ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ ИМ. М.В. КЕЛДЫША РОССИЙСКОЙ АКАДЕМИИ НАУК»

Утверждена Ученым советом ИПМ им. М.В. Келдыша РАН, протокол № 14-22 от «10» ноября 2022 г.

РАБОЧАЯ ПРОГРАММА

УЧЕБНОЙ ДИСЦИПЛИНЫ «Вычислительные машины, системы и сети»

Научные специальности:

2.3.5 – «Математическое обеспечение вычислительных систем, комплексов и компьютерных сетей»; 1.1.6 - «Вычислительная математика»

Форма обучения:

очная

Дисциплина: «Вычислительные машины, системы и сети»

Научные специальности:

- 2.3.5 «Математическое обеспечение вычислительных систем, комплексов икомпьютерных сетей»;
- 1.1.6 «Вычислительная математика».

Форма обучения: очная

ИСПОЛНИТЕЛЬ (разработчик программ):

Лацис А.О., ИПМ им. М.В. Келдыша, д.ф.-м.н.

РЕЦЕНЗЕНТ: Якобовский Михаил Владимирович, ИПМ им. М.В. Келдыша РАН, член-корреспондент РАН

РАБОЧАЯ ПРОГРАММА РЕКОМЕНДОВАНА

Ученым советом ИПМ им. М.В. Келдыша РАН, протокол № 14/22 от «10» ноября 2022 г.

n v	U	
Завелующии	аспирантурои	/ Меньшов И.С. /
эшьед угощии	aciiipaii ypoii	/ 1v1c11bmob 11.C. /

Оглавление

Оглавление	
1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	
4. ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	
5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	10
6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛИСШИПЛИНЫ	10

АННОТАЦИЯ

Рабочая программа дисциплины «Вычислительные машины, системы и сети» разработана и составлена на основании ФГТ - «Федеральные государственные требования к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов (адъюнктов)» (Приказ Минобрнауки № 951 от 20.10.2021г.), в соответствии с учебными планами подготовки аспирантов ФГУ «Федеральный исследовательский центр «Институт прикладной математики им. М.В. Келдыша РАН (ИПМ им. М.В. Келдыша РАН) по научным специальностям: 2.3.5 — «Математическое обеспечение вычислительных систем, комплексов икомпьютерных сетей»; 1.1.6 — «Вычислительная математика».

Дисциплина «Вычислительные машины, системы и сети» реализуется в рамках Блока «Образовательный компонент программы подготовки научных и научно - педагогических кадров в аспирантуре ИПМ им. М.В. Келдыша РАН.

Основным источником материалов для формирования содержания программы являются: научные издания и монографические исследования и публикации, а также материалы конференций, симпозиумов, семинаров и Интернет-ресурсы.

Общая трудоемкость дисциплины по учебному плану составляет 4 зач.ед. (144 часа), из них лекций -4 часа, семинарских занятий -10 часов, практических занятий -0 часов и самостоятельной работы -94 часа, на подготовку к экзамену — 36 часов. Дисциплина реализуется для научной специальности 2.3.5 на 1-м курсе, для научной специальности 1.1.6 во 2-м семестре, продолжительность обучения -1 семестр.

Текущая аттестация проводится не менее 2 раз в соответствии с заданиями и формами контроля, предусмотренными настоящей программой.

Промежуточная оценка знания осуществляется в период зачетно-экзаменационной сессии в форме зачета.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Пели и залачи лисциплины «Вычислительные машины, системы и сети»

Цель: освоение фундаментальных знаний и компетенций, которые позволят представлять и разрабатывать алгоритмы (решения поставленной задачи) с учетом особенностей и ограничений целевого компьютерного оборудования.

Задачи:

- освоить основы архитектуры процессоров, сопроцессоров-ускорителей и коммуникационных сетей, основных принципов виртуализации ресурсов;
- практическое освоение накопленных по дисциплине знаний при решении профессиональных проблем в реальных (смоделированных) условиях;
- стимулирование к самостоятельной деятельности по освоению дисциплины и формированию необходимых компетенций.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Вычислительные машины, системы и сети» направлен на получение определённых профессиональных умений, знаний, формирование компетенций.

