
Keldysh Institute  •  Publication search

Keldysh Institute preprints  •  Preprint No. 82, 2024

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

S.V. Ershov, M.S. Kopylov,
A.G. Voloboy

Separable Optimal Weights for
Bidirectional Ray Tracing with
Photon Maps while Mixing 3

Strategies

Distributed under (CC BY)
Creative Commons Attribution 4.0 International

Recommended form of bibliographic references:  Ershov S.V., Kopylov M.S., Voloboy A.G.
Separable Optimal Weights for Bidirectional Ray Tracing with Photon Maps while Mixing 3 Strategies //
Keldysh Institute Preprints. 2024. No. 82. 40 p.  https://doi.org/10.20948/prepr-2024-82-e
https://library.keldysh.ru/preprint.asp?id=2024-82&lg=e

https://keldysh.ru/index.en.shtml
https://keldysh.ru/index.en.shtml
https://keldysh.ru/index.en.shtml
https://library.keldysh.ru/prep_qf.asp?lg=e
https://library.keldysh.ru/preprints/default.asp?lg=e
https://library.keldysh.ru/preprint.asp?id=2024-82&lg=e
https://library.keldysh.ru/author_page.asp?aid=1299&lg=e
https://library.keldysh.ru/author_page.asp?aid=9336&lg=e
https://library.keldysh.ru/author_page.asp?aid=2457&lg=e
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.20948/prepr-2024-82-e
https://library.keldysh.ru/preprint.asp?id=2024-82&lg=e


Î ð ä å í à Ë å í è í à
ÈÍÑÒÈÒÓÒ ÏÐÈÊËÀÄÍÎÉ ÌÀÒÅÌÀÒÈÊÈ

èìåíè Ì.Â. Êåëäûøà
Ð î ñ ñ è é ñ ê î é à ê à ä å ì è è í à ó ê

S.V. Ershov, M.S. Kopylov, A.G. Voloboy

Separable Optimal Weights for
Bidirectional Ray Tracing with Photon

Maps while Mixing 3 Strategies

Ìîñêâà � 2024



Ñ.Â. Åðøîâ, Ì.Ñ. Êîïûëîâ, À.Ã. Âîëîáîé

Ðàçäåëÿþùèåñÿ îïòèìàëüíûå âåñà äëÿ ñëó÷àÿ òðåõ ñòðàòåãèé â
äâóíàïðàâëåííîé òðàññèðîâêå ëó÷åé ñ ôîòîííûìè êàðòàìè

Øóì â èòîãîâîì èçîáðàæåíèè ïðèñóù øèðîêî èñïîëüçóåìîé äâóíàïðàâ-

ëåííîé ñòîõàñòè÷åñêîé òðàññèðîâêå ëó÷åé ñ ôîòîííûìè êàðòàìè. Äëÿ ñíèæå-

íèÿ øóìà èñïîëüçóåòñÿ âûáîðêà ñ ìíîæåñòâåííîé çíà÷èìîñòüþ, îáúåäèíÿþ-

ùàÿ ðåçóëüòàòû ðàçëè÷íûõ ñòðàòåãèé ñ âåñàìè. Â ñòàòüå ìû èññëåäóåì ñëó÷àé

ðàçäåëÿþùèõñÿ âåñîâ, âûâîäèì è ðåøàåì ñèñòåìó èíòåãðàëüíûõ óðàâíåíèé,

îïðåäåëÿþùèõ îïòèìàëüíûå âåñà. Îíà êà÷åñòâåííî îòëè÷àåòñÿ îò ðàíåå èñ-

ñëåäîâàííîãî ñëó÷àÿ âåñîâ îáùåãî âèäà è ïðèâîäèò ê áîëåå ïðîñòûì è ÷èñëåí-

íî óñòîé÷èâûì âûðàæåíèÿì. Îíè äîïóñêàþò ðåøåíèå â âèäå àëãåáðàè÷åñêîé

ôîðìóëû, âêëþ÷àþùåé èíòåãðàëû èçâåñòíûõ ôóíêöèé, êîòîðûå ìîãóò áûòü

âû÷èñëåíû ïðè òðàññèðîâêå ëó÷åé. Èññëåäîâàíà ðîëü åå èíòåãðàëüíûõ ÷ëå-

íîâ è ïîêàçàíî, ÷òî îíè íå ìîãóò áûòü çàìåíåíû ïðîñòûìè ýâðèñòèêàìè, à

äîëæíû áûòü âû÷èñëåíû ñ âûñîêîé òî÷íîñòüþ.

Êëþ÷åâûå ñëîâà: ñòîõàñòè÷åñêàÿ òðàññèðîâêà ëó÷åé, ôîòîííûå êàðòû,

ìíîæåñòâåííàÿ âûáîðêà ïî çíà÷èìîñòè, îïòèìàëüíûå âåñà.

S.V. Ershov, M.S. Kopylov, A.G. Voloboy

Separable Optimal Weights for Bidirectional Ray Tracing with
Photon Maps while Mixing 3 Strategies

Noise in the resultant image is inherent in the widely used bidirectional
stochastic ray tracing with photon maps. The noise can be reduced by the
Multiple Importance Sampling which combines results of different strategies
with weights. In this paper we investigate the separable weights, derive and
solve the system of integral equations that determine the optimal weights. It has
several qualitative differences from the previously investigated case of general
weights and results in more simple and numerically robust expressions. As
before, they can be solved in the form of an algebraic formula that includes
several integrals of the known functions that can be calculated in ray tracing.
The integral terms entering those expressions are of primary importance and
do not admit any simple heuristics but must be calculated accurately.

Key words: stochastic ray tracing, photon maps, multiple importance
sampling, optimal weights.
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1 Introduction

Modern realistic computer graphics is based on lighting simulation. Nowadays
there are a plenty of methods used for light transport simulation [1] most of
which use the Metropolis approach [2] or Monte Carlo ray tracing (MCRT) [3]
and their bidirectional modifications. Among them, the bidirectional Monte-
Carlo ray tracing with photon maps (BDPM) [4, 5] is effective and widely
used method. Stochastic noise is one of the main problems of all methods
and many works are devoted to the task of its reduction [6–8]. The majority
of them proposed to apply the multiple importance sampling (MIS) technique
for decreasing the noise [7–9]. They are based on the theorem [10] assuming
independent samples, i.e. full paths connecting the source and the camera.
The classic Veach results assume two different formulae to calculate the opti-
mal weights named the “balance heuristic” and the “power heuristic”. This is
because Veach minimized not the variance itself but rather its bounds. This
approach has been improved in [11, 12]. There the resulting formulae for the
optimal weights consist of the parts present in the “balance heuristic” with scale
coefficients α calculated from the linear system.

But the situation is different for BDPM. Here the same light path is merged
with many camera paths and vice versa. Therefore the samples are not inde-
pendent. In [11] the bi-directional path tracing (BDPT) was considered while
we use the bi-directional ray tracing with photon maps (BDPM). Roughly, they
trace one light path of the desired number of segments and one camera path
with the desired depth. These depths determine the strategy as it is in the
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classic MIS. The ends of these paths are connected with a straight segment.
If it is not occluded, then we increment the accumulated pixel luminance by
its “importance function”, otherwise the increment is 0. After that the pair of
light and camera paths is discarded and a new one is generated. In BDPM, the
process is basically different. We trace NB camera rays and NF light rays, then
each camera path is checked against each light path. If they have close vertices,
we get the joint path and increment the accumulated pixel luminance by its
“importance function”. As a result, the BDPT operates independent samples
while BDPM operates dependent samples.

The problem of the optimal weights in a limited MIS for mixing contribu-
tions from two first camera vertices was considered in [13, 14]. There the main
idea of calculation of the optimal weights for BDPM was stated: while the fa-
mous heuristic for the optimal weights in MCRT [10] obey a system of algebraic
equations, in BDPM they obey the system of integral equations. Sometimes
mixing two strategies can be not enough. It is possible that only the third (or
later) vertex has smooth BDF (Bidirectional scattering Distribution Function
which describes optical properties of a surface or an object in scene) where
gathering of illumination will be good. So mixing of three or more strategies is
an interesting case.

In [15] we demonstrated that the case of three or more strategies is qualita-
tively different from mixing two strategies. The main reason is that while for
mixing two strategies we had only one variable weight, now we have two differ-
ent families of weights, each with its own normalization conditions. The first
family consists of two weights, one of them is dependent. The second family
consists of three weights, any two of them can be considered as independent
and the remaining one is dependent on them. In case of mixing more strategies
there will be more families of weights. All independent weights from all families
are coupled in the common system of integral equations while for two strategies
we had one weight and one integral equation. The resulting system of integral
equations admits local approximation and reduces to the system of algebraic
equations because the integral terms can be neglected. The formula used for
two strategies allows for an “intuitive induction” to cases of three and more
strategies. So one can imagine what it will look like.

In [15] we had calculated the optimal weights for MIS in BDPM, when
mixed are three strategies (merge the camera and light rays at the first, or at
the second, or at the third diffuse event of camera ray). It was a “limited MIS”
because the number of strategies is limited, and the weights are assumed to
depend only on the three first vertices of the joint ray path.

The weights satisfy a system of integral equations that admit solution in a
closed form, i.e. the weight are algebraic expressions which include some definite
integrals. There are, however, two problems. First, the expressions used are
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very sophisticated and do not admit any intuitive understanding which would
allow to analyze the role of the scene parameters etc. That is they admit
only numerical calculation. And here is the second difficulty. The weights
are a solution of a 2x2 linear algebraic system, whose matrix and right hand
side are integrals whose integrands are calculated via solution of another 2x2
linear algebraic system, whose matrix and right hand side are integrals. For
a general complex scene those integrals only admit a Monte-Carlo calculation.
Meanwhile, for finite calculation time it may give noisy, thus not very accurate,
results. In case the matrices have a small determinant, this inaccuracy may
result in a big error in the solution. Therefore one must calculate all the integrals
in the weight expressions with high accuracy. For Monte-Carlo this usually
means long calculation time. As a result, calculation of the weights is expensive
and this may cancel all the gain which using these weights in the BDPM may
give.

