑡2 − 2𝑚2 𝑡 + 𝑡3 + 𝑚2 − 4 𝑡2 + 4 𝑡
𝑚2 𝑡−𝑚2 + 𝑡2 − 3 𝑡 + 2

𝑚

(𝑡− 1) 𝑡 (𝑚2 + 𝑡− 2)

𝑚

𝑚2 𝑡 + 𝑡2 − 2 𝑡 + 1

𝑚2

⎤⎥⎥⎦ .

We calculate the matrix 𝑃 (𝑚, 𝑡) := 𝜌(𝑥𝑤) − 𝜌(𝑤𝑦), and for 𝑝12 we have:

𝑝(𝑚, 𝑡) :=
𝑚4 𝑡2 − 3𝑚4 𝑡 + 𝑚2 𝑡3 + 2𝑚4 − 5𝑚2 𝑡2 + 8𝑚2 𝑡− 3𝑚2 + 𝑡2 − 3 𝑡 + 2

𝑚2
.
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Next, for the element 𝑞11 of the matrix 𝑄(𝑚, 𝑡) := 𝜌(𝑤𝑤*), we get 𝑞(𝑚, 𝑡) :=

− (𝑚12 𝑡5 − 5𝑚12 𝑡4 + 𝑚10 𝑡6 + 9𝑚12 𝑡3 − 5𝑚10 𝑡5 − 7𝑚12 𝑡2 + 9𝑚10 𝑡4 + 2𝑚8 𝑡6

+ 2𝑚12 𝑡− 6𝑚10 𝑡3 − 11𝑚8 𝑡5 + 23𝑚8 𝑡4 + 2𝑚6 𝑡6 + 𝑚10 𝑡− 21𝑚8 𝑡3 − 10𝑚6 𝑡5

+ 7𝑚8 𝑡2 + 17𝑚6 𝑡4 + 2𝑚4 𝑡6 − 8𝑚6 𝑡3 − 12𝑚4 𝑡5 − 6𝑚6 𝑡2 + 28𝑚4 𝑡4 + 𝑚2 𝑡6

+ 6𝑚6 𝑡− 31𝑚4 𝑡3 − 6𝑚2 𝑡5 −𝑚6 + 16𝑚4 𝑡2 + 14𝑚2 𝑡4 − 3𝑚4 𝑡− 16𝑚2 𝑡3 + 𝑡5

+ 10𝑚2 𝑡2 − 6 𝑡4 − 4𝑚2 𝑡 + 13 𝑡3 − 12 𝑡2 + 4 𝑡)/𝑚6.

Calculating the resultant (𝑚2 · 𝑝,𝑚6(𝑞 − 𝑙), 𝑡), we obtain:

𝐴52(𝑚, 𝑙) := 𝑙3𝑚14−𝑙2 (𝑚14+2 𝑙 𝑚12+2𝑚10−𝑚6+𝑚4)+𝑙 (𝑚10−𝑚8+2𝑚4+2𝑚2−1)+1.

2.6. 𝐴(𝑚, 𝑙) is a polynomial for the knot 74. UsingMAPLE we have calculated
𝐴-polynomials for other knots as well. For example, for knot 74 we know the
representation (2.7) of the fundamental group, where

74 → 𝑊74 := 𝑦 𝑥−1 𝑦 𝑥 𝑦−1 𝑥 𝑦−1 𝑥 𝑦−1 𝑥 𝑦−1 𝑥 𝑦−1 𝑥.

From it, as before, we arrive at the resultant (𝑝, (𝑞 − 𝑙), 𝑡), which turns out to be
factorized: 𝐴74(𝑚, 𝑙) := 𝐴74(𝑚, 𝑙)(1)𝐴74(𝑚, 𝑙)(2), where

𝐴
(1)
74

(𝑚, 𝑙) :=𝑙3𝑚14 + (−2𝑚14 + 6𝑚12 + 2𝑚10 − 7𝑚8 + 2𝑚6 + 3𝑚4 − 2𝑚2 + 1) 𝑙2

+(𝑚14 − 2𝑚12 + 3𝑚10 + 2𝑚8 − 7𝑚6 + 2𝑚4 + 6𝑚2 − 2) 𝑙 + 1.

𝐴
(2)
74

(𝑚, 𝑙) :=(𝑙2𝑚8 + (−𝑚8 + 𝑚6 + 2𝑚4 + 𝑚2 − 1) 𝑙 + 1)2. (2.22)

2.7. A note on the AJ - conjecture. This conjecture has been proved for the
knots 31, 41, 74 (cf. Garoufalidis [10] and Koutschan–Garoufalidis [32]); for torus
knots (cf. Hikami [33], Tran [34]), for some classes of two-bridge knots, including
all twist knots and pretzels (cf. Le [35], [36], [37]).

The explicit form of the 𝐴−polynomials for various knots can be found in
[40, 39].

3. Roots of 𝑃 (𝑧, 𝜆) at |𝑧| = 1 and WKB integrals

This section is the central one in our preprint. In it we present new material:
for various knots with known 𝐴−polynomials11 and volumes, we analyze the
branches {𝜆𝑗(𝑧)} for |𝑧| = 1 of the algebraic function (1.7) and integrate them
numerically to test our conjecture (1.23), (1.24) about (∃, !) of the holomorphic
branch 𝜆1 : |𝜆1| > 1 on the arc of the upper semicircle S1+:

2𝜋 lim
𝑁→∞

ln |𝐽𝑁(𝑒2𝜋𝑖/𝑁)|
𝑁

= 2𝜋

∫︁ (1/2)

0

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏 (1.5)

= vol(S3 ∖𝐾). (3.1)

11assuming the AJ-hypothesis
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3.1. Knot 61: branches {𝜆𝑗} and volume. As we have already noted, we take
the explicit form of the characteristic polynomials (1.7) from the known 𝐴(𝑀,𝐿)-
polynomials, setting 𝑧 ≡ 𝑀 2, 𝜆 ≡ 𝐿 in (2.1). In view of the interest in (3.1), we
study for |𝑧|=1 the branches {𝜆𝑗(𝑧)}𝑑𝑗=1 of the algebraic function 𝜆(𝑧) defined by

(1.7). Let us note the general properties12 of the roots of colored Jones polynomials
(in 𝜆) of the polynomial 𝑃 (𝑧, 𝜆) for |𝑧|=1:

1) 𝜆(𝑧) = 𝜆(𝑧), i.e. the sets {𝜆𝑗(𝑧)}𝑑𝑗=1 and {𝜆𝑗(𝑧)}𝑑𝑗=1 coincide;
2) ∀𝑗 ∃ 𝑘 ̸= 𝑗 : |𝜆𝑗(𝑧)𝜆𝑘(𝑧)| = 1, 𝑗, 𝑘 = 1, ...𝑑, |𝑧| = 1.

For the knot 61 we have:

𝑃 (𝑧, 𝜆) :=𝜆4𝑧4 + 𝜆3(−2𝑧6 + 3𝑧5 + 3𝑧4 + 𝑧 − 1) + 𝜆(−𝑧8 + 𝑧7 + 3𝑧4 + 3𝑧3 − 2𝑧2)+

𝜆2(𝑧8 − 3𝑧7 − 𝑧6 + 3𝑧5 + 6𝑧4 + 3𝑧3 − 𝑧2 − 3𝑧 + 1) + 𝑧4 = 0, (3.2)

and 𝑃 (−1, 𝜆) = (𝜆− 1)4, 𝑃 (1, 𝜆) = (𝜆 + 1)4.
The analysis of branches {𝜆𝑗(𝑧)}4𝑗=1 is enough to do on the S1+-upper semicircle.

The discriminant in (3.2) is equal to 𝐷(𝑧) := 𝑧6 (𝑧 − 1)12(𝑧 + 1)12∆, where ∆ :=

5𝑧12−32𝑧11+56𝑧10−118𝑧9+124𝑧8+32𝑧7+123𝑧6+32𝑧5+124𝑧4−118𝑧3+56𝑧2−32𝑧+5

Of all the zeros of ∆ on the upper semicircle there are two branch points 𝜆(𝑧):
𝑧1 := −0.84.. + 𝑖 0.53.. =: 𝑒𝑖𝑡1, 𝑡1 = 2.57.., 𝑧2 := 0.052.. + 𝑖 0.99.. =: 𝑒𝑖𝑡2, 𝑡2 =
1.51.. We have 𝜆𝑗(−1) = 1, 𝑗 = 1,2,3,4. Moving from 𝑧 = 𝑒𝑖𝜋 clockwise, we
calculate the roots of the polynomial (3.2) and obtain that |𝜆𝑗(𝑧)| = 1, 𝑗 =
1,2,3,4, on the arc {𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ [𝜋, 𝑡1]}. At point 𝑧1 we have: 𝜆1(𝑧1) = 𝜆4(𝑧1),
and |𝜆1(𝑧)| > |𝜆2(𝑧)| = 1 = |𝜆3(𝑧)| > |𝜆4(𝑧)| for points 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (𝑡1, 𝑡2].

