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V.D. Lakhno 

On the possibility of Bose condensate formation in ultracold neutron 

gas.  

 

It is suggested that the anomalous leakage of ultra-cold neutrons from a 

neutron trap may be associated with the formation of dineutrons in it. It is shown 

that the gas of ultracold neutrons at temperatures T less than 10-3 K should form a 

dineutron Bose condensate even in the absence of dineutrons as free stable 

particles. The consequences arising from the assumption of the stability of 

dineutrons in neutron stars are considered. The conditions for the formation of a 

Bose condensate from dineutrons in them and in heavy nuclei are discussed. 

Key words: dineutron, superconductivity, neutron star, neutronium, 

nanodot, bipolaron. 

  



 
 

1. Introduction 
The search for the dineutron has been the subject of extensive literature [1-6]. 

The hope for the existence of such a stable particle was inspired by the existence of 

a stable deuteron and the presence of isotopic invariance of nucleons. Indeed, in 

nuclear decay reactions, the dineutron usually arises as a short-lived formation at 

energies of the order of the binding energy of a deuteron [1-6]. 

The question of the stability and existence of the dineutron at lower and ultra-

low energies remains open at present. Great advances in the study of Bose 

condensates of ultra-cold atoms on the one hand and studies of the gas of trapped 

ultra-cold neutrons on the other hand, raise the question of the possibility of the 

formation of a neutron Bose condensate in such traps. The formation of a neutron 

Bose condensate is possible only if dineutrons are formed in a neutron gas, since 

neutrons are fermions. This possibility is supported by the presence of an anomaly 

in an ultra-cold neutron gas placed in a trap, when the observed amount of neutron 

leakage from the trap exceeds theoretical estimates by orders of magnitude [7-9]. 

Popular hypotheses explaining this phenomenon include such things as low heating 

during storage of ultracold neutrons associated with the rotation of the earth, 

neutron oscillations, the contribution of exotic decay processes (for example, the 

decay of a neutron with the formation of a neutral hydrogen atom), the transition of 

a neutron to dark matter, the reactor antineutrino anomaly, the existence of mirror 

dark matter, Zeno’s quantum paradox, and others [9]. This indicates that there is 

currently no generally accepted explanation for the neutron anomaly. 

The existence of such an anomaly could be explained by the presence of 

dineutrons in the ultracold gas, which, can be assumed to have a much larger 

capture cross-section by the nuclei of the trap walls than neutrons. If dineutrons 

exist, they can form a Bose condensate. 

The purpose of this article is to analyze the consequences that follow from 

the assumption of the possibility of the existence of stable dineutrons. In this 

general formulation, this question is also of interest in the case of superdense 

matter, such as heavy atomic nuclei, neutron or boson stars. 
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2. Bose Condensate of Dineutrons  
We will assume that the dineutron is stable at low energies.  

If we assume that the concentration of dineutrons n in the trap is equal to 

𝑛𝑛 = 𝑁𝑁 𝑉𝑉⁄  (where N is the number of dineutrons, V is the volume of the trap) is 

sufficient for the formation of their Bose condensate, then 𝑁𝑁 = 𝑁𝑁0 + 𝑁𝑁′: 

𝑁𝑁 = ∑ 𝑛𝑛𝑘𝑘𝑘𝑘                                                            (1) 

𝑁𝑁0 = 1 (exp(𝐸𝐸0 − 𝜇𝜇𝑐𝑐ℎ𝑒𝑒𝑒𝑒) 𝑇𝑇 − 1⁄ )⁄  

𝑁𝑁′ = � 1 (exp(𝐸𝐸𝑘𝑘 − 𝜇𝜇𝑐𝑐ℎ𝑒𝑒𝑒𝑒) 𝑇𝑇 − 1⁄ )⁄
𝑘𝑘≠0

 

where nk is the number of dineutrons with the wave number k, N0 is the number of 

dineutrons in the ground state of the Bose condensate, 𝑁𝑁′ is the number of 

supracondensate particles, 𝜇𝜇𝑐𝑐ℎ𝑒𝑒𝑒𝑒 is the chemical potential of the Bose gas: 