2 Separable weights

2.1 The idea of the separable weights

Calculation of weights in [15] is very sophisticated and includes solution of
a linear system whose matrix is to be calculated numerically, and, generally,
with MCRT. Therefore we know it with a rather limited accuracy. Since its
stability (against perturbations of the matrix etc.) had not been investigated it
is possible the solution will be sensitive to the numeric errors and we shall obtain
the optimal weights with substantial inaccuracy. Or, we should calculate the
integrals with very high accuracy. This may render the calculations so expensive
that this kills all the gain from weighting strategies. At last, the formulae are
not intuitive and it is difficult to comprehend how they work and how various
characteristics of the scene affect the weights.

In this work we investigate a “stratification” of the problem based on the
intuitive idea. Namely, let first suppose that for each ray only single strategy
is in effect, that is, we either join the camera and the light paths at the 1st, or
at the 2nd, or at the 3rd vertex of the camera ray. The weight is then 0 for all
strategies but one, for which it is 1. The “stratification” splits the problem of
choosing a vertex to merge into two sequential choices. First, we decide whether
to merge at the 1st vertex or anywhere beyond (for the case of 3 strategies this
means at the 2nd or at the 3rd). In case of the last choice, the second step is
to decide, whether we merge rays at the 2nd or at the 3rd vertex. This scheme
is intuitively simple, understandable and easily extends to n strategies.

If we allow for the fractional weights, the situation is a bit more sophis-
ticated, but still we can calculate the weights “separately”, first the fraction
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among the 0th strategy and all the rest and then between the 1st strategy and
all the rest and so on. As a result, at each step we operate relative weights
among merging at the given vertex and mixing anywhere beyond it.

This problem leads to simpler and more intuitive equations for the weights.
Usually, they are stable against perturbations of calculating the coefficients of
the equations. Also, these equations admit “human understanding” of which
scene parameters affect the weights and how.

2.2 Formal statement of the problem

Here and below we base upon [15], retain the notations and calculation of the
BDPM noise in case of mixing strategies and only use separable weights.

Intuitively, the contribution of the forward MCRT ray at the merging vertex
must not seriously depend on its far prehistory (where it came from). So it seems
natural to believe that one can take w3,0(z0, z1, z2) = w3,0(z0, z1). But because
of the normalization condition w3,0+w3,1+w3,2 = 1 the sum w3,1+w3,2 ≡ w3,1+2

must also be independent of z2!
Obviously, simple dropping this last vertex from both w3,1 and w3,2 will

not work, because then the choice whether to merge the rays at z2 would be
independent from that z2. We therefore require that these weights do depend
on three points while their sum is independent of z2, that is

w3,0(z0, z1, z2) = w3,0(z0, z1)

w3,1(z0, z1, z2) = w3,1+2(z0, z1)ω3,1(z0, z1, z2)

w3,2(z0, z1, z2) = w3,1+2(z0, z1)ω3,2(z0, z1, z2)

(1)

with separate normalization

w3,0(z0, z1) + w3,1+2(z0, z1) = 1

ω3,1(z0, z1, z2) + ω3,2(z0, z1, z2) = 1

In view of our idea to neglect “far history”, it is natural to use the same
weight for the forward MCRT rays of 2 and of 3 segments when hitting z0.
In [15], the former had weight w2,0 while the latter had the weight w3,0. Now,
therefore, they are identified: w2,0 = w3,0. It was impossible for the weights used
in [15] because there the function w3,0 has on three arguments while w2,0 has
two. But for our separable weights, when w3,0 = w3,0(z0, z1), this is possible.

Since w2,1 = 1− w2,0 and w3,1+2 = 1− w3,0, the rest weights are also equal:
w2,1 = w3,1+2. Thus we now have a single family of weights instead of two
families in [15]. So, in current work we start with the general formulae from
[15] and substitute there (1) and
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w2,0 = w3,0

w2,1 = w3,1+2
(2)

Formally, as explained in [15], we can use arbitrary weights provided they
satisfy normalization conditions (the last equation of Section 3 in [15]). Re-
gardless of the reasons to use weights of the form (1)–(2), they do satisfy those
conditions and thus we can use weights of such type. Since this is a constraint
reducing the number of degrees of freedom, the new weights are “less optimal”
than those from [15]. On the other hand, they are simpler and more stable.

3 BDPM noise for separable weights

Here and below all calculations are for one pixel like in [15]. For the sake
of simplicity, the total flux of all scene lights is assumed 1 to not bother about
scaling between the density of photons and irradiance. We also assume that
the light source is a point one and that it is unique in the scene.

The material from Sections 3 and 4 of [15] applies here without any changes
so we do not reproduce it here.

In BDPM the variance V of the pixel luminance calculated from NF forward
rays and NB backward rays started from the same pixel obeys the general law
[6]:

V =
1

NFNB

(
⟨⟨C2⟩⟩ − ⟨⟨C⟩⟩2

)
+

1−N−1
B

NF

(
⟨⟨C⟩2B⟩F − ⟨⟨C⟩⟩2

)
+
1−N−1

F

NB

(
⟨⟨C⟩2F ⟩B − ⟨⟨C⟩⟩2

)
(3)

Here C is the contribution of the merged forward and backward rays to the
pixel luminance (if they do not intersect, C = 0) given by eq. (4) of [15], ⟨·⟩B is
the averaging over the backward rays ensemble for the fixed light ray and ⟨·⟩F
is the averaging over the forward rays ensemble for the fixed camera ray. Notice
the linear term ⟨⟨C⟩⟩ is independent from the order of averaging so we drop
subscripts here. It is also independent from weights, while ⟨⟨C2⟩⟩ and ⟨⟨C⟩2F ⟩B
depend on them.

Averaging over the ensemble of light paths resp. camera paths is

⟨·⟩F =

∫
(·)pF (x1, ...,xn, ...)dx1 · · · dxn · · · (4)

⟨·⟩B =

∫
(·)pB(y0,y1,y2)dy1dy2 (5)
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where (y−1,y0,y1, ...) is the camera path and (x0,x1,x2, ...) is the light path,
pF and pB are the probability densities of the light and camera paths (the latter
for the fixed given pixel). Since we assume that the forward MCRT (FMCRT)
uses Russian roulette to kill rays while keeps ray energy, pF is not normalized
(i.e. its integral is not 1). The fixed points x0 and y−1 are not included in
the averaging. The point y0 depends on pixel, but for given pixel it is also
fixed and thus is not also included in the averaging. The point y−1 (camera
origin) is always the same for all pixels, so we frequently drop it from the list
of arguments of a function.

The formulae for various averages of the path contribution from [15] apply
to arbitrary weights w3,m and w2,m and therefore are valid for their particular
form (1)–(2).

Hereafter zj are the vertices of the joint path numbered from the camera
end. It can be taken from either the camera or the light subpath depending on
the intersection type. We drop camera origin z−1 = y−1 from this set because
it is fixed point. The concept of zj is also described in detail in [15].

3.1 Cross term and forward MCRT term

Substituting these separable weights into the equations (10) and (12) from [15]
we can write the double averages ⟨⟨C2⟩⟩ and ⟨⟨C⟩2B⟩F entering the noise formula
as

⟨⟨C2⟩⟩ ≈ 1

S

∫
w2

3,0(z0, z1)f
2(−−→z1z0,

−−−→y−1z0, z0)L(z0, z1)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

+
1

S

∫
w2

3,1(z0, z1, z2)E(z0)f(
−−→z2z1,

−−→z0z1, z1)ρ(z0, z1, z2)dz1dz2

+
1

S

∫
w2

3,2(z0, z1, z2)E(z0, z1)
b(z1, z2)

L(z1, z2)
ρ(z0, z1, z2)dz1dz2

and

⟨⟨C⟩2B⟩F ≈ 1

S

∫
w2

3,0(z0, z1)f
2(−−→z1z0,

−−−→y−1z0, z0)L(z0, z1)
∣∣(n(z0) · −−→z0z1)

∣∣ s(z0, z1)dz1

where the “≈” means “up to O(1)” (notice we assume the area of the “integra-
tion sphere” S is small!),

s(−→xy) ≡
∣∣(−→xy · n(y)

)∣∣
|x− y|2
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where n(y) is the local normal at the point y and −→xy is the unit vector from
x to y relates the differentials of solid angle and of surface area

d2(−→xy) = s(x,y)dy (6)

Then, f(v,u,x) is BDF (in luminance units) of the surface point x for illu-
mination direction v and viewing direction u, and E(y0, ...,yi−1) is the energy
of the camera ray before hitting yi. This energy (or transmission factor in [5]
terms) is defined as usual: it is 1 just after leaving the camera, i.e. E(y−1) = 1
and then

E(x0) = µ(−−−→x−1x0,x0),

E(x0, ...,xm) = µ(−−−−−→xm−1xm,xm)E(x0, ...,xm−1), m = 1, 2, ... (7)

where

µ(u,x) ≡
∫

f(v,u,x) |(v · n(x))| d2v, (8)

n(x) being the local normal at the point x. Using formula (40) from [15] we
rewrite the ρ in the following form:

ρ(z0, z1, z2) ≡ E(z0)L(z1, z2)

×f(−−→z2z1,
−−→z0z1, z1)(n(z1) · −−→z2z1)s(z1, z2)pB(z0, z1)

= E(z0, z1)L(z1, z2)

×f̃(−−→z2z1,
−−→z0z1, z1)(n(z1) · −−→z2z1)s(z1, z2)pB(z0, z1) (9)

where f̃ is the normalized BDF. The integral

b(x,y) ≡
∫

f 2(−→zy,−→yx,y)L(y, z)
∣∣(n(y) · −→zy)∣∣ s(y, z)dz (10)

is independent of weights and is much similar to the integral which gives diffuse
luminance of y towards x

Ld(x,y) ≡
∫

f(−→zy,−→yx,y)L(y, z)
∣∣(n(y) · −→zy)∣∣ s(y, z)dz (11)

All notations and terms are the same as in [15] where they had been ex-
plained in detail.
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3.2 Backward MCRT term