Рис. 3. |𝜆1(𝑧)|, |𝜆2(𝑧)| ≥ 1 at 𝑧 = 𝑒𝑖𝑡, 𝑡 = 0, . . . , 𝑡1, for knot 61

12follow from the general properties of the roots of colored Jones polynomials
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At point 𝑧2 the branches 𝜆2 = 𝜆3 coincide, and at the output (clockwise) from
𝑧2 we have: |𝜆1(𝑧)| > |𝜆2(𝑧)| > 1 > |𝜆3(𝑧)| > |𝜆4(𝑧)|, 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (𝑡2, 𝑡

*]. Note
that point 𝑡* = 1.047... on arc (𝑡2, 0), in which |𝜆1(𝑧)| = |𝜆2(𝑧)| > 1 > |𝜆3(𝑧)| =
|𝜆4(𝑧)| and then at 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (𝑡*, 0) the order of branches is rebuilt according to
the magnitude of the modulus: |𝜆2(𝑧)| > |𝜆1(𝑧)| > 1 > |𝜆4(𝑧)| > |𝜆3(𝑧)|. Finally,
for 𝑧 = 1, 𝜆𝑗(1) = −1, 𝑗 = 1,2,3,4.

Note that on the upper semicircle we have |𝜆1(𝑧)||𝜆4(𝑧)| = 1 and |𝜆3(𝑧)||𝜆2(𝑧)| =
1. It is also obvious that on the lower semicircle (going counterclockwise from
p.𝑧 = −1) there will be the same structure of branches of the algebraic function
𝜆(𝑧).

Let us proceed to the calculation of the integral13 in (3.1). The integral sum
gives: ∫︁ 𝑡1

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈

99∑︁
𝑘=0

ln
⃒⃒⃒
𝜆1(𝑒

𝑖𝑘𝑡1/100)
⃒⃒⃒ 𝑡1

100
= 3.161001...

Known volume value for knot 61:

vol(S3 ∖ 61) = 3.16396322...

A. B. Batkhin developed a special numerical method for identifying branches and
calculating integrals (in the neighborhoods of branching points), which allows
obtaining results with a fairly high accuracy (see in [2] the calculations of the
integral (3.1) for knot 52). For knot 61 the numerical value of the integral is:∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 3.163963228883...

3.2. Knot 72: branches {𝜆𝑗} and volume. We continue the numerical verification
of the hypothesis (3.1) for various knots. We present the characteristic polynomial (1.7)
that defines the spectral curve 𝜆(𝑧) for knot 72:

𝑃 (𝑧, 𝜆) :=𝜆5 + 𝜆4𝑎4(𝑧) + 𝜆3𝑎3(𝑧) + 𝜆2𝑎2(𝑧) + 𝜆𝑎1(𝑧) + 𝑧11 = 0, (3.3)

𝑎1 :=𝑧4 − 𝑧5 + 3𝑧9 + 4𝑧10 − 2𝑧11;

𝑎2 := − 2𝑧2 + 5𝑧3 + 𝑧4 − 4𝑧5 + 6𝑧7 + 5𝑧8 + 2𝑧9 − 4𝑧10 + 𝑧11;

𝑎3 :=1 − 4𝑧 + 2𝑧2 + 5𝑧3 + 6𝑧4 − 4𝑧6 + 𝑧7 + 5𝑧8 − 2𝑧9;

𝑎4 := − 2 + 4𝑧 + 3𝑧2 − 𝑧6 + 𝑧7.

Note: 𝑃 (−1, 𝜆) = (𝜆− 1)4, 𝑃 (1, 𝜆) = (𝜆 + 1)4.

13since |𝜆| = 1 on (𝑡1, 𝜋), then the upper limit in the integral can be replaced by 𝜋
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The discriminant of the polynomial 𝑃 (𝑧, 𝜆) is 𝐷(𝑧) := 𝑧16 (𝑧2 − 1)20∆, where

∆ := 20𝑧16 − 192𝑧15 + 581𝑧14 − 882𝑧13 + 1649𝑧12 − 2214𝑧11+

1146𝑧10 + 730𝑧9 + 2733𝑧8 + 730𝑧7 + 1146𝑧6 − 2214𝑧5+

1649𝑧4 − 882𝑧3 + 581𝑧2 − 192𝑧 + 20. (3.4)

Of the 16 zeros of ∆ on the circle - 8, on S1+ lie two branch points of 𝜆(𝑧): 𝑧1 :=
−0.89.. + 𝑖 0.45.. =: 𝑒𝑖𝑡1, 𝑡1 = 2.67.., 𝑧2 := −0.28.. + 𝑖 0.96.. =: 𝑒𝑖𝑡2, 𝑡2 = 1.85..

The branches {𝜆𝑗(𝑧)}5𝑗=1 of the spectral curve (3.3) for the knot 72 on the

circle S1 behave in the same way as the branches 𝜆(𝑧) for 61. One exception: an
additional branch has appeared (denote it by 𝜆3(𝑧)), which is holomorphic and
equal in absolute value to one on the whole S1. Moving along S1+ from 𝑧 = 𝑒𝑖𝜋

clockwise, we have:

𝜆𝑗(−1) = 1, |𝜆𝑗(𝑧)| = 1, 𝑗 = 1,2,3,4,5, 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ [𝜋, 𝑡1];

𝜆1(𝑧1) = 𝜆5(𝑧1), |𝜆1(𝑧)| > 1 = |𝜆𝑗(𝑧)| > |𝜆5(𝑧)|, 𝑗 = 2,3,4, 𝑡 ∈ (𝑡1, 𝑡2];

𝜆2(𝑧2) = 𝜆4(𝑧2), |𝜆1(𝑧)| > |𝜆2(𝑧)| > 1 = |𝜆3(𝑧)| > |𝜆4(𝑧)| > |𝜆5(𝑧)|, 𝑡 ∈ (𝑡2, 𝑡
*];

|𝜆1(𝑧
*)| = |𝜆2(𝑧

*)| > 1 = |𝜆3(𝑧
*)| > |𝜆4(𝑧

*)| = |𝜆5(𝑧
*)|, 𝑧* = 𝑒𝑖𝑡

*
, 𝑡* = 1.45..;

|𝜆2(𝑧)| > |𝜆1(𝑧)| > 1 = |𝜆3(𝑧)| > |𝜆5(𝑧)| > |𝜆4(𝑧)|, 𝑡 ∈ (𝑡*, 0];

𝜆𝑗(1) = −1, 𝑗 = 1,2,3,4,5.

Рис. 4. |𝜆1(𝑧)|, |𝜆2(𝑧)| ≥ 1 at 𝑧 = 𝑒𝑖𝑡, 𝑡 = 0, . . . , 𝑡1, for the knot 72

Known volume value for knot 72: vol(S3 ∖ 72) = 3.331744232...

For knot 72 the numerical value of the integral is:∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 3.3317442316411...
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3.3. Knot 74: branches {𝜆𝑗} and volume. This knot has a peculiarity − its

characteristic polynomial is factorized14 𝑃 (𝑧, 𝜆) = 𝑃 (1)(𝑧, 𝜆)𝑃 (2)(𝑧, 𝜆): deg𝜆[𝑃 (1)(𝑧, 𝜆)] =
3, deg𝑧[𝑃

(1)] = 7, deg𝜆[𝑃 (2)(𝑧, 𝜆)] = 2, deg𝑧[𝑃
(2)] = 4. This circumstance facilitates

the analysis of the structure of the 5 branches of the spectral curve 𝜆(𝑧), since
the branches of the factors can be considered independently.

The discriminant of 𝑃 (1)(𝑧, 𝜆) is equal to 𝐷1(𝑧) := 𝑧 (𝑧2 − 1)6∆1, where

∆1 := (4𝑧6 + 12𝑧4 + 27𝑧3 + 12𝑧2 + 4)(2𝑧4 − 5𝑧3 + 8𝑧2 − 5𝑧 + 2)2,

and 𝑃 (2)(𝑧, 𝜆) has discriminant 𝐷2(𝑧) := (𝑧2 − 1)2∆2, ∆2 := (𝑧2 + 𝑧 + 1)(𝑧2 −
3𝑧 + 1). On S1+, ∆1 has a single zero 𝑧1 := −0.94.. + 𝑖 .032.. =: 𝑒𝑖𝑡1, 𝑡1 = 2.81...