𝜇𝜇𝑐𝑐ℎ𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑑𝑑𝑑𝑑, where  𝐸𝐸𝑑𝑑𝑑𝑑 is the energy of the ground state of the dineutron. The 

equality 𝜇𝜇𝑐𝑐ℎ𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑑𝑑𝑑𝑑 corresponds to an infinitely large density of states of the 

Bose condensate near the gap Δ = 𝜇𝜇 in the dineutron spectrum (see Appendix A):  

𝐸𝐸𝑘𝑘 = [𝐸𝐸𝑑𝑑𝑑𝑑 + Δ𝑘𝑘 + 𝑘𝑘2 2𝑀𝑀⁄ ],    𝑘𝑘 > 0                                  (2) 

Δ𝑘𝑘 = �𝜇𝜇2 + 𝑘𝑘2, 

where 𝐸𝐸0 = 𝐸𝐸𝑑𝑑𝑑𝑑 for 𝑘𝑘 = 0, M is the mass of a dineutron. Here it is assumed that 

ℏ = 𝑐𝑐 = 1. 

Replacing the summation in (1) with integration over the wave numbers, we 

express the temperature of the Bose condensate of dineutrons Tc as: 

 

𝑇𝑇𝑐𝑐 = �𝐹𝐹3 2⁄ (0) 𝐹𝐹3 2⁄ (𝜉𝜉)⁄ �2 3⁄ 𝑇𝑇𝑐𝑐(0)                                        (3) 

𝐹𝐹3 2⁄ (𝜉𝜉) = 2
√𝜋𝜋
∫ 𝑡𝑡1 2⁄ 𝑑𝑑𝑑𝑑

𝑒𝑒
𝑡𝑡+�𝜉𝜉2+2𝑀𝑀𝑀𝑀𝑡𝑡 𝜇𝜇⁄

−1

𝛾𝛾
0 ,                                                (4) 

𝑇𝑇𝑐𝑐(0) = 3,31 𝑛𝑛2 3⁄

𝑀𝑀
,    𝛾𝛾 = 𝜅𝜅

𝑇𝑇𝑐𝑐
                                                   (5) 

 

In the case under consideration   𝑀𝑀 𝜇𝜇⁄ =13,92,    𝜉𝜉 = 𝜇𝜇 𝑇𝑇𝑐𝑐 = 1,566 ∙ 1012⁄  K/Tc,  
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𝜅𝜅 = 10−3𝐾𝐾 (≈ 10−7)eV is the value of the wall potential (optical potential) 

holding neutrons in the trap [8]. The quantity 𝜅𝜅 also has the meaning of the 

limiting temperature to which it was possible to cool a neutron in the trap. 

Equation of the form (3) is similar to the equation for determining the 

temperature of a superconducting transition in the bipolaron theory of high-

temperature superconductivity [10-11]1 except that in (4) there is a cutoff of the 

upper limit of integration by the value of the holding potential of the trap.  

The expression for Тс(0) defined by (5) is a universal formula for the critical 

temperature of an arbitrary Bose gas of non-interacting particles. Expression (3) 

determined the relationship between the critical temperature Тс of a Bose gas of 

particles interacting with a meson field and the critical temperature Тс(0) of a Bose 

gas of non-interacting particles. 

The Bose condensate occurring in the trap as a whole has a zero momentum 

P=0. Formally, if the size of the trap were infinite, then the momentum P, being a 

macroscopic quantity, would retain its value up to the temperature Tc of the order 

of magnitude of the gap Δ in the spectrum of Bose condensate particles. In reality, 

the trap has a finite size with a volume of approximately a liter and contains a 

finite number of particles (of the order of 108 neutrons). Therefore, the breakdown 

of such a Bose condensate will occur already at a gas temperature exceeding the 

potential of the trap. This circumstance is taken into account by introducing a 

cutoff 𝛾𝛾 in the upper limit of the integral in (4). 