The third term in the noise equation, the Backward MCRT (BMCRT) term,
can be retained in the form of eq. (15) from [15] but it is inconvenient. Instead,
we first rewrite ⟨C⟩F in a slightly different form so that

⟨C⟩F − ⟨⟨C⟩⟩ = w2,1(z0, z1)E(z0)L0(z0, z1)− F̂1 + E(z0)G1(z1)

−
∫

(G1(z1) +G2(z1)) f(
−−→z0z1,

−−−→y−1z0, z0)

×
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

+w3,2(z0, z1, z2)E(z0, z1)L(z1, z2)

Here L0(z0, z1) is the luminance due to direct illumination, and (like in (13)–
(14) of [15])

F̂m ≡
∫

w2,m(z0, z1)L0(z0, z1)f(
−−→z0z1,

−−−→y−1z0, z0)

×
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1 (12)

Gm(z1) ≡
∫

w3,m(z0, z1, z2)L(z1, z2)f(
−−→z1z2,

−−→z0z1, z1)

×
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2 (13)

For the separable weights (1)–(2), the above functions become

F̂1 ≡
∫

w3,1+2(z0, z1)L0(z0, z1)f(
−−→z0z1,

−−−→y−1z0, z0)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

and

Gm(z1) = w3,1+2(z0, z1)Γm(z0, z1)

where

Γm(z0, z1) ≡
∫

ω3,m(z0, z1, z2)L(z1, z2)

× f(−−→z1z2,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

Γ̃m(z0, z1) ≡
∫

ω3,m(z0, z1, z2)L(z1, z2)

× f̃(−−→z1z2,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

=
E(z0)

E(z0, z1)
Γm(z0, z1)

(14)
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and then

⟨C⟩F − ⟨⟨C⟩⟩ = w3,1+2(z0, z1)E(z0)L0(z0, z1)− F̂1

+E(z0)w3,1+2(z0, z1)Γ1(z0, z1)

−
∫

w3,1+2(z0, z1) (Γ1(z0, z1) + Γ2(z0, z1))

×f(−−→z0z1,
−−−→y−1z0, z0)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1

+w3,1+2(z0, z1)ω3,2(z0, z1, z2)E(z0, z1)L(z1, z2)

Obviously,

Γ1(z0, z1) + Γ2(z0, z1) = Ld(z0, z1)

and introducing

Φ̃(z0) ≡
∫

w3,1+2(z0, z1)L(z0, z1)f̃(
−−→z0z1,

−−−→y−1z0, z0)

×
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

(15)

(where the full luminance L(z0, z1) = L0(z0, z1) + Ld(z0, z1)) we arrive at

⟨C⟩F − ⟨⟨C⟩⟩ = E(z0)
(
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)
+E(z0, z1)

(
L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)

)
w3,1+2(z0, z1)

The expression ⟨⟨C⟩2F ⟩B−⟨⟨C⟩⟩2 = ⟨(⟨C⟩F − ⟨⟨C⟩⟩)2⟩B in the last, BMCRT
term of the noise equation is by definition the average of the square of the above
difference:

⟨⟨C⟩2B⟩F − ⟨⟨C⟩⟩2 =
∫ (∫

(⟨C⟩F − ⟨⟨C⟩⟩)2 pB(z0, z1, z2)dz2

)
dz0dz1

The integrals
∫
· · · pB(z1, z2)dz2 are in fact the averaging over BMCRT rays

expressed by the integral over all rays of −−→z1z2 directions, including rays missed
scene surfaces. For the “spatial” integral

∫
· · · dz2 this can be treated in the

following way (Fig. 1): it runs over the large black (totally absorbing) bounding
sphere (enclosing the scene). If the ray from z1 point intersects a scene surface,
then z2 in the integrand is this (first) ray intersection. Otherwise z2 is the point
on the black bounding sphere. On the black sphere all luminance components
(L(z1, z2), L0(z1, z2) and Ld(z1, z2)) vanish, as well as BDF. The term b(z1, z2)
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Figure 1: 2D cross-section of a scene. The integration domain over z2 for the
given z1 is thin blue line consisting of five parts . Thick gray segments are the
cross-sections of the scene surfaces. Black circle is the cross-section of the black
bounding sphere. The arrows are the camera rays. Dashed lines are guides.

vanishes too, because it includes BDF at z2. The normal is n(z2) is the internal
normal to the bounding sphere. The terms like f̃(−−→z2z1,

−−→z0z1, z1) which depend
only on the direction −−→z2z1 and not on the hit point z2 itself, are not 0, as well
as the Jacobian s(z1, z2) of the space-to-angle transformation. The situation
for the integration over z1 for the given z0 is the same.

Therefore, for any g independent of z2 naturally∫
gpB(z0, z1, z2)dz2 = g

∫
pB(z0, z1, z2)dz2 = gpB(z0, z1)

Let us separate in ⟨C⟩F − ⟨⟨C⟩⟩ the terms which do not depend on z2:

⟨C⟩F − ⟨⟨C⟩⟩ = Q1(z0, z1) +Q2(z0, z1)
(
L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)

)
Q1(z0, z1) ≡ E(z0)

(
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)
Q2(z0, z1) ≡ E(z0, z1)w3,1+2(z0, z1)

Then, obviously,



13

∫
(⟨C⟩F − ⟨⟨C⟩⟩)2 pB(z0, z1, z2)dz2

= Q2
1(z0, z1)pB(z0, z1)

+Q2
2(z0, z1)

∫ (
L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)

)2
pB(z0, z1, z2)dz2

+ 2Q1(z0, z1)Q2(z0, z1)

×
(∫

L(z1, z2)ω3,2(z0, z1, z2)pB(z0, z1, z2)dz2 − Γ̃2(z0, z1)pB(z0, z1)

)
Since (see [15], eq. (40))

pB(z0, z1, z2) = pB(z0, z1)× f̃(−−→z2z1,
−−→z0z1, z1)

∣∣(−−→z2z1 · n(z1))
∣∣ s(z1, z2)

the last integral is

∫
L(z1, z2)ω3,2(z0, z1, z2)pB(z0, z1, z2)dz2 = pB(z0, z1)Γ̃2(z0, z1)

Therefore,

∫
(⟨C⟩F − ⟨⟨C⟩⟩)2 pB(z0, z1, z2)dz2

= pB(z0, z1)Q
2
1(z0, z1) +Q2

2(z0, z1)

×
∫ (

L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)
)2

pB(z0, z1, z2)dz2

= pB(z0, z1)Q
2
1(z0, z1)

+ pB(z0, z1)Q
2
2(z0, z1)×

∫ (
L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)

)2
× f̃(−−→z1z2,

−−→z0z1, z1)
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2dz2

and

⟨⟨C⟩2B⟩F − ⟨⟨C⟩⟩2

= E2(z0)

∫ (
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)2
pB(z0, z1)dz1

+

∫
E2(z0, z1)w

2
3,1+2(z0, z1)

(
L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)

)2
× f̃(−−→z1z2,

−−→z0z1, z1)
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)pB(z1, z2)dz1dz2
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Notice the integration
∫
· · · dz1 follows the same conventions as

∫
· · · dz2

described above (Fig. 1). That is, it runs over the ends of all BMCRT rays
emitted from z0. If this ray does not hit any scene surface, it just means it hits
a large black sphere enclosing the scene) where luminance and BDF vanish.

3.3 Full noise

Substituting the ⟨⟨C2⟩⟩, ⟨⟨C⟩2B⟩F and ⟨(⟨C⟩F − ⟨⟨C⟩⟩)2⟩B into (3) we obtain the
following expression for the full noise in the given pixel:

V ≈ 1

nF

∫
w2

3,0(z0, z1)f
2(−−→z1z0,

−−−→y−1z0, z0)L(z0, z1)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

+
E(z0)

NBnF

∫
w2

3,1+2(z0, z1)ω
2
3,1(z0, z1, z2)f(

−−→z2z1,
−−→z0z1, z1)ρ(z0, z1, z2)dz1dz2

+
1

NBnF

∫
w2

3,1+2(z0, z1)ω
2
3,2(z0, z1, z2)E(z0, z1)

b(z1, z2)

L(z1, z2)
ρ(z0, z1, z2)dz1dz2

+
1

NB

∫
E2(z0, z1)w

2
3,1+2(z0, z1)

(
L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)

)2
×f̃(−−→z2z1,

−−→z0z1, z1)
∣∣(−−→z2z1 · n(z1))

∣∣ s(z1, z2)pB(z0, z1)dz1dz2

+
E2(z0)

NB

∫ (
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)2
pB(z0, z1)dz1

− 1

NF
⟨⟨C⟩⟩2

where nF ≡ SNF and we replaced 1−N−1
F with 1 because usually this number

of forward rays is large. Notice the term 1
NF

⟨⟨C⟩⟩2 is an excess accuracy because

we all the same had dropped terms which are O( 1
NF

) and retained only O( 1
SNF

)

while deriving the ⟨⟨C2⟩⟩, ⟨⟨C⟩2B⟩F , see [15]. So later we drop it.
Collecting the terms containing ω2

3,m and recalling that (eq. (40) of [15])

pB(z0, z1) =
1

E(z0)
f(−−→z1z0,

−−−→z0y−1, z0)
∣∣(n(z0) · −−→z0z1)

∣∣ s(z0, z1)

we can write V as

V ≈ n−1
F E(z0)

∫
w2

3,0(z0, z1)f(
−−→z1z0,

−−−→y−1z0, z0)L(z0, z1)pB(z0, z1)dz1

+N−1
B E2(z0)

∫ (
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)2
pB(z0, z1)dz1

+N−1
B

∫
w2

3,1+2(z0, z1)V(z0, z1)pB(z0, z1)dz1 (16)
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where

V(z0, z1) ≡ E2(z0, z1)

∫ (
L(z1, z2)ω3,2(z0, z1, z2)− Γ̃2(z0, z1)

)2
×f̃(−−→z2z1,

−−→z0z1, z1)
∣∣(−−→z2z1 · n(z1))

∣∣ s(z1, z2)dz2

+ n−1
F E2(z0, z1)

×
∫ {

ω2
3,1(z0, z1, z2)f̃(

−−→z2z1,
−−→z0z1, z1) + ω2

3,2(z0, z1, z2)
b(z1, z2)

L(z1, z2)

}
×L(z1, z2)f̃(

−−→z2z1,
−−→z0z1, z1)(n(z1) · −−→z2z1)s(z1, z2)dz2 (17)

This function depends on ω3,2(z0, z1, z2) and ω3,1(z0, z1, z2) = 1 −
ω3,2(z0, z1, z2) but does not depend on w3,0 and w3,1+2. On the contrary, the
rest terms in V are independent of ω3,m.