There, on S1+ and ∆2 there is only one zero 𝑧2 := −1
2 + 𝑖

√
3
2 =: 𝑒𝑖𝑡2, 𝑡2 = 2𝜋

3 .

Denote by {𝜆2𝑘−1(𝑧)}3𝑘=1 the branches of the curve 𝜆(1)(𝑧) defined by the
equation 𝑃 (1)(𝑧, 𝜆) = 0, and by {𝜆2𝑘(𝑧)}2𝑘=1 the branches of 𝜆

(2): 𝑃 (2)(𝑧, 𝜆) = 0.
Moving clockwise along S1+ from 𝑧 = 𝑒𝑖𝜋, we have for 𝜆(1)(𝑧):

Рис. 5. |𝜆1(𝑧)|, |𝜆2(𝑧)| ≥ 1 at 𝑧 = 𝑒𝑖𝑡, 𝑡 = 0, . . . , 𝑡1, for knot 74

{︃
𝜆𝑗(−1) = 1, 𝑗 = 1,3,5, |𝜆𝑗(𝑧)| = 1, 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ [𝜋, 𝑡1], 𝜆1(𝑧1) = 𝜆5(𝑧1);

|𝜆1(𝑧)| > 1 = |𝜆3(𝑧)| > |𝜆5(𝑧)|, 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (𝑡1, 0), 𝜆𝑗(1) = −1, 𝑗 = 1,3,5;

Similarly, for 𝜆(2)(𝑧):{︃
𝜆𝑗(−1) = 1, 𝑗 = 2,4, |𝜆𝑗(𝑧)| = 1, 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ [𝜋, 𝑡2], 𝜆2(𝑧2) = 𝜆4(𝑧2);

|𝜆2(𝑧)| > 1 > |𝜆4(𝑧)|, 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (𝑡2, 0), 𝜆𝑗(1) = −1, 𝑗 = 2,4.

14see (2.22), following [32] we omit the square of 𝐴
(2)
74
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Note that in the neighborhood of the point 𝑧 = 1, ∃𝑧* = 𝑒𝑖𝑡
*
we have:

|𝜆1(𝑧)| > |𝜆2(𝑧)| for 0 < 𝑡 ∈ (𝑡*, 0), and |𝜆1(𝑧) < |𝜆2(𝑧)| for 𝜋 > 𝑡 ∈ (𝜋, 𝑡*).

Known volume value for the knot 74: vol(S3 ∖ 74) = 5.13794120....
For the knot 74 the numerical value of the integral is:∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 5.137941201873417769...

3.4. Knot 75: branches {𝜆𝑗} and volume. Starting from this point, we will
not give in the main text15 the explicit form of the polynomials 𝑃 (𝑧, 𝜆) that define
the spectral curve 𝜆(𝑧) in (1.7). For the knot 75, we only note that

deg𝜆[𝑃 (𝑧, 𝜆)] = 8, deg𝑧[𝑃 (𝑧, 𝜆)] = 34, 𝑃 (±1, 𝜆) = (𝜆± 1)8.
The discriminant 𝑃 (𝑧, 𝜆) has degree 50, not counting the zeros of high even
multiplicity at the points±1, 0. However, only three branch points 𝑧𝑗 := 𝑒𝑖𝑡𝑗 , 𝑗=1,...,3
and one more point 𝑧0 := 𝑒𝑖𝑡0 : fall on the upper semicircle S1+.
𝑡0 := 2.237035759..; 𝑡1 := 2.848733829..; 𝑡2 := 2.233540134..; 𝑡3 := 2.190746731..,
two branches intersect holomorphically, and in the neighborhood of the point 𝑧0
their modulus is equal to 1.

All branches {𝜆𝑗(𝑧)}8𝑗=1 of the spectral curve of knot 75 on the circle S1 in the
neighborhood of point 𝑒𝑖𝜋 have a modulus equal to 1, and two branches preserve
this property throughout S1, while in the neighborhood of point 1 the other three
branches have moduli greater than 1, and the three remaining ones have moduli
equal to the inverse values of the previous moduli. Moving along S1+ from 𝑧 = 𝑒𝑖𝜋

0.0 0.5 1.0 1.5 2.0 2.5
t

0

5

10

15

20

25

| |

Abs values of branches knot7-5.pdf
Branch 1
Branch 2
Branch 3

Рис. 6. |𝜆𝑗(𝑧)| ≥ 1, 𝑗 = 1,2,3, at 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (0, 𝜋), for the knot 75

15see http://katlas.math.toronto.edu/wiki/Data:7 5/A-polynomial
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clockwise, we select branches modulo greater than one. At the point 𝑧1, the only
such branch branches, denoted by 𝜆1(𝑧), the remaining branches remain equal to
(or less than) one in modulo). This branch will preserve the maximum modulus
on the path from 𝑧1 to 1, on this path it is holomorphic (does not branch) and
forms the answer. The other two branches 𝜆2(𝑧) and 𝜆3(𝑧), branching at points
𝑧2 and 𝑧3, respectively, and having a modulus greater than 1 on the holomorphy
regions from 𝑧2 to 1 and from 𝑧3 to 1, preserve the ordering of the modules on
these regions: |𝜆1(𝑧)| > |𝜆2(𝑧)| > |𝜆3(𝑧)| > 1.

Known volume value for the knot 75: vol(S3 ∖ 75) = 6.443537381.....

For the knot 75 the numerical value of the integral is:∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 6.4435373808505754761...

3.5. Knot 76: branches {𝜆𝑗} and volume. For the polynomials 𝑃 (𝑧, 𝜆)16 that
define in (1.7) the spectral curve 𝜆(𝑧) of the knot 76 we have

deg𝜆[𝑃 (𝑧, 𝜆)] = 9, deg𝑧[𝑃 (𝑧, 𝜆)] = 27, 𝑃 (±1, 𝜆) = (𝜆± 1)9.
The discriminant 𝑃 (𝑧, 𝜆) has degree 84, not counting the zeros of high even
multiplicity at the points±1, 0. However, only four branch points 𝑧𝑗 := 𝑒𝑖𝑡𝑗 , 𝑗=1,...,4
fall on the upper semicircle S1+:
𝑡1 := 2.880078732..; 𝑡2 := 2.321655981..; 𝑡3 := 2.305603863.., 𝑡4 := 1.827810801;
and at two more points 𝑧0𝑗 := 𝑒𝑖𝑡0𝑗 : 𝑡01 := 2.3814402100..; 𝑡02 := 2.3464745745..,
intersect holomorphically two branches with equal 1 moduli.

All branches {𝜆𝑗(𝑧)}9𝑗=1 of the spectral curve of knot 76 on the circle S1
in the neighborhood of point 𝑒𝑖𝜋 have modulus = 1, and one branch preserves
this property on the whole S1, and in the neighborhood of point 1 the other four
branches have moduli> 1 , and the four remaining moduli are equal to the inverse
values of the previous moduli, i.e. <1.

Moving along S1+ from 𝑧 = 𝑒𝑖𝜋 clockwise, we select branches whose absolute
value is greater than one. At the point 𝑧1, the only such branch branches, denoted
by 𝜆1(𝑧), the remaining branches remain equal (or <) to one absolute value. This
branch will preserve its maximum absolute value on the path from 𝑧1 to 1, on this
path it is holomorphic (does not branch) and forms the answer. The other two
branches 𝜆2(𝑧) and 𝜆3(𝑧), branching at points 𝑧2 and 𝑧3, respectively, and having
modulus > 1 on the holomorphy sections from 𝑧2 to 1 and from 𝑧3 to 1, preserve
the ordering of the modules on these sections: |𝜆1(𝑧)| > |𝜆2(𝑧)| > |𝜆3(𝑧)| > 1.

Finally, the branch 𝜆4(𝑧), branching at point 𝑧4, having modulus > 1 on the
holomorphy region from 𝑧4 to 1, increases its modulus as it moves (clockwise), so

16see http://katlas.math.toronto.edu/wiki/Data:7 6/A-polynomial
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that first |𝜆1(𝑧)| > |𝜆2(𝑧)| > |𝜆4(𝑧)| > |𝜆3(𝑧)| > 1, and then |𝜆1(𝑧)| > |𝜆4(𝑧)| >
|𝜆2(𝑧)| > |𝜆3(𝑧)| > 1, see Fig.7.
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Рис. 7. |𝜆𝑗(𝑧)| ≥ 1, 𝑗 = 1, ...,4, at 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (0, 𝜋), for the knot 76

Known volume value for the knot 76: vol(S3 ∖ 76) = 7.084925954...