Thus, the question of the value of the critical temperature of the Bose 

condensate of dineutrons Tc depending on their concentration n is associated with 

the solution of problem (3), (4), which will be considered in the next section. 

 

 

 

                                                 
1 formula (4.9.9) at page 113 in book [10] contains a misprint: instead of the 
exponent 2/3 it contains 3/2; accordingly, a similar misprint is contained in formula 
(9.9) at page 147 of book [11]  
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3. Conditions for the formation of Bose condensate  
Currently, the concentrations of ultracold neutrons n of the order of 105 cm-3 

are apparently achievable in terrestrial conditions (according to the project, such 

values are planned to be obtained at the Kazakh reactor of the Institute of Nuclear 

Physics by 2030, which will be the highest in the world). However, even for such 

extreme values of n, the value of Тс(0) from (5), is extremely small. Indeed, using 

the value: mn=939,565 MeV for the mass of a neutron and n=105 cm-3 for the value 

Tc(0) from (5), we obtain: 𝑇𝑇𝑐𝑐(0) = 1,72 ∙ 10−13𝐾𝐾. Such a small value of Тс(0) 

excludes the possibility of experimentally studying the phenomenon of Bose 

condensation in an ultracold neutron gas. 

The situation changes radically if neutrons interact with particles that have a 

mass gap in their spectrum. From a formal point of view, if the condition P=0 is 

preserved, then in the dineutron spectrum there is a huge mass gap, determined by 

(2). According to (3), for the above-mentioned values of the parameters, this gives 

a value of the order of 1011К for Тс. Hence, in this case, all the particles should fall 

into the Bose condensate. 

This, of course, does not happen, since already at a temperature T higher than 

𝑇𝑇𝜅𝜅 = 𝜅𝜅, the particles are no longer held by the trap and the condition P=0 is 

violated. It follows that the formation of a Bose condensate is little related to the 

number of dineutrons in the trap and depends entirely on the temperature, which 

should not exceed 𝜅𝜅. 

Note that dineutrons, being at Т less than 𝑇𝑇𝜅𝜅 in the condensate state in the 

lowest energy state, are unable to be captured by the walls of the trap. However, 

this does not mean that such a condensate will be stable, since supracondensate 

neutrons will be scattered by the walls of the trap and escape from it. As a result, 

the number of supracondensate particles will decrease, and their decrease will be 

compensated by the transition of condensed particles to the supracondensate state 

until their concentration in the condensate becomes zero. 

Our initial assumption about the existence of a bound state of two neutrons in 

the form of a dineutron is not mandatory. In the case when the binding energy of a 
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dineutron is zero, that is, when there is an ideal gas consisting only of free 

neutrons, its correlation length will be equal to the Compton wavelength of the 

nucleon meson coat 𝜆𝜆 = 1 𝜇𝜇 = 10−12⁄  cm. This means that any paired spatial 

configurations can be formed from neutrons in a trap without bringing such pairs 

closer by distances less than λ. Such pairs can be considered as Bose particles that 

can undergo Bose condensation and thereby lower the energy of the system at Т les 

than 𝑇𝑇𝜅𝜅. In this case, pairs of neutrons whose center of gravity in their Bose 

condensate is at rest (since all paired particles in the Bose condensate have zero 

momentum, as does the momentum of the entire Bose condensate as a whole) are 

chosen as paired Bose particles of an ideal gas of unbound neutrons. The paired 

states in this case are quite similar to Cooper pairs in conventional 

superconductors, in which electrons with opposite spins and momenta are 

correlated. By the same analogy, the instability of a rarefied Fermi gas of nucleons 

with respect to the formation of a nucleon Bose condensate follows from the fact 

that at Т=0 the energy of the Fermi gas is always positive, and the energy of the 

Bose condensate is zero. This conclusion is consistent with the general theorem 

proved by Kohn and Luttinger in 1965: “a many-particle system of fermions 

weakly interacting by short-range forces will become superfluid even if the 

interaction is repulsive” [12]. Thus, even with a repulsive potential between 

neutrons, a neutron gas under the condition that T is less than 𝑇𝑇𝜅𝜅 will form a Bose 

condensate with a critical condensation temperature equal to Тс(0). 

