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Аннотация 

Работа посвящена задаче оценки ориентации объекта и его угловой 

скорости с помощью обработки изображений. Для решения данной задачи 

рассмотрен подход, состоящий из двух частей: определение матрицы поворота 

через модель измерения, адаптированной для использования кватернионов и 

реализация расширенного фильтра Калмана для оценки угловой скорости.  

Модель измерения - это функция обеспечивающая преобразование 

координат точки в пространстве в координаты этой точки на ПЗС-матрице 

камеры. Она зависит от внутренних неизменных параметров камеры, а также 

от кватерниона ориентации и расстояния между камерой и объектом. Для 

определения внутренних параметров камеры проводится калибровка, которая 

также позволяет получить кватернион и расстояние.  

Результаты экспериментальных исследований показали, что при 

калибровке можно определить кватернион ориентации с хорошей точностью, 

при это точность оценки угловой скорости, полученной с помощью 

численного дифференцирования, оказалась неудовлетворительной. Для 

повышения точности измерения угловой скорости был использован 

расширенный фильтр Калмана.   
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Introduction 

The measurement of angular movement is of great importance because it allows 

to know and predict the orientation of the bodies with respect to a reference system, 

such information is vital for missions where maneuvers and interactions of two 

bodies or more are performed. 

Researches on attitude and angular velocity estimation of objects have been 

performed with the help of different sensors such as photelectric encoders, 

tachometers, inertial sensors, and even laser. However, their implementation can be 

expensive. The use of digital images as low-cost sources of information for 

evaluating the angular motion is actively used in the field of robotics, control system, 

augmented reality, and are also widely used in the field of satellite systems. 

Over the last four decades, a variety researches have been done on measuring 

motion parameters of objects using cameras, where a considerable importance had 

the develop of methods for camera calibration, which consist in the determination 

of internal parameters of the camera. In [4-7] calibration methods with analytical 

solutions are presented, where in addition to determine internal parameters of the 

camera, the 3-D object attitude in space are determined as part of the calibration 

process. Tsai [6] used Euler angles, while Zhang [5] used Rodrigues' rotation 

formula. 

Researches have been proposed to investigate the measurement of object pose 

estimation. M. Dhome [8] proposed method to find the analytical solutions to the 

problem of the determination of the 3-D object attitude in space from a single 

perspective image. H. Kim [9] proposed a simple and fast stereo matching algorithm 

for real-time robotic applications using 3D information of vertexes on the outline of 

an object in image plane. Z. Zhong [10] presents a feature point pairs based 

technique for object pose estimation and 3D structure recovery from a single view, 

where it is defined strategies for small rotational and large rotational motion, X. 

Zhang [11] present algorithms for recovering the camera pose and the 3D-to-2D line 

correspondences simultaneously. 
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Measurement angular velocity by image processing is furthermore studied. 

Zhang [14] by means blurred images processing, proposed the estimation of motion 

parameters by measuring and comparing global geometric properties. Shigang [13] 

proposed parameter measurement of rotation through analyzing the information of 

visual rotation motion blur based on a single blurred image. By using event cameras, 

which have independent pixels that respond asynchronously to brightness changes, 

G. Gallego and D.Scaramuzza [11] proposed algorithm to estimate the angular 

velocity of the camera by analyzing the spatio-temporal coordinates of the brightness 

change. 

Several years ago, it is increased the interest in parameters movement 

estimation by image processing for space applications. A.A.Boguslavsky [20] 

presented a software package that by means of video signal received from the TV-

camera, mounted on the spacecraft board, allows the automatic visual monitoring of 

a spacecraft "Progress" docking to International Space Station. D. Ivanov [21], 

proposed a satellite relative position and orientation determination algorithm by 

performing image processing of the Sunlit spacecraft. This algorithm was used to 

determine the relative movement of the ChibisM microsatellite developed by the IKI 

RAS. 

Koptev M.D. [22] proposed a method for the translational and rotational motion 

determination of mock-ups suspended on an aerodynamic testbed. The algorithm 

was based on the detection of installed special marks on the model’s body to evaluate 

the location of the model’s center of mass, angular position and angular velocity in 

the coordinate system associated with the aerodynamic testbed. 

The difference between the determination algorithm developed and the one 

described above is that it does not require the installation of an additional special 

objective or photodiodes on the satellite to shoot; it is enough to know the geometry 

of the object being shot. The algorithm does not require the transfer of any data from 

the satellite being taken, therefore a piece of space debris can act as the second 

device. Therefore, the algorithm is suitable for the tasks of removing space debris 
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from orbit: the satellite companion flies towards the debris, determines its 

movement, captures it and takes it to dense layers of the atmosphere.  