4 Optimal weights

Like in [15], these are the weights which minimize V , i.e. its variation δV in
response to the variation of weights is 0. Varying (16) provided that w3,0 =
1− w3,1+2 gives

δV ≈ −2n−1
F E(z0)

∫
δw3,1+2(z0, z1)w3,0(z0, z1)

×f(−−→z1z0,
−−−→y−1z0, z0)L(z0, z1)pB(z0, z1)dz1

+2N−1
B E2(z0)

∫
δw3,1+2(z0, z1)

(
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)
×L(z0, z1)pB(z0, z1)dz1

−2N−1
B E2(z0)δΦ̃

∫ (
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)
pB(z0, z1)dz1

+2N−1
B

∫
δw3,1+2(z0, z1)w3,1+2(z0, z1)V(z0, z1)pB(z0, z1)dz1

+N−1
B

∫
w2

3,1+2(z0, z1)δV(z0, z1)pB(z0, z1)dz1

where δΦ̃ and δV are the variations of the corresponding integrals (15) and (17).

Expanding δΦ̃ we after some simple algebra arrive at
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δV ≈ −2n−1
F E(z0)

∫
δw3,1+2(z0, z1)w3,0(z0, z1)

×f(−−→z1z0,
−−−→y−1z0, z0)L(z0, z1)pB(z0, z1)dz1

+2N−1
B E2(z0)

∫
δw3,1+2(z0, z1)

(
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)
×L(z0, z1)pB(z0, z1)dz1

+2N−1
B

∫
δw3,1+2(z0, z1)w3,1+2(z0, z1)V(z0, z1)pB(z0, z1)dz1

+N−1
B

∫
w2

3,1+2(z0, z1)δV(z0, z1)pB(z0, z1)dz1

The optimal weights are those for which δV = 0 for any δw3,1+2 and δω3,2. Since
V is independent of w3,1+2, this happens if and only if both δV = 0 and

0 =− n−1
F w3,0(z0, z1)f(

−−→z1z0,
−−−→y−1z0, z0)L(z0, z1)

+N−1
B E(z0)

(
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)
L(z0, z1)

+N−1
B w3,1+2(z0, z1)

V(z0, z1)

E(z0)

Recalling that w3,0 = 1− w3,1+2 it gives

w3,1+2(z0, z1) =
NBf(

−−→z1z0,
−−−→y−1z0, z0) + nFE(z0)Φ̃

NBf(
−−→z1z0,

−−−→y−1z0, z0) + E(z0)nFL(z0, z1) +
nFV(z0,z1)

E(z0)L(z0,z1)

=
NBf̃(

−−→z1z0,
−−−→y−1z0, z0) + nF Φ̃

NBf̃(
−−→z1z0,

−−−→y−1z0, z0) + nFL(z0, z1) +
nFV(z0,z1)

E2(z0)L(z0,z1)

(18)

Then, obviously

δV(z0, z1) = 2n−1
F E2(z0, z1)

∫
δω3,2(z0, z1, z2)

×
(
α(z0, z1, z2)ω3,2(z0, z1, z2)− f̃(−−→z2z1,

−−→z0z1, z1)− nF Γ̃2(z0, z1)
)

×L(z1, z2)f̃(
−−→z2z1,

−−→z0z1, z1)(n(z1) · −−→z2z1)s(z1, z2)dz2

where

α(z0, z1, z2) ≡ f̃(−−→z2z1,
−−→z0z1, z1) +

b(z1, z2)

L(z1, z2)
+ nFL(z1, z2)
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and b(z1, z2) was defined in (10).
As said above, for the optimal weights δV = 0 for any δω3,2 which happens

if and only if

0 = α(z0, z1, z2)ω3,2(z0, z1, z2)− f̃(−−→z2z1,
−−→z0z1, z1)− nF Γ̃2(z0, z1)

which implies

ω3,2(z0, z1, z2) =
f̃(−−→z2z1,

−−→z0z1, z1) + nF Γ̃2(z0, z1)

f̃(−−→z2z1,
−−→z0z1, z1) +

b(z1,z2)
L(z1,z2)

+ nFL(z1, z2)
(19)

The equations (18) and (19) are of the same functional form, being integral

equations of the 2nd kind, since Γ̃2 is the integral of ω3,2 and Φ̃ is the integral
of w3,1+2. We solve them exactly like in [15]. Namely, substituting w3,1+2 from

(18) into the definition of Φ̃ (15) one has

Φ̃ =

∫
NBf̃(

−−→z1z0,
−−−→y−1z0, z0) + nF Φ̃

NBf̃(
−−→z1z0,

−−−→y−1z0, z0) + nFL(z0, z1) +
nFV(z0,z1)

E2(z0)L(z0,z1)

×L(z0, z1)f̃(
−−→z0z1,

−−−→y−1z0, z0)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

=

∫
NBf̃(

−−→z1z0,
−−−→y−1z0, z0)

NBf̃(
−−→z1z0,

−−−→y−1z0, z0) + nFL(z0, z1) +
nFV(z0,z1)

E2(z0)L(z0,z1)

×L(z0, z1)f̃(
−−→z0z1,

−−−→y−1z0, z0)
∣∣(n(z0) · −−→z1z0)

∣∣ s(z0, z1)dz1

+Φ̃

∫
nFL(z0, z1)

NBf̃(
−−→z1z0,

−−−→y−1z0, z0) + nFL(z0, z1) +
nFV(z0,z1)

E2(z0)L(z0,z1)

×f̃(−−→z0z1,
−−−→y−1z0, z0)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1

which yields

Φ̃ =

∫ NB f̃
2(−−→z1z0,

−−−−→y−1z0,z0)L(z0,z1)

NB f̃(
−−→z1z0,

−−−−→y−1z0,z0)+nFL(z0,z1)+
nF V(z0,z1)

E2(z0)L(z0,z1)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1

1−
∫ f̃(−−→z0z1,

−−−−→y−1z0,z0)nFL(z0,z1)

NB f̃(
−−→z1z0,

−−−−→y−1z0,z0)+nFL(z0,z1)+
nF V(z0,z1)

E2(z0)L(z0,z1)

∣∣(n(z0) · −−→z1z0)
∣∣ s(z0, z1)dz1

(20)

Since nFL(z0,z1)

NB f̃(
−−→z1z0,

−−−−→y−1z0,z0)+nFL(z0,z1)+
nF V(z0,z1)

E2(z0)L(z0,z1)

≤ 1 then the integral in the

denominator does not exceed
∫
f̃(−−→z2z1,

−−→z0z1, z1)
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2

taken over all scene surfaces. In turn, this does not exceed the integral over
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the whole hemisphere which is 1 by definition of the normalized BDF. So the
denominator is ≥ 0.

Similarly, substituting ω3,2 from (19) into the definition of Γ̃2 (14) one ob-
tains

Γ̃2 =

∫
f̃(−−→z2z1,

−−→z0z1, z1) + nF Γ̃2(z1)

α(z0, z1, z2)
L(z1, z2)

×f̃(−−→z1z2,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

= Γ̃2(z1)nF

∫
L(z1, z2)

α(z0, z1, z2)
f̃(−−→z1z2,

−−→z0z1, z1)
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2

+

∫
f̃(−−→z1z2,

−−→z0z1, z1)

α(z0, z1, z2)
L(z1, z2)f̃(

−−→z1z2,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

which yields

Γ̃2 =

∫ f̃2(−−→z1z2,
−−→z0z1,z1)L(z1,z2)

f̃(−−→z2z1,
−−→z0z1,z1)+

b(z1,z2)
L(z1,z2)

+nFL(z1,z2)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

1−
∫ f̃(−−→z2z1,

−−→z0z1,z1)nFL(z1,z2)

f̃(−−→z2z1,
−−→z0z1,z1)+

b(z1,z2)
L(z1,z2)

+nFL(z1,z2)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

(21)

The numerator in (21) is not negative. Indeed, since

nFL(z1, z2)

f̃(−−→z2z1,
−−→z0z1, z1) +

b(z1,z2)
L(z1,z2)

+ nFL(z1, z2)
≤ 1,

the integral in the denominator does
not exceed

∫
f̃(−−→z2z1,

−−→z0z1, z1)
∣∣(n(z1) · −−→z2z1)

∣∣ s(z1, z2)dz2 taken over all scene
surfaces. In turn, this does not exceed the integral over the whole hemisphere
which is 1 by definition of the normalized BDF.

The formula (21) can be identically rewritten as

Γ̃2 =

∫
S2

f̃2(−−→z1z2,
−−→z0z1,z1)L(z1,z2)

f̃(−−→z2z1,
−−→z0z1,z1)+c(z1,z2)+nFL(z1,z2)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

1− χ2 +
∫
S2

f̃(−−→z2z1,
−−→z0z1,z1)(f̃(−−→z2z1,

−−→z0z1,z1)+c(z1,z2))
f̃(−−→z2z1,

−−→z0z1,z1)+c(z1,z2)+nFL(z1,z2)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

(22)
where

χ2 ≡
∫
S2

f̃(−−→z2z1,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2 ≤ 1 (23)
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and S2 is the set of the scene points seen from z1, i.e. points where the rays
−−→z1z2 hit the scene surfaces (Fig. 1). If this area is big enough (i.e. nearly no
rays −−→z1z2 miss scene surfaces) then χ2 approaches 1. Otherwise it is < 1 and
the denominator cannot vanish.

The same is the situation with the denominator in (20).

Knowing these Φ̃ and Γ̃2, the weights ω3,2 and w3,1+2 can be calculated
algebraically.