- а) универсальные (УК): не предусмотрено.
- б) общепрофессиональных (ОПК): не предусмотрено.
- **в) профессиональных (ПК):** Способность использовать языки программирования и системы программирования (ПК-1), Способность создавать модели и алгоритмы проектирования программных систем (ПК-2),

В результате освоения дисциплины обучающийся должен:

Знать:

- основные понятия архитектуры процессоров, сопроцессоров ускорителей вычислений, коммуникационных сетей;
- основы техники виртуализации машинных ресурсов;
- основные подходы кластерной технологии построения суперкомпьютеров;

Уметь:

- оценивать накладные расходы на виртуализацию машинных ресурсов;
- оценивать степень сбалансированности вычислительного и коммуникационного оборудования в вычислительных кластерах;

Владеть:

- базовыми понятиями архитектуры процессора, ОС, коммуникационной сети;
- основами параллельного программирования;
- навыками выбора сбалансированных конфигураций вычислительного и коммуникационного оборудования в вычислительных кластерах.

Приобрести опыт:

- простейшего параллельного программирования в терминах легковесных процессов;
- простейшего параллельного программирования в терминах распределенной памяти.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Структура дисциплины

Распределение трудоемкости дисциплины по видам учебных работ

Вид учебной работы		Трудоемкость общая	
		час.	
ОБЩАЯ ТРУДОЕМКОСТЬ по Учебному плану	4	144	
Лекции (Л)		4	
Практические занятия (ПЗ)	-	-	
Семинары (С)		10	
Самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к семинарским и практическим занятиям) и самостоятельное изучение тем дисциплины		94	
Вид контроля: зачет			

3.2. Содержание разделов дисциплины

Общее содержание дисциплины

№ Наименование раздела раздела	Содержание раздела	Форма текущей аттестации
Основные понятия архитектуры процессора и ОС	Определение понятия архитектуры. Архитектура фон Неймана. Основные	О, ДЗ
процессора и ОС. Основы виртуализации.	архитектурные расширения фоннеймановских принципов в современных процессорах общего назначения. Определение алгоритма. Связь между понятием алгоритма и понятием фоннеймановской машины. Представление чисел в ЭВМ. Определения виртуальности и прозрачности. Как работает в простейшем случае виртуальная память процессора общего назначения. Определение процесса (в широком смысле слова). Система прерываний. Привилегированный и пользовательский режимы работы	

2.	Архитектуры параллельных вычислительных систем	используется в ОС. Как работает виртуальная машина (в узком смысле слова). Классификация вычислительных архитектур Флинна. Основные классы не фоннеймановских процессорных архитектур (векторные, мультитредовые, VLIW). Способы объединения многих процессоров в многопроцессорную вычислительную систему. Разница между NUMA - системами и системами на базе сетей односторонней передачи данных. Понятие кэшкогерентности. ссNUMA и пссNUMA. Иерархия памяти типичного GPGPU. Основные понятия программистской модели	О, ДЗ
3.	Основные понятия коммуникационных сетей	СUDA и OpenCL. Критерии эффективности коммуникационных сетей. Основы архитектуры PCI. Чем отличается PCI Express от старых версий PCI. Основные показатели скоростей и задержек в PCI Express. Семиуровневая модель OSI/ISO, Ethernet и tcp/ip. Что чему соответствует. Что такое кодирование 8/10 и для чего оно нужно. Топологии сетей. Сети с коммутаторами и без коммутаторов. Каскадирование коммутаторов. Почему не бывает ір-сетей без сетевых перегрузок и без потерь пакетов. Методы борьбы с сетевыми перегрузками в протоколе tcp. tcp-и udp- версии nfs в вычислительных кластерах.	О, ДЗ
4.	Вычислительные кластеры и их программное обеспечение	Кластерная технология построения суперкомпьютеров. Локальные сети, специально предназначенные для использования в составе вычислительных кластеров. Основные показатели скоростей и задержек в Infiniband. Зачем в МРІ так много функций. Основные направления расширения и уточнения функциональности по сравнению с "чистым" понятием рандеву. Зачем нужны коллективные операции. Библиотеки обмена данными в многопроцессорных вычислительных системах МРІ и shmem, в чем разница. Проблема глобальной адресации. Почему не может хорошо работать система vSMP.	О, ДЗ

Примечание: О – опрос, Д – дискуссия (диспут, круглый стол, мозговой штурм, ролевая игра), ДЗ – домашнее задание (эссе и пр.). Формы контроля не являются жесткими и могут быть заменены преподавателем на другую форму контроля в зависимости от контингента обучающихся. Кроме того, на занятиях семинарских может проводится работа с нормативными документами, изданиями средств информации и прочее, что также оценивается преподавателем.