Most of researches on measuring angular motion parameters mentioned above 

are focused on parameter 3-D object attitude determination or measurement angular 

velocity, but not both, if 3-D object attitude determination and angular velocity are 

considered to be estimated at the same time, usually it is considered to add one more 

sensor in addition to camera. 

While in [5] and [6] used Rodrigues' rotation formula and Euler angles 

respectively, The purpose of this thesis work is the estimation of the 3-D object 

attitude by using quaternions , and in addition the angular velocity estimation at the 

same time by mean of a conventional low-cost camera without any additional sensor. 

The section 1 elaborates the problem statement of this research, and it is explained 

the importance of measurement model determination, which is the mathematical 

model for the camera. In the section 2 it is explained step by step the mathematical 

expression for the measurement model and its gradient. In the section 3 is the linear 

measurement model which allows to determine some parameters of the 

measurement model by linear methods. Due to the fact that the measurement model 

ℎ is nonlinear and depends on unknown parameters of the camera, a calibration 

process is needed to be performed; In the section 4 the algorithm for calibration is 

explained and applied for 3-D object attitude determination.   

Because the estimation of the angular velocity from consecutives rotation 

matrix has low precision, in the section 5 is shown the modeling system and the 

application of the Extended Kalman Filter to improve 3-D object attitude accuracy 

and for angular velocity estimation. And Finally, in section 6 the results for 3-D 

object attitude determination angular velocity estimation are shown. 
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1 Problem statement  

The problem of the angular motion determination by the image processing is 

considered. The source of measurements is the camera which captures the object’s 

movement by taking photographs at a certain frequency (see Figure 1), These 

pictures are processed to estimate the angular motion of the object using the 

following information: 

• 𝑋𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖): coordinates of the object points relative to the body-fixed frame 

OXYZ 

• 𝑋𝑖′(𝑥𝑖′, 𝑦𝑖′): coordinates of the same points 𝑋𝑖 , which are visualized and 

located in the image coordinate system (image) 

 

The basic structure of a camera is shown in the Figure 2, where two main 

components are involved: 

• Lens: Has the function of gathering and focus the light reflected from an 

object or scene. As the reflected light rays enter the camera lens, they are 

directed to the image sensor. 

• Image sensor: it is a rectangular plane into where the points are projected, 

representing in that way the image of the object. 

Figure 1. Diagram of the problem statement 

𝑤ሬሬԦ𝑟𝑒𝑙 

𝑋𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 

Body-fixed frame 

𝑋𝑖′(𝑥𝑖′, 𝑦𝑖′) 

U 

V 

Image coordinate 

system 

O 

Oc 

Oimg 
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The image sensor is located parallel to the lens in the focal plane of the lens. 

The distance between the lens and the focal plane is called focal length 𝑓. 

 

 

The locations of specific points of an object in a photograph varies according 

to the rotation matrix 𝑹, and its translation vector 𝑻𝒄 with respect to the camera. 

Thus, the estimation of the rotation matrix of a rigid body is possible when function 

ℎ(𝑹, 𝑻𝒄), called measurement model, that performs the projection of point 𝑋𝑖 into 

the Image coordinate system is found. In addition, an average angular velocity can 

be calculated from two consecutive rotation matrices, thus, the first stage on this 

work is focused on the rotation matrix determination. 

In the Figure 3 are shown the cartesian coordinates system used in this work: 

• 𝑂𝑋𝑌𝑍 − Body-fixed frame (BF). This coordinate system is placed on the 

object. 

• 𝑂𝑐𝑋𝑐𝑌𝑐𝑍𝑐− Camera Coordinate System (CCS). It is based on the pinhole 

model, where its origin 𝑂𝑐  is located at camera center (center of the lens), 

𝑂𝑐𝑍𝑐 is defined by the line from the camera center perpendicular to the image 

sensor, 𝑂𝑐𝑋𝑐 is parallel to the horizontal side of the image sensor, 𝑂𝑐𝑌𝑐 is 

parallel to the vertical side of the image sensor. 

• 𝑂𝑖𝑚𝑔𝑈𝑉 – Image Coordinate System (ICS), also known as Image plane, is 

located in the plane defined by 𝑍𝑐 = 𝑓 ,  Its origin 𝑂𝑖𝑚𝑔 location depends on 

Image 
Lens 

Figure 2. Basic structure of a camera 
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the size of the image, 𝑂𝑖𝑚𝑔𝑈 is parallel to the axis 𝑂𝑐𝑋𝑐, 𝑂𝑖𝑚𝑔𝑉 is parallel to 

the axis 𝑂𝑐𝑌𝑐 . 𝑃 = (𝑢0, 𝑣0) is the principal point, which is located with respect 

to ICS. The principal point is formed by the intersection point between the 

𝑂𝑐𝑍𝑐-axis and the sensor plane. 