4.1 Correspondence to the case of 2 strategies

An important case is ω3,2 = 0 when the problem reduces to the case of 2
strategies elaborated in [14]. Here the rays is merged at z1 or at z0. Equation
(17) for ω3,2 = 0 is

nFV(z0, z1) = E2(z0)

∫
L(z1, z2)f

2(−−→z2z1,
−−→z0z1, z1)(n(z1) · −−→z2z1)s(z1, z2)dz2

= E2(z0)b(z0, z1).
(24)

Therefore,

nFV(z0, z1)

E2(z0)L(z0, z1)
=

b(z0, z1)

L(z0, z1)
.

Substituting it into the formulae (18) and (20) we get

w3,1+2(z0, z1) =
NBf̃(

−−→z1z0,
−−−→y−1z0, z0) + nF Φ̃

NBf̃(
−−→z1z0,

−−−→y−1z0, z0) + nFL(z0, z1) +
b(z0,z1)
L(z0,z1)

This up to notations coincides with equation (8) of [14]. The total noise is
then

V ≈ E2(z0)

NB

∫ (
L(z0, z1)w3,1+2(z0, z1)− Φ̃

)2
pB(z0, z1)dz1

+
E2(z0)

NBnF

∫ (
w2

3,0(z0, z1)NBf̃(
−−→z1z0,

−−−→y−1z0, z0) + w2
3,1+2(z0, z1)c(z0, z1)

)
×L(z0, z1)pB(z0, z1)dz1 (25)
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5 The role of the integral terms

Calculation of the optimal weights requires several integral terms. First, we
must know luminance L(z1, z2) and L(z0, z1). There are many methods to
calculate it with MCRT. It is difficult to store directional luminance which we
need. But it is easy to calculate its estimate, i.e. total luminance averaged over
all directions from the given point z2, using the i-maps technique [16].

Then, we need b(z1, z2) and b(z0, z1). These integrals are much similar to

the luminance. In the worst case the ratio c(z1, z2) ≡ b(z1,z2)
L(z1,z2)

can be estimated a

priori. Indeed, for a Phong or Gaussian BDF and a Gaussian illumination this
ratio is between maxv f(v,

−−→z1z2, z2) and 2maxv f(v,
−−→z1z2, z2). For Lambert

BDF it is equal to the maximum of BDF for any distribution of illumination.
So a rough yet simple estimate is

c(z1, z2) ≡
b(z1, z2)

L(z1, z2)
= 1.5max

v
f(v,−−→z1z2, z2)

This gives us an about 50% accuracy which frequently is sufficient. The situa-
tion with b(z0, z1) is similar. These L and b are used to calculate more difficult

integrals: Γ̃2, V and Φ̃.
For some particular scenes the integral terms can be estimated analytically.

Below we present several simple examples and demonstrate that the integral
terms have a principal effect on weights. So one cannot drop this terms or
substitute them with some simple heuristic.

5.1 The terms Γ̃2 and Φ̃

While they are given by mathematically trivial expressions their calculation
may require very high precision for the integral in the denominator of (21),
(20) because these denominators may vanish and then changing it a bit from

0.99 to 0.999 increases the resulting Γ̃2 or Φ̃ tenfold. This can happen when,
first, almost all rays z1 → z2 for non zero f̃(−−→z2z1,

−−→z0z1, z1) hit a scene surface,
that is, χ2 = 1 (it is seen from (22)). Second, nFL(z1, z2) in the hit point must
be large as compared with the BDF plus c. The first condition usually requires
that BDF is rather sharp. The second condition, on the contrary, usually
requires the opposite because for a sharp BDF f̃(−−→z2z1,

−−→z0z1, z1) is large, while
the first condition requires it be small compared to nFL(z1, z2).

Since the light source flux in our derivation is 1, luminance cannot be very
large over a finite area, thus the condition nFL(z1, z2) ≫ 1 requires that nF =
SNF is to be very large. Usually this means a very large number of light rays
NF but for so many rays BDPM works good even without MIS at all. The
situation with the denominator in (20) is much similar. Again it may vanish
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only when almost all rays z0 → z1 for non zero f̃(−−→z1z0,
−−−→y−1z0, z0) hit a scene

surface. Besides that the nFL(z0, z1) in the hit point must be large as compared

with the NB times BDF plus nFV(z0,z1)
E2(z0)L(z0,z1)

). Since the number of camera rays

NB is usually rather large, it is difficult to satisfy this condition. Therefore, it
is rather rare that the denominator in (20) vanishes.

5.2 The term V
Notice that it includes Γ̃2 so we must know the latter too.

The optimal weight ω3,2 minimizes the value of V . Therefore, V for the
optimal weight is less or equal its value for ω3,2 = 0 given by (24):

0 ≤ V(z0, z1) ≤ n−1
F E2(z0)b(z0, z1) (26)

For ω3,2 = 1 one cannot derive a general estimate. However, in case when the
luminance L(z1, z2) and b(z1, z2) change slowly as compared to BDF and when
whole BDF lobe is projected onto a surface z2, we can do the following. First,
substitude ω3,2 = 1 into (17). Then we must substitute Γ̃2(z0, z1) calculated
for this weight ω3,2 = 1 i.e.

Γ̃2(z0, z1) =

∫
L(z1, z2)f̃(

−−→z2z1,
−−→z0z1, z1)

∣∣(−−→z2z1 · n(z1))
∣∣ s(z1, z2)dz2

If L(z1, z2) changes slowly as compared to BDF and whole BDF lobe
projects onto a scene surface, we can approximately take its value for the centre
of the BDF lobe z∗

2: Γ̃2(z0, z1) = L(z1, z
∗
2). We get L(z1, z2)− Γ̃2(z0, z1) ≈ 0,

so

V(z0, z1) ≈ n−1
F E2(z0, z1)b(z1, z

∗
2)

∫
f̃(−−→z2z1,

−−→z0z1, z1)(n(z1) · −−→z2z1)s(z1, z2)dz2

= n−1
F E2(z0, z1)b(z1, z

∗
2)

and finally

V(z0, z1) ≈ n−1
F E2(z0, z1)b(z1, z

∗
2) (27)

It is of the same form as (24), only b is taken for another surface. On the
other hand, in both cases this is b for the surface where the rays are joined. If
the optimal weight is not ω3,2 = 1 the above is the upper bound.

Finally, the expression for V is sophisticated and we do not know a helpful
estimate. We know the range (26). Its upper bound is exact for ω3,2 = 0, but
as a result it has little sense if the optimal weight is ω3,2 ≈ 1. For the latter
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case and in case the luminance and b change slower than BDF, we have (27).
However these conditions are very difficult to check for an arbitrary scene. And
if they are not satisfied than (27) is not an approximation for ω3,2 = 1. As a
result, even the upper bound in case the optimal weight is different. In other
words,

n−1
F E2(z0, z1)min (b(z1, z

∗
2), b(z0, z1))

gives us just a scale.

5.3 Example 1: dark and well lit BDF at z2

This situation relates to small c(z1, z2) which is about the maximum of BDF
according to estimation above. This is why we say “BDF is dark”. Then
nFL(z1, z2) is usually also small but much greater than c(z1, z2).

Intuitively, in this case it is better to use the 3rd strategy than the 2nd,
i.e. to collect FMCRT rays at z2 than at z1. This is because the dark BDF
kills many FMCRT rays, so few of them reach z1 and the noise in luminance
estimation must be high.

We can use results from Appendix A.3 for piecewise constant L(z1, z2) set-
ting Lmax = Lmin = L and c → 0. Then

ω3,2 ≈ 1

V(z0, z1) ≈ E2(z0, z1)cn
−1
F L

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)
c

That is, we can just drop the term nFV(z0,z1)
E2(z0)L(z0,z1)

because in our example

c → 0 and it is negligible. Therefore now the formula for the weight w3,1+2 (18)
becomes

w3,1+2(z0, z1) ≈
NBf̃(

−−→z1z0,
−−−→y−1z0, z0) + nF Φ̃

NBf̃(
−−→z1z0,

−−−→y−1z0, z0) + nFL(z0, z1)

Be this so for more general case, this would much simplify the calculations.

5.4 Example 2: L(z1, z2) and b(z1, z2) change slower than

sharp BDF at z1

Now let c(z1, z2) be not so small. Intuitively, in this case it is better to use the
3rd strategy than the 2nd because the BDF at z1 is sharp, so collecting FMCRT
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rays coming from different directions gives highly varying ray contributions and
thus the noise will be high.

In this situation L(z1, z2) and c(z1, z2) are assumed to be nearly constant
within the projection of the BDF lobe onto the surface 2. We can thus use
the results from Appendix A.3 for piecewise constant L(z1, z2) setting Lmax =
Lmin = L.

BDF at z1 is assumed Gaussian of the form

f̃(v,u, z1) =
1

πw2
e−(

ϑ
w)

2

where ϑ is the angle between the outgoing ray and mirror reflection of the inci-
dent ray, w is BDF width. For a sharp BDF while not too bright illumination,

when wnFL → 0, the equations for ω3,2, V(z0, z1),
nFV(z0,z1)

E2(z0)L(z0,z1)
are the same as

for the example 1 (Section 5.3).
In the opposite case, when wnFL is large we have

ω3,2 ≈ 1

1 + 2πw2c
=

{
1, c → 0

0, c → ∞

V(z0, z1) ≈ E2(z0, z1)
c

2πw2c+ 1
n−1
F L

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)

c

2πw2c+ 1
=

E(z0, z1)

E(z0)

{
c, c → 0

1
2πw2 , c → ∞

Notice that for our Gaussian BDF and constant illumination throughout the
projection of the BDF lobe the function c(z0, z1) (defined similarly to c(z1, z2)
but for the arguments z0, z1 instead of z1, z2) for this (1st) surface is equal to

1
2πw2 . This naturally agrees with (24).