3.3. Лекционные занятия

№ занятия	№ Раздела	Краткое содержание темы занятия	Кол-во часов
1.	1	Понятие архитектуры, виртуальности, прозрачности. Архитектура фон Неймана, ее расширения в современных процессорах. Основы техники виртуализации.	2
2.	2	Классификация вычислительных архитектур Флинна. Основные классы не - фоннеймановских процессорных архитектур (векторные, мультитредовые, VLIW). Способы объединения многих процессоров в многопроцессорную вычислительную систему. Понятие кэшкогерентности. ccNUMA и nccNUMA.	2
	ВСЕГО		4

з.4. Семинарские занятия

№ занятия	№ Раздела (темы)	Краткое содержание темы занятия	Кол-во часов
3.	3	Задачи по темам: критерии эффективности коммуникационных сетей, основы архитектуры PCI.	2
4.	2	Задачи по темам: Основные понятия программистской модели CUDA и OpenCL.	2
5.	4	Задачи по темам: Основные направления расширения и уточнения функциональности MPI по сравнению с "чистым" понятием рандеву	2
6.	3	Задачи по темам: Топологии сетей. Сети с коммутаторами и без коммутаторов.	2
7.	4	Задачи по теме: Сравнение различных библиотек обмена данными в многопроцессорных системах, повторение предыдущих тем.	2
	ВСЕГО		10

4. ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Текущая аттестация аспирантов. Текущая аттестация аспирантов проводится в соответствии с локальным актом ИПМ им. М.В. Келдыша РАН - Положением о текущей, промежуточной и итоговой аттестации аспирантов ИПМ им. М.В. Келдыша РАН по программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре и является обязательной.

Текущая аттестация по дисциплине проводится в форме опроса, а также оценки вопросаответа в рамках участия обучающихся в дискуссиях и различных контрольных мероприятиях по оцениванию фактических результатов обучения, осуществляемых преподавателем, ведущим дисциплину. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины см. ниже.

Объектами оценивания выступают:

- учебная дисциплина активность на занятиях, своевременность выполнения различных видов заданий, посещаемость занятий;
- степень усвоения теоретических знаний и уровень овладения практическими умениями и навыками по всем видам учебной работы, проводимых в рамках семинаров, практических занятий и самостоятельной работы.

Оценивание обучающегося на занятиях осуществляется с использованием нормативных оценок по 4-х бальной системе (5-отлично, 4-хорошо, 3-удовлетворительно, 2-не удовлетворительно).

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Форма контроля знаний	Вид аттестации	Примечание
проверочные работы в течение всего курса	текущая	Ниже приведены перечни рекомендуемых задач и контрольных вопросов
зачет	итоговая	

Примерный перечень рекомендуемых контрольных вопросов для оценки **текущего** уровня успеваемости студента:

- 1. Понятие архитектуры, виртуальности, прозрачности.
- 2. Архитектура фон Неймана, ее расширения в современных процессорах.
- 3. Основы техники виртуализации.
- 4. Классификация вычислительных архитектур Флинна.
- 5. Основные классы не фоннеймановских процессорных архитектур (векторные,

- мультитредовые, VLIW).
- 6. Способы объединения многих процессоров в многопроцессорную вычислительную систему.
- 7. Понятие кэш-когерентности. ccNUMA и nccNUMA.

Примерный перечень рекомендуемых **контрольных задач** для оценки текущего уровня успеваемости студента:

- 1. Сколько физической памяти может быть в компьютере с 36-разрядным физическимадресом?
- 2. Написать тесты измерения латентности и темпа выдачи сообщений в МРІ.
- 3. Выбрать ширину кабеля DDR Infiniband, согласованную с сетевой картой PCI ExpressGen1 x8.
- 4. Описать способ эффективной реализации подмножества библиотеки shmem наоснове библиотеки MPI.

Итоговая аттестация аспирантов. Итоговая аттестация аспирантов по дисциплине проводится в соответствии с локальным актом ИПМ им. М.В. Келдыша РАН

– Положением о текущей, промежуточной и итоговой аттестации аспирантов ИПМ им. М.В. Келдыша РАН по программам высшего образования – программам подготовки научно-педагогических кадров в аспирантуре и является обязательной.

Итоговая аттестация по дисциплине осуществляется в форме зачета в период зачетноэкзаменационной сессии в соответствии с Графиком учебного процесса. Обучающийся допускается к зачету в случае выполнения аспирантом всех учебных заданий и мероприятий, предусмотренных настоящей программой. В случае наличия учебной задолженности (пропущенных занятий и (или) невыполненных заданий) аспирант отрабатывает пропущенные занятия и выполняет задания.

Оценивание обучающегося на промежуточной аттестации осуществляется с использованием нормативных оценок на зачете – зачет, незачет.