For the knot 76 the numerical value of the integral is:∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 7.0849259535109686484...

3.6. Knot 77: branches {𝜆𝑗} and volume. This knot, like 74, has a factorization

of the characteristic polynomial 17 𝑃 (𝑧, 𝜆) = 𝑃 (1)(𝑧, 𝜆)𝑃 (2)(𝑧, 𝜆): deg𝜆[𝑃 (1)(𝑧, 𝜆)] =
4, deg𝑧[𝑃

(1)] = 14, deg𝜆[𝑃 (2)(𝑧, 𝜆)] = 3,deg𝑧[𝑃
(2)] = 5. This circumstance facilitates

the analysis of the 7 branches of the spectral curve 𝜆(𝑧), since the branches
𝜆(𝑗)(𝑧), 𝑗 = 1,2 of the factors 𝑃 can be considered independently.

The discriminant of the polynomial 𝑃 (1)(𝑧, 𝜆) is 𝐷1(𝑧) := 𝑧16(𝑧2 − 1)12∆1,
where ∆1 := (16𝑧8− 68𝑧7 + 44𝑧6 + 120𝑧5 + 33𝑧4 + 120𝑧3 + 44𝑧2− 68𝑧 + 16)
(2𝑧10− 22𝑧9 + 91𝑧8− 176𝑧7 + 163𝑧6− 108𝑧5 + 163𝑧4− 176𝑧3 + 91𝑧2− 22𝑧 + 2)2;
and 𝑃 (2)(𝑧, 𝜆) has the discriminant 𝐷2(𝑧) := (𝑧2 − 1)6∆2, where

∆2 := 𝑧8 − 6𝑧7 + 11𝑧6 − 12𝑧5 − 11𝑧4 − 12𝑧3 + 11𝑧2 − 6𝑧 + 1.

On S1+, ∆1 has two single zeros (branch points) at points: 𝑒𝑖𝑡
(1)
1 , 𝑒𝑖𝑡

(1)
2 and

one doble zero at point 𝑒𝑖𝑡
(1)
0 . ∆2 on S1+ has a single zero at point 𝑒𝑖𝑡

(2)
1 : 𝑡

(1)
1 :=

2.905300..., 𝑡
(2)
1 := 2.407169..., 𝑡

(1)
2 := 1.535100..., 𝑡

(1)
0 := 2.216967... .

17We have 𝑃 (±1, 𝜆) = (𝜆±1)7; 𝐴-polynomial in http://katlas.math.toronto.edu/wiki/Data:7 7/A-polynomial
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At point 𝑒𝑖𝑡
(1)
0 two branches of curve 𝜆(1)(𝑧) intersect holomorphically with equal

1 moduli, and also at each of points 𝑒𝑖𝑡
(12)
01 , 𝑡

(12)
01 := 2.408663.. and 𝑒𝑖𝑡

(12)
02 , 𝑡

(12)
02 :=

1.700625.. the branch 𝜆(2)(𝑧) and the branch 𝜆(1)(𝑧) with equal moduli are intersected.

All branches {𝜆(1)
𝑗 (𝑧)}4𝑗=1 and {𝜆(2)

𝑗 (𝑧)}3𝑗=1 of the spectral curve of knot 77
on the circle S1 in the neighborhood of point 𝑒𝑖𝜋 have modulus = 1, and one
branch of the curve 𝜆(2)(𝑧) preserves this property on the whole S1, and in the
neighborhood of point 1 on S1+ the other branch 𝜆(2)(𝑧) and two branches 𝜆(1)(𝑧)
have moduli >1, and the three remaining branches 𝜆(𝑧) modules are equal to the
reciprocals of the previous modules.

Moving along S1+ from 𝑧 = 𝑒𝑖𝜋 clockwise, we select branches whose absolute

value is greater than one. At the point 𝑧1 := 𝑒𝑖𝑡
(1)
1 , the only such branch branches,

denoted by 𝜆1(𝑧) := 𝜆
(1)
1 (𝑧), the remaining branches remain equal (or <) to one

absolute value. This branch will preserve its maximum absolute value on the path
from 𝑧1 to 1, on this path it is holomorphic and forms the answer.

Let us fix two other branches 𝜆2(𝑧) := 𝜆
(2)
1 (𝑧) and 𝜆3(𝑧) := 𝜆

(1)
2 (𝑧), branching

at points 𝑧2 := 𝑒𝑖𝑡
(2)
1 and 𝑧3 := 𝑒𝑖𝑡

(1)
2 , respectively, and having modulus > 1 on the

holomorphy regions from 𝑧2 to 1 and from 𝑧3 to 1. Moreover, their modulus there
is less than the modulus of the branch 𝜆1(𝑧). We add that on the arc S1+ from 𝑧3
to 1 ∃𝑧* : |𝜆2(𝑧)| > |𝜆3(𝑧)| from 𝑧3 to 𝑧*, but |𝜆2(𝑧)| < |𝜆3(𝑧)| from 𝑧* to 1.
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Рис. 8. |𝜆𝑗(𝑧)| ≥ 1, 𝑗 = 1,2,3, at 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (0, 𝜋), for the knot 77

Known volume value for the knot 77: vol(S3 ∖ 77) = 7.643375172...
For the knot 77 the numerical value of the integral is:∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 7.6433751723599555...
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3.7. WKB integrals and Mahler measures. Before moving on to the final
series of knots considered, we note that the connection between WKB integrals in
(1.12) and special functions expressing hyperbolic volumes was noted in D. Boyd’
papers, see [14, 15], devoted to Mahler measures. The logarithmic Mahler measure
of the polynomial 𝑃 (𝑥1, ..., 𝑥𝑛) is called

𝑚(𝑃 ) :=

∫︁ 1

0

· · ·
∫︁ 1

0

log |𝑃 (𝑒(𝑡1), ..., 𝑒(𝑡𝑛)) | 𝑑𝑡1 · · · 𝑑𝑡𝑛, 𝑒(𝑡) := exp(2𝜋𝑖𝑡).

Accordingly, simply the Mahler measure of a polynomial is exp(𝑚(𝑃 )).
For a polynomial of two variables 𝑃 (𝑧, 𝜆) the Mahler measure is 𝑚(𝑃 ) :=∫︁ 1

0

∫︁ 1

0

log |𝑃 (𝑒(𝑡1), 𝑒(𝑡2)) | 𝑑𝑡2𝑑𝑡1 =

∫︁ 1

0

(︃∫︁ 1

0

log
𝑛∏︁

𝑗=1

|(𝑒(𝑡2)) − 𝜆𝑗(𝑒(𝑡1))|𝑑𝑡2

)︃
𝑑𝑡1.

Applying Jensen’s formula to the inner integral,

𝑚(𝑃 ) :=

∫︁ 1

0

𝑛∑︁
𝑗=1

(︂∫︁ 1

0

log |𝑒(𝑡2) − 𝜆𝑗(𝑒(𝑡1))|𝑑𝑡2
)︂
𝑑𝑡1 =

𝑛∑︁
𝑗=1

∫︁ 1

0

log+ |𝜆𝑗(𝑒
2𝜋𝑖𝑡1)|𝑑𝑡1,

we obtain the sum of the integrals (1.12) over all branches 𝜆𝑘(𝑧) : |𝜆𝑘| ≥ 1, 𝑧 ∈ S1.
In the paper by D. Boyd [15] (as polynomials of two variables) 𝐴(𝑀,𝐿)− are

considered. Examples of three knots are given: 𝑘515, 𝑘57 and 10125, for which the
integrals of the logarithms of the moduli of the branches of the algebraic functions
𝐴(𝑀,𝐿) = 0 are calculated.18. In the next three sections, we will also analyze
these examples under the assumption that the AJ-hypothesis is valid (2.1).