Therefore, for both ω3,2 ≈ 0 and ω3,2 ≈ 1 the value of nFV(z0,z1)
E2(z0)L(z0,z1)

is close

to the scaled c if we take c for the proper surface:

nFV(z0, z1)

E2(z0)L(z0, z1)
≈

{
E(z0,z1)
E(z0)

c(z1, z2), ω3,2 ≈ 1

c(z0, z1), ω3,2 ≈ 0
(28)

The argument z2 is absent in the left hand side, but since in this example

c(z1, z2) = const we may use any z2. Notice the scale factor E(z0,z1)
E(z0)

, i.e. the

integral of the BDF at z1, naturally appears only when the rays merge at z2

after having been scattered at z1. If the rays are merged at z1, the BDF at z1

did not scatter them, so this scale factor is naturally absent.
Therefore now the formula for the weight w3,1+2 (18) becomes
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w3,1+2(z0, z1) =


NB f̃(

−−→z1z0,
−−−−→y−1z0,z0)+nF Φ̃

NB f̃(
−−→z1z0,

−−−−→y−1z0,z0)+nFL(z0,z1)+
E(z0,z1)
E(z0)

c(z1,z2)
, ω3,2 ≈ 1

NB f̃(
−−→z1z0,

−−−−→y−1z0,z0)+nF Φ̃

NB f̃(
−−→z1z0,

−−−−→y−1z0,z0)+nFL(z0,z1)+c(z0,z1)
, ω3,2 ≈ 0

(29)

The case ω3,2 ≈ 0 naturally results in exactly the same formula as in the case
of two strategies.

Again, the point z2 which we need in case ω3,2 ≈ 1 is absent in the left hand
side (the separable weight can not depend on it). We can substitute any point
in our example, when c(z1, z2) = const, but what to do in more general case,
when c(z1, z2) does vary, at least slowly? A possible solution is to take z2 = z∗

2

where z∗
2 is the hit point of the specular scattering of the ray −−→z0z1. This is

natural if the BDF at z1 is very sharp (glossy), but what if it is not?
Before bothering how to resolve this problem, let us first see if this is worth

effort at all, i.e. if the above decision (to use c for the surface chosen depending
on ω3,2) works when c(z1, z2) = const holds while the weight ω3,2 depends on
z2.

In the current example ω3,2 depends on the relation between the brightness
of illumination L(z1, z2) and the BDF width w. Currently L(z1, z2) was spa-
tially uniform, so a natural decision is to make it spatially variable and see
what happens. Let’s make the situation maximally different from current uni-
form luminance, e.g. make it to change fast from large (maximum) to small
(minimum) values.

5.5 Example 3: high-frequency L(z1, z2) and sharp BDF

at z1

Let the S2 be a set of the uniformly distributed points which randomly take
values of either Lmax or Lmin. This is a high-frequency L(z1, z2). The points
where L(z1, z2) = Lmax occupy the fraction a of the total area of S2. In the rest
of S2 (whose area fraction is therefore 1− a) the luminance L(z1, z2) = Lmin.
The BDF at z1 is assumed Gaussian like in Section (5.4).

One can understand the role of spatial variations of luminance as follows.
The term V is nothing but the noise of the 2nd segment. Indeed, let us substi-
tute in (25)

NB 7→ 1, w3,1+2 7→ ω3,2,

z−1 7→ z0, z0 7→ z1, z1 7→ z2

(then automatically Φ̃ 7→ Γ̃2). The term E(z0) = µ(−−−→y−1z0, z0) in (25) is the
energy of camera ray before hitting z1, so it must turn into µ(−−→z0z1, z1) which
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equals E(z0,z1)
E(z0)

by construction in (17). As a result, V turns into V(z0,z1)
E2(z0)

and

this is equal to the full noise for the case of 2 strategies provided that the single
camera ray for the pixel (NB = 1) starts at z0 and hits z1, the segment [z0, z1]

is not random; at z1 the ray is scattered stochastically. Therefore, V(z0,z1)
E2(z0)

is

the noise of luminance estimation taken at z1. This noise includes contribution
from both BMCRT and FMCRT. Very roughly, if the BCMRT ray takes greatly
varying luminance L(z1, z2) from different points z2 then this is BMCRT noise.
If it is large, this may make the 3rd strategy less advantageous (or not at all).

The derivation of V(z0, z1) is in Appendix A. For the sake of simplicity we
shall consider only the case when c(z1, z2) is constant and small. Below we
reproduce only those final formulae that are to be used here. For a sharp BDF
while not too bright illumination, when w2nFLmax → 0 and

ω3,2 ≈ 1

V(z0, z1) ≈ E2(z0, z1)a(1− a)(Lmax − Lmin)
2

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)
(1− a)nFLmax

In the opposite case, when wnFL is large and

ω3,2 ≈ 0

V(z0, z1) ≈ E2(z0, z1)a(1− a)
1

2πw2
n−1
F Lmax

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)
(1− a)

1

2πw2

What can one conclude from these formulae? For ω3,2 ≈ 0 it is still
nFV(z0,z1)

E2(z0)L(z0,z1)
≈ c(z0, z1). But for ω3,2 ≈ 1 the value of nFV(z0,z1)

E2(z0)L(z0,z1)
is deter-

mined by the maximal surface luminance and not by the function c(z1, z2).
Therefore, we cannot calculate the weight w3,1+2 from a formula like (29)

even though in our extreme case the weight ω3,2 is still nearly constant. The

difference between the actual value of nFV(z0,z1)
E2(z0)L(z0,z1)

and its estimation using c for

the proper surface (28) can be very large. As a result, the “estimated” weight
w3,1+2 can strongly differ from its actual value. For example, for large Lmax

and small a it is possible that the actual w3,1+2 ≈ 0 while the estimated one is
w3,1+2 ≈ 1. The less chances in a more general case. Therefore, it is impossible
to calculate w3,1+2 without actual calculation of V(z0, z1).

The situation with the integral terms Γ̃2 and Φ̃ is similar though there
influence is weaker. There are rather many situations when we can drop them
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(set to 0) while calculating weights. But even when this is possible it does not
help much because we need V .

5.6 The integral terms: conclusions

The calculation of Γ̃2 , Φ̃ and V is expensive while we do not have a due
approximations. All what we have is:

� For Γ̃2 we have “range values” 0 and maxz2∈S2
L(z1, z2). The value of Γ̃2

affects both the weight ω3,2 explicitly and the weight w3,1+2 via V .

� For Φ̃ we have “range values” 0 and maxz1∈S1
L(z0, z1). The value of Φ̃

affects the weight w3,1+2 explicitly.

� In case the calculated value of ω3,2 is close to 0, we have the case of 2
strategies and V is known, (24). Otherwise we have no helpful estimate.
We can believe n−1

F E2(z0, z1)b(z0, z1) gives a characteristic scale but no
more.

As it has been demonstrated by examples (Sections (5.3)-(5.5)) we must

use the exact calculated value for V (and correspondingly for Γ̃2) and cannot
replace them with a helpful approximation.

6 Results

Here, we present and analyze the results of the computational experiments done
for a benchmark scene. The scene consists of three surfaces. The light source
illuminates the 3rd one, whose scattered light illuminates the 2nd surface and
then the 1st surface. The 1st surface is seen by the camera (Fig. 2).

This scene is rather general as considering the first three segments of the
camera paths. Its simplification is that the 3rd surface is illuminated directly
while in the general situation it could be illuminated by the secondary illumi-
nation. This is however not important for us because all our formulae do not
distinguish the direct and indirect components of L(z1, z2).

In the experiment we consider only the ray paths for which z0 is at the
surface #1, z1 is at the surface #2, and z2 is at the surface #3. This simplifies
the calculations. In principle BDPM is a summation over all light paths, so we
just proceed with one its component. In our scene it dominates, i.e. light paths
of other types have rather small contribution.

In calculations the BDF at z0 and at z2 is Lambert model with albedo 1,
and the BDF at z1 is the Phong model with glossiness parameter γ:
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Figure 2: The benchmark scene. The yellow, green and orange rectangles are
the 1st, 2nd and 3rd surfaces, respectively. The red arrows show a camera ray
paths. The blue arrows show illumination from the parallel light source.

f(v,u, z2) = µ1
γ + 2

2π
(max(0,−(r · u)))γ

where u is the view direction, r = v− 2(n ·v)n is the direction of the specular
reflection and µ1 is the integral reflectance

∫
f1(v,u) |(n · v)| d2v for normal

incidence (for tangent incidence it drops), i.e. µ1 = µ(n, z1) in terms of (8).
For the Lambert BDF at z2, obviously, c(z1, z2) = π−1. Light source with unit
flux provides parallel illumination of the z2 domain whose size is 50× 50. As a
results its luminance is uniform L(z1, z2) = π−1 1

50×50 .
In all cases the number of camera rays per pixel is NB = 25 and the radius

of the integration sphere is R = 0.3.
The image seen by camera are very simple: it is rectangle (the 1st surface) in

the perspective projection (Fig 3). Four cases are represented in Fig. 3. In first
three “pure” cases (BDD=0, 1, 2) all rays are merged at the predefined vertex.
The “BDD” means “backward diffuse depth”, i.e. the number of diffuse scat-
tering events the camera ray underwent before the integration sphere. BDD=0
means merging at the first surface, BDD=1 – at the second and BDD=2 – at
the third ones. “MIS” is the optimal weights (mixing strategies) described in
this paper. The simulation was done for a small number of BDPM iterations
to make the noise well visible.
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BDD=0 BDD=1 BDD=2 MIS

Figure 3: Camera images, i.e. the distribution of luminance L(y−1, z0) for
µ1 = 0.1, γ = 900 and NF = 530000 after 100 BDPM iterations.

The tables 1 and 2 show the relative noise

√
V (y−1,z0)

L(y−1,z0)
in the center of the

image, averaged over 10x10 pixels for different scene parameters and cases.
Table 1 is for a relatively small number of light rays (NF = 530000 and therefore
nFL(z1, z2) = 19.08) while in Table 2 this number is doubled, so we can see
the role of this parameter.