Let us now consider the opposite case of a very high density of neutron gas, 

which corresponds to neutron stars and superheavy nuclei (neutron density n is of 

the order of 1038 neutrons per cubic centimeter). In this case, we will assume in (3) 

𝛾𝛾 = ∞. According to [13], in this case, pairing of nucleons in the singlet state is 

possible in the inner crust of neutron stars. 

According to [14], the temperature of the superfluid component of such stars 

is of the order of 109 К. The calculation performed on the basis of (3) in this case 

leads to a value of n the order of 105 dineutrons per cubic centimeter (see 

Appendix B). Thus, to realize superfluidity in a neutron star, a very small 
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concentration of dineutrons is required. This, in turn, means that due to such a 

small n, superfluidity in heavy nuclei is impossible.  

4. Discusions 
In the introduction, a hypothesis was put forward that explains the leakage of 

neutrons from the trap due to the formation of dineutrons, which, due to their large 

characteristic size, have a large scattering cross-section on the walls of the trap. 

The results obtained allow us to put forward a hypothesis that the formed 

dineutrons, under the action of gravity, settle to the bottom of the trap, where they 

accumulate and form Bose-condensate islands with an increased concentration of 

dineutrons. An increase in the concentration does not lead to an increase in the 

temperature of the Bose-condensate, since the latter is determined only by the 

holding potential of the trap. This concentration can be artificially increased by 

creating quantum nanodots at the bottom of the trap, capable of capturing and 

holding dineutron clusters in their volume. A model calculation of the 

characteristics of such nanodots in the case of their capture of non-condensed 

neutrons yields for the captured neutrons a characteristic energy of the order of a 

micro-electron-Volt, a characteristic size of the order of tens of nanometers, and 

their lifetime of the order of a millisecond [15], which coincides with the 

characteristic thermalization time of ultracold neutrons at a temperature of the 

order of several millikelvins. 

 In an ideal Bose gas, its pressure does not depend on the density of the gas. 

For this reason, the Bose gas can be compressed to a minimum size determined by 

the size of the dineutron. In the case under consideration, such a compressive force 

for the neutron Bose condensate is the Earth's gravitational field, which, in the case 

of an ideal trap surface, leads to the formation of a two-dimensional condensate at 

the bottom of the trap, with a thickness of the order of an angstrom, and in the 

presence of defects and a fluctuating potential, to the formation of individual 

condensate islands at its bottom. Such islands will no longer represent an ideal gas, 

but a new stable state of matter, which, in the case of an attractive interaction 
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between dineutrons, collapses into a state similar to the state of neutron stars 

(called neutride or neutronium in popular and science fiction literature). 

If the binding energy of a dineutron is positive (i.e. its formation is 

energetically advantageous) and exceeds  𝑇𝑇𝜅𝜅, then the formation of a gas of 

dineutrons is possible even at a temperature higher than 𝑇𝑇𝜅𝜅 (an analog of the 

pseudo-gap phase in high-temperature superconductors [10-11]), which, when the 

temperature decreases below 𝑇𝑇𝜅𝜅, passes into a Bose-condensate state. If the binding 

energy is below the critical temperature of the Bose-condensate, then the formation 

of the condensate will occur at a temperature equal to the energy 𝑇𝑇𝜅𝜅 (similarly to 

the formation of Cooper pairs and superconductivity at 𝑇𝑇 = 𝑇𝑇𝑐𝑐 in conventional 

superconductors). As noted above, in any case, a system of weakly interacting 

fermions, regardless of the type of interaction, cannot remain in the state of a 

normal liquid up to absolute zero temperatures. The formation of a dineutron gas in 

the case of a positive binding energy will always occur with the release of energy 

equal to the energy of synthesis of dineutrons from neutrons, leading to its heating. 