3.8. Knot 10125: branches {𝜆𝑗} and volume. This knot was considered in
[15, Example 3]. Besides the number 10125 in the Rolfsen classification, it is also
called the 𝑘620 knot and the 𝐾(−2, 3,−5) pretzel. For the polynomials 𝑃 (𝑧, 𝜆)19,
defining in (1.7) the spectral curve 𝜆(𝑧) of the 10125 knot, we have deg𝜆[𝑃 (𝑧, 𝜆)] =
9, deg𝑧[𝑃 ] = 27, 𝑃 (1, 𝜆) = (𝜆− 1)2(𝜆 + 1)7, 𝑃 (−1, 𝜆) = (𝜆2 + 1)2(𝜆− 1)5.
The discriminant 𝑃 (𝑧, 𝜆), not counting the zeros of high even multiplicity at the
points ±1, 0, has 28 single zeros, 32 double zeros, and quadruple zeros at the
roots of the equation (𝑍4 + 1)4 = 0. Moreover, on the upper semicircle S+ = 1,
in addition to half of the mentioned quadruple zeros and three double zeros at
the points of the holomorphic intersection of the branches 𝑧0𝑗 := 𝑒𝑖𝑡0𝑗 : 𝑡01 :=
2.6551684954..; 𝑡02 := 1.4920790567.., 𝑡03 := 1.0826837985.., five branch points

18Unfortunately, in [15] neither an explicit form nor a clear reference to where the 𝐴(𝑀,𝐿) polynomials for
these knots were taken from are given.

19see http://katlas.math.toronto.edu/wiki/Data:10 125/A-polynomial
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(single zeros) are encountered: 𝑧𝑗 := 𝑒𝑖𝑡𝑗 , 𝑗=1,...,5 : 𝑡1 := 3.126927230..; 𝑡2 :=
2.347421331..; 𝑡3 := 2.342125309.., 𝑡4 := 1.094478093..; 𝑡5 := 0.328860611.. .

In the neighborhood of point 𝑒𝑖𝜋 (more precisely, on the arc [𝑡1, 2𝜋 − 𝑡1]
of the circle S1) all {𝜆𝑗(𝑧)}9𝑗=1 have modulus = 1, and one branch 20 preserves

this property on the whole S1, and from point 1 there emerge three branches
with moduli > 1, three with moduli equal to the inverse values of the previous
moduli, i.e. <1, and the three remaining ones have moduli =1.

We move along S1+ from 𝑧 = 𝑒𝑖𝜋 clockwise. At branch point 𝑧1, two branches
with modulus = 1 bifurcate into branches 𝜆1 : |𝜆1| > 121 and 𝜆9 : |𝜆9||𝜆1| = 1.
Similarly, at branch points 𝑧𝑗, 𝑗 = 2,3,4, branches 𝜆𝑗 : |𝜆𝑗| > 1, 𝑗 = 2,3,4 are
formed, and their partners: 𝜆𝑗 : |𝜆𝑗| < 1, 𝑗 = 8,7,6. Recall that there remains one
branch 𝜆5 : |𝜆5| = 1 on the entire S1. Thus, all branches {𝜆𝑗(𝑧)}9𝑗=1 on S1+ are

fixed.22 Note the proximity of points 𝑡2, 𝑡3 and 𝑡03, 𝑡4.
The most interesting thing happens on the arc [𝑡4, 0]. First, at the point 𝑡03

there is a holomorphic intersection of the branch 𝜆3 : |𝜆3(𝑒
𝑖𝑡)| > 1, 𝑡 ∈ (𝑡4, 𝑡03)

with its partner 𝜆7 : |𝜆7| = |𝜆3|−1. Thus, on the arc (𝑡03, 𝑡5) we have |𝜆𝑗| > 1, 𝑗 =
1,2,4,7. At point 𝑡5 𝜆7 branches with its partner 𝜆3 and then on the arc (𝑡5, 0] we
have |𝜆7| = |𝜆3| = 1, and for the remaining branches |𝜆2| > |𝜆1| > |𝜆4| > 1. In
Fig. 9.-2) we can trace the change in the order of the modules |𝜆𝑗| > 1, 𝑗 = 1,2,4,7.
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Рис. 9. 1) |𝜆𝑗(𝑧)| ≥ 1, 𝑗 = 1, ...,5 at 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (0, 𝜋) for knot 10125
2) scaling: 𝑡 ∈ (0, 1); |𝜆4|= |𝜆1| = |𝜆7| at point 𝑡* =0.59...

20we denote it by 𝜆5
21this branch will preserve holomorphy on the arc [𝑡1, 0] and form the answer.
22Note that on the considered section [𝑡3, 𝑡4] a change occurs: |𝜆1| > |𝜆2| changes to |𝜆1| < |𝜆2|.
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Known volume value for the knot 10125: vol(S3 ∖ 10125) =4.611961375....

For the knot 10125 the numerical value of the integral is:∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 4.61196.

Comparing these results with [15], we note the discrepancy between the values of
deg𝑧[𝑃 ] and the disagreement with the statement in [15] that 𝜆1, 𝜆2, 𝜆4 ∈ ℋ(S1).

3.9. Knot 𝑘515: branches {𝜆𝑗} and volume. This knot was considered in [15,
Example 1]. For 𝑃 (𝑧, 𝜆)23, defining in (1.7) the spectral curve 𝜆(𝑧) of the knot
𝑘515, we have deg𝜆[𝑃 (𝑧, 𝜆)] = 16, deg𝑧[𝑃 ] = 291, 𝑃 (1, 𝜆) = (𝜆− 1)7(𝜆 + 1)9,
𝑃 (−1, 𝜆) = (𝜆14+8𝜆13+39𝜆12+24𝜆11+5𝜆10−40𝜆9+19𝜆8+16𝜆7+19𝜆6−40𝜆5+5𝜆4+24𝜆3+39𝜆2+8𝜆+1)(𝜆−1)2.

Moreover, among the roots of 𝑃 (−1, 𝜆) there are 𝜆𝑗 : |𝜆𝑗(−1)| = 5.80909..., 𝑗 =
1,2, and |𝜆𝑗(−1)| = 0.17214..., 𝑗 = 15,16, the rest have |𝜆𝑗(−1)| = 1, 𝑗 = 3, ...,14.

The discriminant 𝑃 (𝑧, 𝜆), not counting the zeros of high even multiplicity at
the points 1, 0, has 26 single zeros, and 1 double zero at −1. Moreover, in addition
to the double zero at 𝑒𝑖𝜋 - the point of holomorphic intersection of branches equal
in modulus to one, one branch point (single zero) falls on the upper semicircle S1+:
𝑧3 := 𝑒𝑖𝑡3 : 𝑡3 := 3.1098279565.. .

We move along S1+ from 𝑧 = 𝑒𝑖𝜋 clockwise. Recall that at this point two
holomorphic branches are conjugate. Fix 𝜆1 with increasing modulus, 𝜆2 with
decreasing modulus. At the branch point 𝑧3 two branches with modulus = 1
branch into branches 𝜆3 : |𝜆3| > 1 and 𝜆14 : |𝜆14||𝜆3| = 1, which are holomorphic
at (𝑡3, 0].
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Рис. 10. |𝜆𝑗(𝑧)| ≥ 1, 𝑗 = 1,2,3, at 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (0, 𝜋), for the knot 𝑘515

23𝐴-polynomials for the knot 𝑘515 will be given in the Appendix, see section 4.3



– 27 –

Thus, for the first time we have faced an example of a knot whose spectral
curve 𝜆(𝑒𝑖𝑡) has branches that are holomorphic on the entire circle and not equal
in absolute value to one: 𝜆𝑗(𝑒

𝑖𝑡) ∈ ℋ(S1), |𝜆𝑗(𝑒
𝑖𝑡)| > 1, 𝑗 = 1,2. Moreover,

𝜆1(𝑧) = 𝜆2(𝑧). There are also 12 branches {𝜆𝑗} that are holomorphic on the entire
circle: |𝜆𝑗| = 1, 𝑗 = 4, ...,13. The remaining two branches 𝜆3, 𝜆14 ∈ ℋ(S1) ∖
{𝑧3, 𝑧3}. Here also 𝜆3(𝑧) = 𝜆14(𝑧), where |𝜆3(𝑒

𝑖𝑡)| > 1 > |𝜆14(𝑒
𝑖𝑡)| on the arc

𝑡 ∈ (𝑡3, 0, 2𝜋 − 𝑡3) and |𝜆3(𝑒
𝑖𝑡)| = 1 = |𝜆14(𝑒

𝑖𝑡)| on the arc 𝑡 ∈ (2𝜋 − 𝑡3, 2𝜋, 𝑡3).

Known volume value for the knot 𝑘515: vol(S3 ∖ 𝑘515) =4.1885842865...

The numerical value of the integrals fot 𝜆𝑗, 𝑗 = 1,2,3 of the knot 𝑘515 are

𝐼1 :=

∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 4.239491778, 𝐼2 :=

∫︁ 𝜋

0

ln |𝜆2(𝑒
𝑖𝑡)| 𝑑𝑡≈ 2.538974570,

𝐼3 :=

∫︁ 𝜋

0

ln |𝜆3(𝑒
𝑖𝑡)| 𝑑𝑡≈ 1.649603.