Table 1: Relative noise

√
V (y−1,z0)

L(y−1,z0)
in the image center for NF = 530000 and

different parameters of the BDF at z1 after 1000 BDPM iterations.
BDF at z1 BDD=0 BDD=1 BDD=2 MIS

integral µ1 glossiness γ

0.1

100 459% 201% 187% 155%
300 455% 297% 185% 166%
600 454% 387% 186% 169%
900 449% 464% 185% 169%

0.3

100 267% 204% 186% 137%
300 266% 295% 183% 146%
600 264% 390% 186% 149%
900 263% 473% 190% 153%

1.0

100 143% 205% 182% 105%
300 145% 294% 184% 111%
600 143% 384% 185% 112%
900 144% 462% 183% 112%

The results are rather intuitive. When BDF at z1 is smooth (γ is small) and
the 2nd surface is bright (integral µ1 is large), one can merge the camera and
the light rays at any surface without much gain or loss in the noisiness. When
this surface is dark (integral µ1 is small), illumination of the 1st surface is low,
and thus merging rays at this surface (case BDD=0) results in high relative
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Table 2: Relative noise

√
V (y−1,z0)

L(y−1,z0)
in the image center for NF = 1060000 and

different parameters of the BDF at z1 after 650 BDPM iterations.
BDF at z1 BDD=0 BDD=1 BDD=2 MIS

integral µ1 glossiness γ

0.1

100 315% 174% 185% 140%
300 320% 242% 187% 155%
600 314% 298% 183% 154%
900 316% 359% 186% 158%

0.3

100 185% 177% 185% 119%
300 183% 241% 183% 124%
600 184% 293% 184% 128%
900 186% 346% 186% 128%

1.0

100 103% 176% 185% 84%
300 102% 240% 188% 88%
600 102% 301% 185% 89%
900 102% 344% 185% 89%

noise. Meanwhile, since our BMCRT does not kill rays even on a dark surface,
the number of camera rays reached the 2nd and the 3rd surface remains the
same. Therefore the relative noise while merging rays at these surfaces does
not grow.

Mixing strategies (the last column) improves the situation for any parame-
ters. The noise for MIS is always less than for other cases.

One can see that results in Table 2 are qualitatively the same, though now
the case BDD=0 is better than in Table 1 for dark BDF at z1 as well as the
case BDD=1 is better for sharp BDF at z1. This is again intuitively expected
because the disadvantage was due to the noise coming from gathering luminance
from all FMCRT rays that hit the integration sphere. Now their number grew
proportionally to the increased NB, i.e. twice, and thus its contribution to the
total noise dropped.

7 Discussion and conclusions

In [14, 15] we have developed a reduced MIS (which mixes a limited number
of strategies whose weights depend on a limited number of the first ray path
vertices) for BDPM. For two strategies the resulting expressions for the weights
were rather compact and understandable and we developed a general numeric
method applied for a simple test scene [14]. For three strategies, these expres-
sions appear so sophisticated and complex [15] that their numeric calculation
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even in simple cases is expensive and cancels all the benefits of the expected
better convergence of BDPM.

Meanwhile, it is not rare that the third (and even the fourth) strategy is
really needed because the two ones are all bad. For example, it is the case when
a few light rays achieve for the 1st camera ray vertex while at the second one
BDF is sharp so its integration with a diffuse illumination is highly noisy. This
case was considered even for the very simple benchmark scene (Section 6).

In current work we developed a reduced MIS which operates separable
weights. Roughly speaking, it splits the problem of choosing at which of the
3 camera vertices: z0, z1 or z2, to merge the camera and light rays. First,
we choose whether to merge at z0 or at any of the next vertices (z1 or z2)
and determine the weights for these two choices. Then we choose whether to
merge at z1 or at z2 and determine the weights for these choices. As a result,
the weight of the choice “merge at z2” becomes a product of the weight of the
choice “at any of the next vertices (z1 or z2)” and the weight of the choice “z2

among the latter”.
Unlike the original MIS for 3 strategies [15], this approach admits a rather

straightforward generalization for n strategies. Now we first choose between
two strategies: whether to merge rays at z0 or at any of z1, z2, ..., zn−1. Then
we choose whether to merge at z1 or at any of z2, z3, ..., zn−1, and so on.
In each step we have the choice between two strategies. As a results, the final
weights are the products of the “relative” weights at each step. This generalizes
the formula (1):

wn,0(z0, ...,zn−1) =wn,0(z0, z1)

wn,1(z0, ...,zn−1) =wn,1+2+···(z0, z1)wn−1,0(z0, z1, z2)

wn,2(z0, ...,zn−1) =wn,1+2+···(z0, z1)wn−1,1+2+···(z0, z1, z2)wn−2,0(z1, z2, z3)

wn,3(z0, ...,zn−1) =wn,1+2+···(z0, z1)wn−1,1+2+···(z0, z1, z2)

× wn−2,1+2+···(z1, z2, z3)wn−3,0(z2, z3, z4)

· · · · · · · · ·
wn,n−1(z0, ...,zn−1) =wn,1+2+···(z0, z1)wn−1,1+2+···(z0, z1, z2)

× wn−2,1+2+···(z1, z2, z3)w1,0(zn−1, zn, zn+1)
(30)

with w1,0(zn−1, zn, zn+1) ≡ 1 and normalization

wn−m,0(zm−1, zm, zm+1)+wn−m,1+2+···(zm−1, zm, zm+1) = 1, m = 0, 1, ..., n−2

All weights but wn,0 and wn,1+2+··· have three arguments. As to wn,0 and
wn,1+2+··· , they may be considered as also having have two ones because they
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implicitly depend on the camera origin y−1 which is the same for all rays and
all pixels and thus is usually dropped from arguments. The weights in the right
hand side of (30) are given by expressions similar to (18), (19).

In current work n = 3 and for historic reasons we used notation ω2,∗ instead
of wn−1,∗:

wn,0(z0, z1) = w3,0(z0, z1)

wn,1+2+···(z0, z1) = w3,1+2(z0, z1)

wn−1,0(z0, z1, z2) = ω2,0(z0, z1, z2)

wn−1,1+2+···(z0, z1, z2) = ω2,1(z0, z1, z2)

We had considered the case n = 3 in detail and produced the final expres-
sions for the separable weights. They are much simpler than in [15] and allowed
for a numerical calculations at least for a simplified example of the benchmark
scene in Section 6

But even in this case the calculations are difficult. There are integral terms,
the worst of them being V whose integrands include the other integral terms.
As to the Γ̃2 and Φ̃, they are the fractions whose denominators are of the form
1 minus integral, which integral can be arbitrary close to 1. Therefore we must
always calculate it with high accuracy.

In Section 5 we demonstrated that these integral terms are really important.
So one cannot just drop them or use some heuristic substitutes for them, but
must calculate them with due accuracy. For the simple benchmark scene from
section 6 it was possible because for this scene they can be calculated by de-
terministic quadratures. But for a general scene we can only use Monte Carlo
integration, whose accuracy is also limited by the Monte Carlo noise. This is
a sort of a vicious circle: for the weights to decrease noise, we must calculate
those weights with MC until their noise is nearly gone.

Therefore the final conclusion is that MIS for n strategies with n > 2 is
computationally inefficient. The efforts required to calculate the weights nullify
the benefits of using them.

A Appendix. The case of high-frequency
L(z1, z2)

Definition of a high-frequency L(z1, z2) is in Section 5.5. The points where
L(z1, z2) = Lmax occupy the fraction a of the total area of S2. In the rest of
S2 (whose area fraction is 1 − a) the luminance L(z1, z2) = Lmin. We also
assume c(z1, z2) is constant.
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Let us calculate weights and noise for this case.
To this end, we need to calculate integrals which include this high-frequency

L(z1, z2). First, it is obvious that

∫
S2

g(z2, L(z1, z2))dz2 ≈ a

∫
S2

g(z2, Lmax)dz2

+(1− a)

∫
S2

g(z2, Lmin)dz2 (31)

Then, apply this approximation to the integrals of the sort

∫
g(z2, L(z1, z2))f̃(

−−→z2z1,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

whose integrand vanishes in the periphery of the BDF lobe. Assuming BDF is
sharp or S2 is large, all the projection of the BDF lobe onto the surface fits
within S2, i.e. within the scene surfaces and then χ2 = 1, see (23). So one can
expand integration to the infinite space domain:

∫
g(z2, L(z1, z2))f̃(

−−→z2z1,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

≈ a

∫
g(z2, Lmax)f̃(

−−→z2z1,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

+(1− a)

∫
g(z2, Lmin)f̃(

−−→z2z1,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

Here s(z1, z2)dz2 is nothing but the differential of the solid angle d2(−−→z2z1),
so if g() does not depend on z2 explicitly, i.e. is of the form g(−−→z2z1, L(z1, z2))
we can replace integration over space with integration over the hemisphere of
directions, so

∫
g(−−→z2z1, L(z1, z2))f̃(

−−→z2z1,
−−→z0z1, z1)

∣∣(n(z1) · −−→z2z1)
∣∣ s(z1, z2)dz2

≈ a

∫
g(v, Lmax)f̃(v,

−−→z0z1, z1) |(n(z1) · v)| d2v

+(1− a)

∫
g(v, Lmax)f̃(v,

−−→z0z1, z1) |(n(z1) · v)| d2v

(32)
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A.1 Calculation of Γ̃2

We use eq. (22) for the assumed case χ2 = 1. Using approximation (32) and
assuming c(z1, z2) is constant one obtains from it

Γ̃2 ≈ LmaxaI2(c+nFLmax)+Lmin(1−a)I2(c+nFLmin)

a
c+nF LmaxI2(c+nF Lmax)

c+nF Lmax
+(1−a)

c+nF LminI2(c+nF Lmin)

c+nF Lmin

= LmaxaI2(c+nFLmax)+Lmin(1−a)I2(c+nFLmin)

a
(
c
1−I2(c+nF Lmax)

c+nF Lmax
+I2(c+nFLmax)

)
+(1−a)

(
c
1−I2(c+nF Lmin)

c+nF Lmin
+I2(c+nFLmin)

) (33)

= LmaxaI2(c+nFLmax)+Lmin(1−a)I2(c+nFLmin)
a(cI1(c+nFLmax)+I2(c+nFLmax))+(1−a)(cI1(c+nFLmin)+I2(c+nFLmin))

where

Im(β) ≡
∫

f̃m(v,u, z1)

f̃(v,u, z1) + β
|(n(z1) · v)| d2v (34)

and

I1(β) =
1− I2(β)