The key to observing these effects is to obtain a low temperature Т less than 

𝑇𝑇𝜅𝜅 and to increase the neutron concentration in the trap. 

Large concentrations are also required to solve fundamental problems: 

measuring the magnitude of the neutron's electric dipole moment and the neutron 

lifetime. For this reason, it is hoped that the work on increasing the concentration 

of ultracold neutrons and lowering their storage temperature will continue. 

However, new technical ideas are needed for this. As such an idea, we can consider 

using “artificial” gravity by placing a trap in a centrifuge and thereby creating a 

centrifugal force that presses the neutrons to the trap wall, or using a dynamic 

oscillatory mode of the trap's motion. In [16], it was pointed out that it is 

fundamentally possible to create ultracold neutron concentrations using a laser 

method, which are several orders of magnitude higher than those currently 

available and achieve ultralow temperatures much lower than 𝑇𝑇𝜅𝜅 . In [17], it was 

proposed to use ultra-cold nanoparticles attached to the surface of the trap to 

increase the concentration of ultra-cold neutrons and lower the temperature. 
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As in the case of studying Bose condensates of ultracold atoms in zero 

gravity, it is of interest to conduct such a study with an ultracold neutron gas. For 

this purpose, it is necessary to take the neutron source, that is, the reactor, into 

space. Unlike the experiment under terrestrial conditions, the dineutrons formed in 

the trap will no longer settle to its bottom. The lifetime of the Bose condensate in 

this case will be determined only by the lifetime of the supracondensate part of the 

dineutrons. It can be increased by increasing the size of the trap. 

 

Appendix A. Slow dineutron field theory. 
The simplest phenomenological model describing the interaction of two 

nonrelativistic nucleons with a meson field has the form: 

𝐻𝐻 =
1

2𝑚𝑚�∇𝑟𝑟1Ψ
+∇𝑟𝑟1Ψ𝑑𝑑

3𝑟𝑟1𝑑𝑑3𝑟𝑟2 +
1

2𝑚𝑚�∇𝑟𝑟2Ψ
+∇𝑟𝑟2Ψ𝑑𝑑

3𝑟𝑟1𝑑𝑑3𝑟𝑟2 − 

−𝑔𝑔∫�𝜑𝜑(𝑟𝑟1) + 𝜑𝜑(𝑟𝑟2)�Ψ+Ψ𝑑𝑑3𝑟𝑟1𝑑𝑑3𝑟𝑟2 + 1
2 ∫{𝜋𝜋2 + (∇𝜑𝜑)2 + 𝜇𝜇2𝜑𝜑2}𝑑𝑑3𝑟𝑟 ,  (А.1) 

where Ψ(𝑟𝑟1, 𝑠𝑠1; 𝑟𝑟2, 𝑠𝑠2) is the wave function of two neutrons with coordinates and 

spins 𝑟𝑟1, 𝑠𝑠1 and 𝑟𝑟2, 𝑠𝑠2, m is the mass of the neutron, 𝑔𝑔 −is the constant of the 

neutron-meson coupling. In the quantum field description, the meson field 𝜑𝜑(𝑟𝑟) is 

an operator:  

𝜑𝜑(𝑟𝑟) = ∑ (2𝜔𝜔𝑘𝑘
0𝑉𝑉)−1/2

𝑘𝑘 (𝑏𝑏𝑘𝑘 + 𝑏𝑏−𝑘𝑘+ )𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,                              (А.2) 

𝜋𝜋(𝑟𝑟) = ∑ �𝜔𝜔𝑘𝑘
0

2𝑉𝑉
�
1/2

𝑘𝑘 (𝑏𝑏𝑘𝑘 − 𝑏𝑏−𝑘𝑘+ )𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, 

𝜔𝜔𝑘𝑘
0 = �𝜇𝜇2 + 𝑘𝑘2. 

where 𝑏𝑏𝑘𝑘  и 𝑏𝑏𝑘𝑘+ are the operators of annihilation and birth of mesons.  