3.10. Knot 𝑘57: branches {𝜆𝑗} and volume. This knot was considered in
[15, Example 2]. For the polynomials 𝑃 (𝑧, 𝜆)24, defining in (1.7) the spectral
curve 𝜆(𝑧) of the knot 𝑘515, we have deg𝜆[𝑃 (𝑧, 𝜆)] = 17, deg𝑧[𝑃 ] = 325,

𝑃 (1, 𝜆) = (𝜆− 1)8(𝜆 + 1)9, 𝑃 (−1, 𝜆) = 𝐿(𝜆)(𝜆− 1), deg[𝐿(𝜆)] = 16.
Moreover, the roots of 𝑃 (−1, 𝜆) are 𝜆𝑗 : |𝜆𝑗(−1)| = 3.900505..., 𝑗 = 1,2 and
|𝜆𝑗(−1)| = 3.2043057..., 𝑗 = 3,4, as well as their partners 𝜆17−𝑗, 𝑗 = 1, 2, 3, 4 :
|𝜆17−𝑗(−1)| = |𝜆𝑗(−1)|−1, while the rest have |𝜆𝑗(−1)| = 1, 𝑗 = 5, ...,13.
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Рис. 11. 1) |𝜆𝑗(𝑧)| ≥ 1, 𝑗 = 1, ...,4 at 𝑧 = 𝑒𝑖𝑡, 𝑡 ∈ (0, 𝜋) for the knot 𝑘57
2) scaling: 𝑡 ∈ (1.7, 2.0)

24𝐴 - polynomials for the knot 𝑘515 will be given in the Appendix, see section 4.3
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The discriminant 𝑃 (𝑧, 𝜆), not counting the zeros of high even multiplicity at
the points 1, 0, has 28 single zeros and 8 double zeros. At the same time, except for
2 double zeros at 𝑒𝑖𝑡0, 𝑡0 := ±2.46535... - the points of holomorphic intersection
of branches equal in modulus to one, no zeros fall on the circle S1.

We move along S1+ from 𝑧 = 𝑒𝑖𝜋 clockwise. Recall that at this point two

𝑘 = 1,2 pairs of holomorphic branches with modulus > 1 : 𝜆2𝑘−1(−1) = 𝜆2𝑘(−1)
are conjugate: (we fix 𝜆2𝑘−1 a branch with increasing modulus, 𝜆2𝑘 with decreasing
modulus). Thus, their partners are also fixed: 𝜆𝑗 ∈ ℋ(S1) with modulus < 1.
Fixing the remaining branches (with modulus = 1) is not important for us.
Thus, for the knot 𝑘57 all branches of the spectral curve 𝜆(𝑧) = {𝜆(𝑧)}17𝑗=1

are holomorphic on S1. We are interested in the branches {𝜆(𝑧)}4𝑗=1 modulo

> 1 on the entire arc S1 ∖ {1}. Let us mark the points 𝑒𝑖𝑡𝑗,𝑘 ∈ S1+ where the
moduli of the branches 𝜆𝑗 and 𝜆𝑘 coincide: 𝑡1,2 ≈ 1.7752568285336, 𝑡1,3 ≈
1.84493232546964, 𝑡2,3 ≈ 1.9025733709708. On S1+ we have the following order
of modules for branches |𝜆𝑗| > 1 (see Fig.11-2):

|𝜆1| > |𝜆2| > |𝜆3| > |𝜆4| на (𝑡2,3, 0); |𝜆1| > |𝜆3| > |𝜆2| > |𝜆4| на (𝑡1,3, 𝑡2,3);
|𝜆3| > |𝜆1| > |𝜆2| > |𝜆4| на (𝑡1,2, 𝑡1,3); |𝜆3| > |𝜆2| > |𝜆1| > |𝜆4| на (𝜋, 𝑡1,3).

For branches 𝜆𝑗, 𝑗 = 1, ..,4 of the knot 𝑘57, the numerical value of the integrals
in S1+ are:

𝐼1 :=

∫︁ 𝜋

0

ln |𝜆1(𝑒
𝑖𝑡)| 𝑑𝑡≈ 2.652510600, 𝐼2 :=

∫︁ 𝜋

0

ln |𝜆2(𝑒
𝑖𝑡)| 𝑑𝑡≈ 2.717740319,

𝐼3 :=

∫︁ 𝜋

0

ln |𝜆3(𝑒
𝑖𝑡)| 𝑑𝑡≈ 2.644672858, 𝐼4 :=

∫︁ 𝜋

0

ln |𝜆4(𝑒
𝑖𝑡)| 𝑑𝑡≈ 2.088765966.

Known volume value for the knot 𝑘57: vol(S3 ∖ 𝑘57) =4.0545040273...

3.11. Knots 𝑘57, 𝑘515: comparison with [15]. We must to admit the obvious:
for the last two knots the values of the integrals 𝐼𝑗 calculated by us are in no way
similar to the known values of the volumes taken by us from [7]. Moreover, in [15]
similar integrals (designated there by 𝑉 𝑗) are calculated and coincide with the
known volumes with many signs. For the knot 𝑘57 in [15] the following is given:

[V1; V2] = [4.054504027..; 1.315746892..] [V3; V4] = [2.436059319..; 2.297379506..].

However, if we take integrals over the entire domain of holomorphy, then

𝐼1+𝐼2 ≈2.652510600+2.717740319=4.733438824=4.054504027+1.315746892≈V1+V2
𝐼3+𝐼4 ≈2.644672858+2.088765966=5.370250919=2.436059319+2.297379506≈V3+V4

For the knot 𝑘515 in [15] it is given: [V1; V2]= [4.188584286..; 2.589882062..]25

Similarly, we have:

𝐼1+𝐼2 ≈4.239491778+2.538974570=6.778466348=[4.188584286+2.589882062≈V1+V2
25and V3 = 1.64960971..



– 29 –

4. Appendixes

4.1. WKB basis for solutions of q-recurrences (details). Expansions of
fundamental solutions of difference equations (recurrence relations) – are a classical
section of asymptotic analysis, founded by the works of Poincaré, Perron, and
Birkhoff. Among modern studies, we highlight the work by O. Costin—R. Costin
[25] and the above-mentioned article by S. Garofalidis and D. Geronimo [12], from
which we cite:

«This subject is classical and has been reinvented over the past hundred
years by several groups, often unaware of each others results. ... Our results are
hardly new and are contained or can be obtained by minor modifications from
results of Costin–Costin or from work of Birkhoff and collaborators ... ».

Our «group» (with D.N. Tulyakov) developed its own modification of the
approach to this problem (see [26] – [30] , [13], [31]), which was subsequently (with
«supervision» by S. Garofalidis and with the active participation of T. Dudnikova),
adapted to 𝑞-recurrence relations (see [1]–[3]).

For recurrence relations (1.2) written in matrix form26:

−→
𝑄𝑛+1 = 𝒜𝑛

−→
𝑄𝑛, (4.1)

expansions of basic solutions in overlapping zones are sought: in zones of separated
eigenvalues matrices𝒜𝑛, see (1.8), and in in zones of convergence of some eigenvalues.
Matching bases in overlapping zones allows obtaining global representations of
particular solutions.

In the zone of separated eigenvalues, the main technical point of the approach
is to find a diagonalizing transformation («diagonalizer») of 𝑉𝑛 such that the
matrix 𝑉 −1

𝑛+1𝒜𝑛𝑉𝑛 is close to a diagonal matrix

𝐷𝑛 := diag [𝑉 −1
𝑛+1𝒜𝑛𝑉𝑛] ≈ 𝑉 −1

𝑛+1𝒜𝑛𝑉𝑛 . (4.2)

Formally, the basis vectors are the columns of the matrix

𝐵𝑛 := 𝑉𝑛

𝑛−1∏︁
𝑘=𝑘0

𝐷𝑘 =: 𝑉𝑛 Π𝑛. (4.3)

Действительно,

𝒜𝑛𝐵𝑛 = 𝑉𝑛+1𝑉
−1
𝑛+1𝒜𝑛𝑉𝑛 Π𝑛 = 𝑉𝑛+1 Π𝑛+1 = 𝐵𝑛+1 .

Thus, the problem of constructing an asymptotic basis of solutions (1.10) is
reduced to finding expansions of the «diagonalizers» 𝑉𝑛 (the main problem) and
the product Π(𝑛) of diagonal operators (the solution follows from the main one).