Оценивание аспиранта на промежуточной аттестации в форме экзамена

Оценка	Требования к знаниям и критерии выставления оценок		
Незачет	основное содержание учебного материала не раскрыто; допущены грубые ошибка в определении понятий и при использовании терминологии; не даны ответы на дополнительные вопросы.		
Зачет	раскрыто содержание материала, даны корректные определения понятий; допускаются незначительные нарушения последовательности изложения; допускаются небольшие неточности при использовании терминов или в логических выводах; при неточностях задаются дополнительные вопросы.		

Список вопросов к итоговой аттестации в виде зачета.

- 1. Определение понятия архитектуры. Архитектура фон Неймана. Основные архитектурные расширения фоннеймановских принципов в современных процессорах общего назначения.
- 2. Определение алгоритма. Связь между понятием алгоритма и понятием фоннеймановской машины.
- 3. Определения виртуальности и прозрачности. Как работает в простейшем случае виртуальная память процессора общего назначения.
- 4. Как работает виртуальная машина (в узком смысле слова). Проследить основные события при записи блока данных на диск в пользовательской программе на виртуальной машине.
- 5. Определения и назначение ОС, ядра ОС, системных процессов (демонов, сервисов), процесса (в узком смысле слова), нити. Почему нить называют легковесным процессом.

- 6. Классификация вычислительных архитектур Флинна. Основные классы не фоннеймановских процессорных архитектур (векторные, мультитредовые, VLIW).
- 7. Способы объединения многих процессоров в многопроцессорную вычислительную систему. Уточнить разницу между NUMA системами и системами на базе сетей односторонней передачи данных. Понятие кэш-когерентности. ccNUMA и nccNUMA.
- 8. Иерархия памяти типичного GPGPU. Основные понятия программистской модели CUDA и OpenCL.
- 9. Критерии эффективности коммуникационных сетей.
- 10. Основы архитектуры PCI. Чем отличается PCI Express от старых версий PCI. Основные показатели скоростей и задержек в PCI Express.
- 11. Семиуровневая модель OSI/ISO, Ethernet и tcp/ip. Что чему соответствует. Что такое кодирование 8/10 и для чего оно нужно.
- 12. Топологии сетей. Сети с коммутаторами и без коммутаторов. Каскадирование коммутаторов.
- 13. Кластерная технология построения суперкомпьютеров. Локальные сети, специально предназначенные для использования в составе вычислительных кластеров. Основные показатели скоростей и задержек в Infiniband.
- 14. Зачем в MPI так много функций. Основные направления расширения и уточнения функциональности по сравнению с "чистым" понятием рандеву. Зачем нужны коллективные операции.
- 15. Библиотеки обмена данными в многопроцессорных вычислительных системах MPI и shmem, в чем разница. Проблема глобальной адресации.
- 16. Почему не может хорошо работать система vSMP.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Кнут Д. Э. Искусство программирования. т. 1. Основные алгоритмы. М., «Мир», 1976.-735с.
- 2. Воеводин В. В., Воеводин Вл. В. Параллельные вычисления. СПб, БХВ-Петербург,2002. 602 с.: ил. ISBN 5-94157-160-7
- 3. Богачев К. Ю. Основы параллельного программирования. М., БИНОМ: Лаборатория знаний, 2003.- 342c. ISBN 5-94774-037-0

Дополнительная литература и Интернет-ресурсы

- 1. Таненбаум Э. Современные операционные системы. 2-е изд. СПб, Питер, 2005. 1038 с.: ил. ISBN 5-318-00299-4
- 2. Лацис А. О. Параллельная обработка данных. М., Академия, 2010. 336с.

ISBN 978-5-7695-5951-8

- 3. http://www.nvidia.ru/object/cuda-parallel-computing-ru.html Время обращения 18.02 31.01.2016.
- 4. R. Budruk, D. Anderson, T. Shanley. PCI Express System Architecture. Addison Wesley, 2003. ISBN 0-321-15630-7.
- 5. J. Trodden, D. Anderson. Hypertransport System Architecture. Addison Wesley, 2003. ISBN 0-321-16845-3.
- 6. Таненбаум Э., Уэзеролл Д. Компьютерные сети. СПб, Питер, 2012.- 960с.
- 7. http://www.parallel.ru/tech/tech_dev/MPI/ Время обращения 18.02 31.01.2016.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для обеспечения интерактивных методов обучения для чтения лекций требуется аудитория с мультимедиа (возможен вариант с интерактивной доской).

Для проведения дискуссий и круглых столов, возможно, использование аудиторий со специальным расположением столов и стульев.

ИСПОЛНИТЕЛИ (разработчики программы):

Лацис А.О., ИПМ им. М.В. Келдыша, зав. сектором, д.ф.-м.н.