With the use of (А.1), (А.2) the density of the Hamiltonian H will be: 

ℋ = − ℏ2

2𝑚𝑚
∆𝑟𝑟1 −

ℏ2

2𝑚𝑚
∆𝑟𝑟2 + ∑ ℏ𝜔𝜔𝑘𝑘

0𝑏𝑏𝑘𝑘+𝑏𝑏𝑘𝑘𝑘𝑘 +                            (А.3) 

+∑ [𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝑖𝑖𝑟𝑟1)𝑏𝑏𝑘𝑘 + 𝑉𝑉𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝑖𝑖𝑟𝑟2)𝑏𝑏𝑘𝑘 + 𝐻𝐻. 𝑐𝑐. ]𝑘𝑘 , 

𝑉𝑉𝑘𝑘 = 𝑔𝑔

�2𝜔𝜔𝑘𝑘
0𝑉𝑉�

, 
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Hamiltonian (A.3) is a non-relativistic quantum field problem of two bodies 

and coincides in structure with the Hamiltonian of a bipolaron in a polar crystal 

[10,11]. The simplest model considered by us should be supplemented by taking 

into account spin interactions by adding a term to H: 

 

∫𝑈𝑈(𝑟𝑟1, 𝑠𝑠1; 𝑟𝑟2, 𝑠𝑠2)Ψ+Ψ𝑑𝑑3𝑟𝑟1𝑑𝑑3𝑟𝑟2.                                          (А.4) 

where 𝑠𝑠1, 𝑠𝑠2 are the spin and isospin operators. In the case of a contact interaction 

of Heisenberg-type spins, according to (A.4), a delta-shaped repulsive potential 𝑈𝑈 

will be added to the Hamiltonian (A.3), the value of which will determine the 

stability of the paired state of the nucleons. 

It is significant that the translation-invariant theory of bipolarons is based on 

the same initial Fröhlich Hamiltonian (A.3) as that used in the Bardeen, Cooper, 

Schrieffer (BCS) theory. The difference between the case of nucleons in a meson 

field we are considering is only that the BCS theory considers electrons interacting 

with phonons, while the nucleon-meson field theory considers neutrons interacting 

with mesons (an application of the BCS theory to neutron matter is given in [18]). 

The difference in the theoretical approach is that the BCS theory is based on the 

exclusion of phonon variables from the Hamiltonian and the study of the resulting 

Hamiltonian, which contains only electron variables. In contrast to the BCS 

approach, in the TI-bipolaron gas theory, electron variables are excluded from the 

Hamiltonian. As a result, a Hamiltonian is obtained that depends only on phonon 

variables. The spectrum of eigenvalues of such a Hamiltonian determines the 

spectrum of excitations of bipolaron states. The spectrum obtained in this way is 

then used to describe the statistical properties of an ideal bipolaron gas. In the case 

under consideration, the role of the TI-bipolaron is played by the dineutron. In this 

case, 𝜔𝜔𝑘𝑘
0  plays the role of the energy gap of the dineutron Bose condensate, the 

minimum value of which is equal to the meson mass. It is useful to note that the 

Hamiltonian (A.1) is the simplest model of the interaction of nonrelativistic 

particles with any type of field 𝜑𝜑(𝑟𝑟). The critical temperature Тс described by (3)-
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(5), does not depend at all on the value of the interaction constant g and is 

determined by the value of the gap corresponding to such a field for which the gap 

is minimal. A candidate for the role of such a field could be the neutrino field (the 

dineutron model based on the interaction of neutrons with a neutrino field was 

considered in [19]), for which the upper estimate of the mass is 0.3 eV. The photon 

field has an even smaller gap, or rather its absence (the interaction of a neutron 

with a photon, even in the absence of a neutron spin, will be different from zero 

due to the presence of an electric dipole moment). In the latter case, the 

temperature of the Bose-condensate of dineutrons will be equal to  𝑇𝑇𝑐𝑐(0) = 1,72 ∙

10−13𝐾𝐾. Due to the weak interaction of neutrons with neutrino and photon fields, 

the establishment of thermal equilibrium in a neutron gas by such interactions 

requires so much time that their detailed consideration is hardly of interest from the 

point of view of terrestrial experiments. 