As a result, in this zone we have

26where 𝑑 × 𝑑 matrix 𝒜𝑛 is formed by the coefficients {𝐴𝑗(𝑞
𝑛, 𝑞)}𝑑𝑗=0 from (1.2), and

−→
𝑄𝑛 is introduced in

(1.9).
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Theorem 4.1. Let 𝑞-difference equations (1.2), (1.9) have in the limit scale (1.6)

the spectral curve (1.7). Then for the basis 𝐵𝑛 := 𝑉𝑛 diag
{︁
𝜋
(𝑗)
𝑛

}︁𝑑

𝑗=1
of their

general solutions the following statements are true.
(i) In the zone of separated eigenvalues there are formal decompositions:⎧⎪⎪⎨⎪⎪⎩

V(𝑁, 𝑡) := 𝑉𝑛(𝑞𝑛, 𝑞)|𝑛=𝑁𝑡,𝑞=𝑒2𝜋𝑖𝑡 = V0(𝑡) +
1

𝑁
V1(𝑡) + · · ·

𝜋
(𝑗)
𝑛 = exp

{︃
∞∑︀

𝑖=−1

𝜙
(𝑗)
𝑖 (𝑧)

𝑁 𝑖

}︃
, 𝑧 = 𝑒2𝜋𝑖𝑡.

(4.4)

(ii) The elements of the matrices V0(𝑡),V1(𝑡), . . . are algebraic functions,
and

V0(𝑡) =

⎛⎜⎜⎝
1 1 . . . 1

𝜆1(𝑧) 𝜆2(𝑧) . . . 𝜆𝑑(𝑧)
...

...
...

𝜆𝑑−1
1 (𝑧) 𝜆𝑑−1

2 (𝑧) . . . 𝜆𝑑−1
𝑑 (𝑧)

⎞⎟⎟⎠ , 𝑧 = 𝑒2𝜋𝑖𝑡, detV0(𝑡) ̸= 0. (4.5)

(iii) The elements of the diagonal matrix diag{𝜙(𝑗)
𝑖 }𝑑𝑗=1 are Abelian integrals,

and
𝑑

𝑑𝑡
𝜙
(𝑗)
−1(𝑒

2𝜋𝑖𝑡) = ln𝜆𝑗(𝑒
2𝜋𝑖𝑡).

Note again that the expansion coefficients obtained here for 𝑉𝑛 – are algebraic
functions, and for 𝜙

(𝑗)
𝑖 – are Abelian integrals. Using additional information about

the asymptotics of the coefficients 𝐴𝑗(𝑞
𝑛, 𝑞) of the recurrence relations (1.2) or

(1.9), one can prove that the formal series (4.4) turn out to be asymptotic.
Let us note a detail concerning the coefficients {𝑐𝑗} in the (1.10) expansion in

the basis of fundamental solutions (4.3). Generally speaking, these constants can
change when passing inside the zone 𝐼 - separated by eigenvalues points, where
the order of their (s.v.) moduli changes. That is, let 𝐼 = ⊔𝑝𝐼𝑝 : ∃ a permutation
𝜎𝑝 of the set {1, . . . , 𝑑} :

⃒⃒
𝜆𝜎𝑝(1)(𝑧)

⃒⃒
≥
⃒⃒
𝜆𝜎𝑝(2)(𝑧)

⃒⃒
≥ · · · ≥

⃒⃒
𝜆𝜎𝑝(𝑑)(𝑧)

⃒⃒
, ∀𝑧 ∈ 𝐼𝑝 .

Then 𝑐𝑗 := 𝑐𝑝𝑗 , 𝑧 ∈ 𝐼𝑝.
In the zone of close eigenvalues other approaches are used (see [26, 27,

28]). Here an additional small parameter (closeness of eigenvalues) as it tends
to zero transforms the difference problem (4.1) into a differential one, and the
obtained coefficients of the asymptotic expansion for 𝑉𝑛 are already solutions of
the equations: hypergeometric, Bessel, Airy, Painlevé.
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4.2. On the growth of particular solutions: estimates for twisted knots.
Let us return to Section 1.4 and recall that numerical calculations forknots 41,
52 (see in [3]) showed that, despite the demonstration of exponential growth

27 for
𝐽𝑁(𝑒2𝜋𝑖/𝑁) as 𝑁 → ∞, no corresponding growth was observed for 𝐽𝑛(𝑒2𝜋𝑖/𝑁) in
the two-scale regime (1.11): 𝑁 → ∞, 𝑛/𝑁 → 𝑡 ∈ 𝒦 b(0, 1).
This made it impossible to use WKB analysis to prove that the growth rate is
equal to the integral in (1.12). Moreover, the integral in (1.12) for a particular
solution in general position turned out to be twice as large as the corresponding
volume. However, the perturbation of the sequence {𝐽𝑛(𝑞)} of the form {𝑓 ′

𝑛(𝑞)} :
𝑓𝑛(𝑞) := (1 − 𝑞𝑛)𝐽𝑛(𝑞), see (1.17), (1.18), which has the same spectral curve and
asymptotics for 𝑛 = 𝑁, 𝑞 := 𝑒2𝜋𝑖/𝑁 , 𝑁 → ∞, and demonstrates (in numerical
calculations) exponential growth in the regime 𝑁 → ∞, 𝑛/𝑁 → 𝑡 ∈ 𝒦 b(1/2, 1),
made it possible to use WKB−analysis for 𝑡 ∈ (1/2,1) and the hope of halving
the integral in (1.12).

Thus, for a rigorous justification of (1.23), (1.24) (even for specific knots) we
need to be able to prove for the sequence

{𝑓 ′
𝑛(𝑞)} in the limit regime 𝑁 → ∞, 𝑛/𝑁 → 𝑡 ∈ (0, 1) : (4.6)

a) absence of exponential growth and decay when 𝑡 ∈ (0, 1/2);
b) presence of 𝑡 ∈ [1/2,1) : exponential growth takes place ∀𝑡 ∈ 𝒦 b(𝑡, 1).

The following statement, proved by T. Dudnikova, contains a positive answer to
part of point a) for all twisted knots.

Lemma 4.1. Let 𝐾 be a twisted knot 𝐾𝑝, 𝑝 ∈ N, and

𝑛𝑝(𝑁) := 𝑁 ·
[︁ 1

2𝜋
arccos

(︁2𝑝− 1

2𝑝

)︁]︁
, (4.7)

where [𝑎] is the integer part of a number 𝑎.
Then, for 𝑞 = 𝑒2𝜋𝑖/𝑁 и 𝑛 = 1, . . . , 𝑛𝑝(𝑁), the following bounds hold,

|𝐽𝑛(𝑞)| ≤ 𝑛 and |𝑓 ′
𝑛(𝑞)| ≤ 𝐶 ′

𝑝 𝑛
2, (4.8)

where 𝐶 ′
𝑝 := 1 + 2𝐶𝑝 + 2

√
4𝑝− 1, 𝐶𝑝 := (9𝑝− 1)/(4𝑝).

27with the index ≈ 𝑉 𝑜𝑙(𝐾)/(2𝜋), according to the hypothesis proved for these knots
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4.3. Explicit form of 𝐴-polynomials for the knots 𝑘515, 𝑘57. One of the
common knot classifications is Rolfsen’s classification, which is based on the
number of crossings in the projection of the knot onto the sphere. For example,
knot 31 is the first (and only) in the series of knots with three crossings, and knot
10125 is in 125th place in the list of knots with 10 crossings. Another classification
(census manifolds) is based on the number of regular tetrahedra into which the
complement of this knot in S3 is partitioned. For example, the manifold S3 ∖ 10125
is partitioned into 6 tetrahedra and ranks 20th (among 6 tetrahedral manifolds) in
terms of hyperbolic volume, so knot 10125 has number 𝑘620 in this classification.
It happens that a knot, the complement of which consists of a small number
of tetrahedra, has a very large number of intersections in its projection and is
therefore not described in Rolfsen’s classification. Such knots include the knots
𝑘515 and 𝑘57.

For the knots of the Rolfsen classification, the exact and numerical value of
the volume of their complement, as well as the explicit form of the 𝐴-polynomial,
can be easily found on the site [39]. For the knots of the classification (census
manifolds), in particular 𝑘515, 𝑘57, the corresponding volumes can be found in
the classical article [7], and the explicit form of the 𝐴-polynomials lies elsewhere:
on the site [40]. Due to the discrepancy between our numerical calculations of the
integrals (1.24) and the exact values from [7], we present below the expressions of
the 𝐴-polynomials from [40] that we used, in the hope of resolving the discrepancy
that has arisen.