β

A.2 Calculation of V
Substituting into (17) our high-frequency luminance and the optimal weights

ω3,2 = f̃(−−→z2z1,
−−→z0z1,z1)+nF Γ̃2(z0,z1)

f̃(−−→z2z1,
−−→z0z1,z1)+c+nFL(z1,z2)

and ω3,1 = 1 − ω3,2 (where Γ̃2 and c are inde-

pendent of z2), then expanding the squares and applying approximation (32)
to the resulting integrals, one after some simple but tedious algebra comes to

V(z0, z1) ≈ E2(z0, z1)
(
(Lmax − Γ̃2)

2 + n−1
F cLmax

)
aJ3(c+ nFLmax)

+E2(z0, z1) (c+ nFLmax) cΓ̃
2
2aJ1(c+ nFLmax)

+E2(z0, z1)aJ2(c+ nFLmax)

×
(
n−1
F Lmax

(
c+ nFLmax − nF Γ̃2

)2
+ 2cΓ̃2Lmax − 2c(Lmax − Γ̃2)Γ̃2

)
+E2(z0, z1)

(
(Lmin − Γ̃2)

2 + n−1
F cLmin

)
(1− a)J3(c+ nFLmin)

+E2(z0, z1) (c+ nFLmin) cΓ̃
2
2(1− a)J1(c+ nFLmin)

+E2(z0, z1)(1− a)J2(c+ nFLmin)

×
(
n−1
F Lmin

(
c+ nFLmin − nF Γ̃2

)2
+ 2cΓ̃2Lmin − 2c(Lmin − Γ̃2)Γ̃2

)
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where

Jm(β) ≡
∫

f̃m(v,u, z1)(
f̃(v,u, z1) + β

)2 |(n(z1) · v)| d2v (35)

The long expression for V includes two functionally identical groups, yet one
for Lmin and another for Lmax. Therefore denoting the group

T (c, L, Γ̃2) ≡ cΓ̃2
2(c+ nFL)J1(c+ nFL)

+

(
n−1
F L

(
c+ nFL− nF Γ̃2

)2
+ 2cΓ̃2

2

)
J2(c+ nFL)

+
(
n−1
F L

(
c+ nFL− nF Γ̃2

)
+ Γ̃2

(
Γ̃2 − L

))
J3(c+ nFL)

=
(
L− Γ̃2

)2
((c+ nFL) J2 + J3)

+n−1
F c
(
nF Γ̃

2
2 ((c+ nFL) J1 + J2) + L ((c+ nFL) J2 + J3)

)
one can write

V(z0, z1) = E2(z0, z1)
(
aT (c, Lmax, Γ̃2) + (1− a)T (c, Lmin, Γ̃2)

)
where Γ̃2 is given by (33).

Rewriting T in the form

T (c, L, Γ̃2) =
(
L− Γ̃2

)2
((c+ nFL) J2 + J3)

+n−1
F c
(
nF Γ̃

2
2 ((c+ nFL) J1 + J2) + L ((c+ nFL) J2 + J3)

)
and using the identities

βJ2(β) + J3(β) = I2(β)

βJ1(β) + J2(β) = I1(β)

taking into account (34) we come to
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T (c, L, Γ̃2) =
(
L− Γ̃2

)2
I2(c+ nFL)

+n−1
F c

(
nF Γ̃

2
2

1− I2(c+ nFL)

c+ nFL
+ LI2(c+ nFL)

)
=

{(
L− Γ̃2

)2
+ c

(
n−1
F L− Γ̃2

2

c+ nFL

)}
I2(c+ nFL) + c

Γ̃2
2

c+ nFL

=

{(
L− Γ̃2

)2
+ cn−1

F L

}
I2(c+ nFL) + cΓ̃2

2

1− I2(c+ nFL)

c+ nFL

= n−1
F L(c+ nFL)I2(c+ nFL)− 2Γ̃2LI2(c+ nFL)

+Γ̃2
2

c+ nFLI2(c+ nFL)

c+ nFL

=
Ln−1

F

(
c+ nFL− nF Γ̃2

)2
I2(c+ nFL) + cΓ̃2

2

c+ nFL

For small c → 0

Γ̃2 ≈ LmaxaI2(nFLmax) + Lmin(1− a)I2(nFLmin)

aI2(nFLmax) + (1− a)I2(nFLmin)

T (c → 0, L, Γ̃2) ≈
(
L− Γ̃2

)2
I2(nFL)

V(z0, z1) ≈ E2(z0, z1)

×
(
a
(
Lmax − Γ̃2

)2
I2(nFLmax) + (1− a)

(
Lmin − Γ̃2

)2
I2(nFLmin)

)
Lmax − Γ̃2 ≈ (1− a)(Lmax − Lmin)

I2(nFLmin)

aI2(nFLmax) + (1− a)I2(nFLmin)

Lmin − Γ̃2 ≈ a(Lmax − Lmin)
I2(nFLmax)

aI2(nFLmax) + (1− a)I2(nFLmin)

thus now

V(z0, z1) ≈ E2(z0, z1)a(1− a)
I2(nFLmax)I2(nFLmin)

aI2(nFLmax) + (1− a)I2(nFLmin)
(Lmax − Lmin)

2
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Further calculations are done for the case of normal incidence and Gaussian
BDF

f̃(v,u, z1) =
1

πw2
e−(

ϑ
w)

2

where ϑ is the angle between the outgoing ray and mirror reflection of the
incident ray, and w is BDF width.

Now one has

I2(β) = 2π

∫ π/2

0

(
1

πw2e
−( ϑ

w)
2)2

β + 1
πw2e

−( ϑ
w)

2ϑdϑ

≈ 2

∫ ∞

0

(
e−t2

)2
πw2β + e−t2

tdt

= 1 + (πw2β) ln
(πw2β)

1 + (πw2β)

≈ 1

1 + 2.05πw2β

and

V(z0, z1) ≈ E2(z0, z1)a(1− a)(Lmax − Lmin)
2

×

(
1 + (πw2nFLmax) ln

(πw2nFLmax)
1+(πw2nFLmax)

)(
1 + (πw2nFLmin) ln

(πw2nFLmin)
1+(πw2nFLmin)

)
1 + πw2

{
a(nFLmax) ln

(πw2nFLmax)
1+(πw2nFLmax)

+ (1− a)(nFLmin) ln
(πw2nFLmin)

1+(πw2nFLmin)

}
For sharp BDF, when w2nFLmax → 0, I2(β) → 1:

Γ̃2 ≈ Lmaxa+ Lmin(1− a)

ω3,2 ≈ f̃(−−→z2z1,
−−→z0z1, z1) + nF (Lmaxa+ Lmin(1− a))

f̃(−−→z2z1,
−−→z0z1, z1) + c+ nFL(z1, z2)

≈ 1

V(z0, z1) ≈ E2(z0, z1)a(1− a)(Lmax − Lmin)
2

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)
nF

a(1− a)(Lmax − Lmin)
2

aLmax + (1− a)Lmin
≈ E(z0, z1)

E(z0)
(1− a)nFLmax

It should be noted that the maximum of nFV(z0,z1)
E2(z0)L(z0,z1)

is for a =
√
Lmin√

Lmax+
√
Lmin

and equals
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nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)
nF

(Lmax − Lmin)
2(√

Lmax +
√
Lmin

)2
For high contrast, i.e. Lmax ≫ Lmin, this becomes

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)
nFLmax

In the case of not sharp BDF, when wnFL is large, I2(β) → 1
2πw2β :

Γ̃2 ≈ LmaxLmin

aLmin + (1− a)Lmax
≈ Lmin

1− a

ω3,2 ≈
f̃(−−→z2z1,

−−→z0z1, z1) +
nFLmin

1−a

f̃(−−→z2z1,
−−→z0z1, z1) + c+ nFL(z1, z2)

≈ 0

V(z0, z1) ≈ E2(z0, z1)a(1− a)
1

2

1

πw2

n−1
F (Lmax − Lmin)

2

Lmax − a(Lmax − Lmin)

≈ E2(z0, z1)a(1− a)
1

2πw2
n−1
F Lmax

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)
(1− a)

1

2πw2

A.3 The case of uniform luminance

Now let’s Lmax = Lmin = L.

Γ̃2 = (c+ nFL)
LI2(c+ nFL)

c+ nFLI2(c+ nFL)

T (c, L, Γ̃2) =
Ln−1

F

(
c+ nFL− nF Γ̃2

)2
I2(c+ nFL) + cΓ̃2

2

c+ nFL

= cn−2
F (c+ nFL)

nFLI2(c+ nFL)

c+ nFLI2(c+ nFL)

V(z0, z1) = E2(z0, z1)cn
−2
F (c+ nFL)

nFLI2(c+ nFL)

c+ nFLI2(c+ nFL)

For sharp BDF, when wnFL → 0, I2(β) → 1:
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ω3,2 = 1

V(z0, z1) = E2(z0, z1)cn
−1
F L

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ nFE(z0, z1)cn

−1
F L

E(z0)L
=

E(z0, z1)

E(z0)
c

In the case of not sharp BDF, when wnFL is large, I2(β) → 1
2πw2β :

Γ̃2 =
L

2πw2c+ nFL
c+nFL

≈ L

1 + 2πw2c

ω3,2 =

f̃(−−→z2z1,
−−→z0z1, z1) +

nFL

2πw2c+
nF L

c+nF L

f̃(−−→z2z1,
−−→z0z1, z1) + c+ nFL

≈ 1

1 + 2πw2c

V(z0, z1) ≈ E2(z0, z1)cn
−2
F

nFL

2πw2c+ nFL
c+nFL

≈ E2(z0, z1)cn
−2
F

nFL

2πw2c+ 1

c→∞−→ E2(z0, z1)
1

2πw2
n−1
F L

nFV(z0, z1)

E2(z0)L(z0, z1)
≈ E(z0, z1)

E(z0)

c

2πw2c+ 1

c→∞−→ E(z0, z1)

E(z0)

1

2πw2
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