An important point is that a dineutron in a Bose condensate cannot scatter on 

the walls of the trap, since this is equivalent to the appearance of excitation in it – 

the escape of one of the particles from the condensate and an increase in the energy 

of the condensate. 

 

Appendix B. Solution of equation (3). 
1.Ultracold neutrons 

Since the value of μ is very large (𝜇𝜇 = 1,566 ∙ 1012𝐾𝐾), we set 𝜇𝜇 ≫ 𝑇𝑇𝑐𝑐. Due 

to the fact that the value of 𝜅𝜅 is small, we will also assume 𝛾𝛾 = 𝜅𝜅 𝑇𝑇𝑐𝑐⁄ ≪ 1.  

In this case, for 𝐹𝐹3 2⁄ (𝜉𝜉) from (4) we obtain: 

 

𝐹𝐹3 2⁄ (𝜉𝜉) ≈ 2
√𝜋𝜋
𝑒𝑒−𝜉𝜉 ∫ 𝑡𝑡1 2⁄ 𝑑𝑑𝑑𝑑𝛾𝛾

0 = 4
3√𝜋𝜋

𝛾𝛾3 2⁄ 𝑒𝑒−𝜉𝜉                            (B.1) 

Expression (B.1), according to the assumptions made, is valid for 𝜉𝜉 ≫ 1. In 

the case of 𝜉𝜉 = 0, for 𝐹𝐹3 2⁄ (0) we have:  

𝐹𝐹3 2⁄ (0) = 2
√𝜋𝜋
∫ 𝑡𝑡1 2⁄ 𝑑𝑑𝑑𝑑

𝑒𝑒𝑡𝑡−1
𝛾𝛾
0 = 2

√𝜋𝜋
∫ 𝑑𝑑𝑑𝑑

𝑡𝑡1 2⁄
𝛾𝛾
0 = 4

√𝜋𝜋
𝛾𝛾1 2⁄                        (B.2) 
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Then from (3) we get: 

𝑇𝑇𝑐𝑐 ≈ �3
𝛾𝛾
�
2 3⁄

𝑒𝑒2𝜉𝜉 3⁄ 𝑇𝑇𝑐𝑐(0)                                           (B.3) 

Assuming in (B.3) 

𝑇𝑇𝑐𝑐 = 2𝜇𝜇 𝑊𝑊�                                                     (B.4) 

We obtain from (B.3) Lambert equation for the function 𝑊𝑊(𝑧𝑧): 

 

𝑧𝑧 = 𝑊𝑊𝑒𝑒𝑊𝑊                                                      (B.5) 

where: 

𝑧𝑧 =
2𝜇𝜇𝜅𝜅2

9𝑇𝑇𝑐𝑐3(0)
 

for the parameters we use, the value 𝑧𝑧~1044. For this z from (B.5) we get: 

𝑊𝑊~102. As a result, for 𝑇𝑇𝑐𝑐 from (B.4) we have: 𝑇𝑇𝑐𝑐~1011𝐾𝐾. Thus, the assumption 

we made, that 𝜉𝜉 = 𝜇𝜇 𝑇𝑇𝑐𝑐 ≫⁄ 1 is justified. 

2. Neutron star. 

Even if we take the upper estimate for the Bose condensation temperature of 

dineutrons in a neutron star 𝑇𝑇𝑐𝑐 = 2 ∙ 1010𝐾𝐾, then for the concentration of 

dineutrons in a neutron star n using the numerical solution of (3) with 𝛾𝛾 ≫ 1 we 

obtain the value 𝑛𝑛 ≈ 105 dineutrons/cm3. This estimate changes little for the 

assumed range of possible values of 𝑇𝑇𝑐𝑐~108 ÷ 1010𝐾𝐾. 
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