𝐴𝑘515 := (𝑀570)(−1*𝑀12)+(𝐿1 *𝑀534)(1*𝑀10−5*𝑀12+2*𝑀14+1*𝑀16−1*𝑀18)+(𝐿2 *𝑀498)*
(1 *𝑀8 +3 *𝑀10 − 5 *𝑀12 +12 *𝑀14 − 5 *𝑀16)+ (𝐿3 *𝑀462) * (−1 *𝑀6 +6 *𝑀8 − 6 *𝑀10 +21 *𝑀10 − 9 *
𝑀14+3*𝑀16)+(𝐿4 *𝑀426)* (−3*𝑀6+4*𝑀8−7*𝑀10−12*𝑀12+1*𝑀14+3*𝑀16)+(𝐿5 *𝑀390)* (−4*
𝑀6+1*𝑀8−25*𝑀10−12*𝑀12−5*𝑀14+3*𝑀16)+(𝐿6 *𝑀354)* (2*𝑀6−11*𝑀8+50*𝑀10−34*𝑀12+
7*𝑀14)+(𝐿7 *𝑀318)* (3*𝑀4−8*𝑀6+38*𝑀8+19*𝑀10+25*𝑀12−7*𝑀14)+(𝐿8 *𝑀282)* (6*𝑀4−9*
𝑀6−18*𝑀8+18*𝑀10+9*𝑀12−6*𝑀14)+(𝐿9 *𝑀246)* (7*𝑀4−25*𝑀6−19*𝑀8−38*𝑀10+8*𝑀12−
3 *𝑀14) + (𝐿10 *𝑀210) * (−7 *𝑀4 + 34 *𝑀6 − 50 *𝑀8 + 11 *𝑀10 − 2 *𝑀12) + (𝐿11 *𝑀174) * (−3 *𝑀2 + 5 *
𝑀4+12 *𝑀6+25 *𝑀8− 1 *𝑀10+4 *𝑀12)+ (𝐿12 *𝑀138) * (−3 *𝑀2− 1 *𝑀4+12 *𝑀6+7 *𝑀8− 4 *𝑀10+
3*𝑀12)+(𝐿13 *𝑀102)* (−3*𝑀2+9*𝑀4−21*𝑀6+6*𝑀8−6*𝑀10+1*𝑀12)+(𝐿14 *𝑀66)* (5*𝑀2−12*
𝑀4+5*𝑀6−3*𝑀8−1*𝑀10)+(𝐿15 *𝑀30)* (1−1*𝑀2−2*𝑀4+5*𝑀6−1*𝑀8)+(𝐿16 *𝑀 (−6))* (1*𝑀6);

𝐴𝑘57 := (𝑀 (−8))*(1*𝑀8)+(𝐿1*𝑀30)*(1*𝑀8)+(𝐿2*𝑀68)*(−2*𝑀4+6*𝑀6−12*𝑀8)+(𝐿3*𝑀106)*
(−3*𝑀4+8*𝑀6−12*𝑀8−2*𝑀10+1*𝑀12)+(𝐿4*𝑀144)*(1−8*𝑀2+28*𝑀4−47*𝑀6+54*𝑀8−4*𝑀10+
5*𝑀12−1*𝑀14)+(𝐿5*𝑀182)*(−1*𝑀2+10*𝑀4−13*𝑀6+5*𝑀8+35*𝑀10−7*𝑀12−1*𝑀14)+(𝐿6*𝑀220)*
(4*𝑀4−15*𝑀6−40*𝑀10−6*𝑀12+1*𝑀14)+(𝐿7 *𝑀258)* (1*𝑀2−6*𝑀4−4*𝑀6+5*𝑀8−35*𝑀10−
32*𝑀12+16*𝑀14−1*𝑀16)+(𝐿8*𝑀296)*(−1*𝑀4−15*𝑀6+65*𝑀8−10*𝑀10+30*𝑀12+1*𝑀14)+(𝐿9*
𝑀334)*(1*𝑀6+30*𝑀8−10*𝑀10+65*𝑀12−15*𝑀14−1*𝑀16)+(𝐿10*𝑀372)*(−1*𝑀4+16*𝑀6−32*𝑀8−
35*𝑀10+5*𝑀12−4*𝑀14−6*𝑀16+1*𝑀18)+(𝐿11*𝑀410)*(1*𝑀6−6*𝑀8−40*𝑀10−15*𝑀14+4*𝑀16)+
(𝐿12*𝑀448)*(−1*𝑀6−7*𝑀8+35*𝑀10+5*𝑀12−13*𝑀14+10*𝑀16−1*𝑀18)+(𝐿13*𝑀486)*(−1*𝑀6+5*
𝑀8−4*𝑀10+54*𝑀12−47*𝑀14+28*𝑀16−8*𝑀18+1*𝑀20)+(𝐿14*𝑀524)*(1*𝑀8−2*𝑀10−12*𝑀12+8*
𝑀14−3*𝑀16)+(𝐿15*𝑀562)*(−12*𝑀12+6*𝑀14−2*𝑀16)+(𝐿16*𝑀600)*(1*𝑀12)+(𝐿17*𝑀638)*(1*𝑀12)

Let us recall connection (2.1) between the polynomials 𝑃 (𝑧, 𝜆) and 𝐴(𝑀,𝐿):
𝑧 ≡ 𝑀 2, 𝜆 ≡ 𝐿 : ⇒ 𝑃 (𝑧, 𝜆) ≡ 𝐴(𝑀,𝐿).

Also note that the 𝐴(𝑀,𝐿) polynomials for 10125 that we used in section 3.8
are the same as those given in both [39] and [40].
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4.4. Concluding remarks. Finally, we note that

1) Our goal is to find the limit on the left-hand side of (1.5) VC (volume
hypothesis), based on the fact that the 𝑞-polynomials 𝐽𝑛(𝑞) are a solution of
the Cauchy problem (i.e. a particular solution) of the homogeneous 𝑞-difference
equation (1.2).

2) As an approach to the goal, we consider the WKB asymptotics of the
fundamental solutions of this equation, the leading terms of which have exponential
growth (decrease) with exponents of the form (1.10), determined by the integrals
of the logarithms of the moduli of the branches 𝜆(𝑧) – the spectral curve (1.7).

3)However, the left-hand side inVC - (1.5) for all knots𝐾 is the polynomials
𝐽𝑛(𝑞)|𝑞=𝑒2𝜋𝑖/𝑁 as 𝑛 → 𝑁 (from the left) are bounded, due to the symmetry
property (1.15), while 𝐽𝑁(𝑞)|𝑞=𝑒2𝜋𝑖/𝑁 grow exponentially, due to VC. Therefore,
directly, exponentially growing asymptotics of the form (1.10), (1.11) are not
applicable.

However, in (1.17) - (1.19) particular solutions (1.2) are proposed that do not
have (1.15) symmetry and, therefore, have the possibility of exponential growth
for 𝐽𝑛(𝑞)|𝑞=𝑒2𝜋𝑖/𝑁 as 𝑛 → 𝑁 (on the left) and, as 𝑛 = 𝑁 , achieve a growth rate
equal to the limit on the left-hand side of VC - (1.5).

4) The latter circumstance led to the hypothesis that ∃! branch 𝜆1(𝑧) of the
spectral curve 𝜆(𝑧):

lim
𝑁→∞

2𝜋
1

𝑁
ln |𝐽𝑁(𝑒

2𝜋𝑖
𝑁 )| = 2𝜋

∫︁ 1

1/2

ln |𝜆1(𝑒
2𝜋𝑖𝜏)| 𝑑𝜏 (4.9)

5) In this preprint we do not set ourselves the task of testing the hypothesis
(4.9), but simply look at how (under the assumption of the validity of the AJ -
hypothesis for the knot 𝐾) the right-hand side in (4.9) relates to the right-hand
side of VC - (1.5), i.e., with the hyperbolic volume S3 ∖𝐾.

6) In section 4 we perform a numerical analysis of the behavior of the
branches of the spectral curve 𝜆(𝑧) and present the values of the (for a number
of knots 𝐾) on the right-hand side of (4.9). We note the coincidence (within the
accuracy of the numerical method we use) of these values with the known values
with volumes S3 ∖𝐾 for the knots 61, 72, 74,75,76,77 and 10125.

7) We are confident that our calculations for knots 𝑘515, 𝑘57 adequately
reflect the input data, but we do not think that the mismatch of the values being
tested can lead to counterexamples to the AJ or VC hypotheses. Rather, we are
talking about a mismatch of the 𝐴-polynomials we used with the known volumes
vol(S3 ∖𝐾) for 𝐾 := 𝑘515, 𝑘57.

In conclusion the author expresses gratitude to T. Dudnikova and A. Batkhin.
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