 

The following notation of points in different coordinate systems is used: 

• 𝑋𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) – 𝑖-th point with respect to BF. 

• 𝑋𝑐𝑖
(𝑥𝑐𝑖

, 𝑦𝑐𝑖
, 𝑧𝑐𝑖

) – 𝑖-th point with respect to CCS. 

• 𝑋𝑖
′(𝑥𝑖

′, 𝑦𝑖
′) −  𝑖-th point with respect to ICS. 

With regard to 𝑋𝑖 , it is important to notice this point remain fixed with respect 

to the BF. 

In order to implement the above explained, the next are considered:   

• In section 2 the measurement model ℎ(𝑹, 𝑻𝒄) is defined. It shows the 

interconnection between parameters 𝑹 and 𝑻𝒄, that must be defined and 

points 𝑋𝑖
′ and 𝑋𝑖 coordinates which can be measured. 

Z 

X 

Y 
XC 

YC 

ZC 

Camera Coordinate 

System 

U V 

𝑃(𝑢0, 𝑣0) 

f = focal length 

Body-fixed frame 

Image Coordinate 

System 

R 

𝑋𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 

𝑋𝑖
′(𝑥𝑖

′, 𝑦𝑖
′) 

O 

𝑂𝑐 

TC 

ℎ(𝑹, 𝑻𝒄) 

Oimg 

Principal point 

Figure 3. Pinhole camera model 
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• In section 3 the linearization of the measurement model is performed. 

This is required in order to obtain initial values for 𝑹 and 𝑻𝒄, which 

will be used during the calibration. 

• In section 4 the calibration algorithm of the of the camera is presented. 

• In section 5 the Kalman filter for angular velocity estimation is derived. 

• Finally, in section 6 the results for 3-D object attitude determination 

angular velocity estimation are shown.  

Most of the elements mentioned in this section are considered for measurement 

model ℎ(𝑹, 𝑻𝒄)  determination because of its importance and relevance in the 

success of this work, for that reason is given in details the process to determine the 

measurement model. 
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2 Measurement model 

In order to determine the measurement model ℎ , which is a function that 

performs the projection of point 𝑋𝑖 into the ICS from BF, it is required to consider 

the following: 

• Transformation from BF to CCS 

• Projection of the points from CCS into the sensor plane 

• Distortion lens 

• Transformation from sensor plane to ICS 

which going to be explained in detail in this section. 

2.1 Transformation from BF to CCS 

Let 𝑋𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
𝑇  be any point in the BF, where its transformation to the 

CCS is defined as follow: 

 𝑋𝑐𝑖
= [

𝑥𝑐𝑖
𝑦𝑐𝑖
𝑧𝑐𝑖

] = 𝑅 [

𝑥𝑖

𝑦𝑖

𝑧𝑖

] + 𝑻𝒄 (2.1) 

Where the rotation matrix R can be expressed as  

 

 𝑅 = [

𝑟11

𝑟21

𝑟31

𝑟12

𝑟22

𝑟32

𝑟13

𝑟23

𝑟31

] (2.2) 

and 𝑇𝑐 is translation vector with respect to CCS: 

 𝑻𝒄 = [𝑡𝑥𝑐 𝑡𝑦𝑐 𝑡𝑧𝑐]𝑇 (2.3) 

From equation  (2.1), (2.2) and 

 (2.3) the next expression 

 𝑋𝑐𝑖
= [

𝑥𝑐𝑖
𝑦𝑐𝑖
𝑧𝑐𝑖

] = [

𝑟11𝑥𝑖 + 𝑟12𝑦𝑖 + 𝑟13𝑧𝑖 + 𝑡𝑥𝑐

𝑟21𝑥𝑖 + 𝑟22𝑦𝑖 + 𝑟23𝑧𝑖 + 𝑡𝑦𝑐

𝑟31𝑥𝑖 + 𝑟32𝑦𝑖 + 𝑟33𝑧𝑖 + 𝑡𝑧𝑐

] (2.4) 

performs the transition from points from BF to the CCS. 

2.2 Projection of the points from CCS into the image plane 

The point 𝑋𝑐𝑝 represents the projection into the image plane of the points from 

CCS into the image plane, and it is expressed as 
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Tangential 

distortion 

 𝑋𝑐𝑝𝑖
= [

𝑥𝑐𝑝𝑖
𝑦𝑐𝑝𝑖

] = [
𝑥𝑐𝑖

/𝑧𝑐𝑖

𝑦𝑐𝑖
/𝑧𝑐𝑖

] (2.5) 

Where  

 𝑥𝑐𝑝𝑖
= 

𝑟11𝑥𝑖+𝑟12𝑦𝑖+𝑟13𝑧𝑖+𝑡𝑥𝑐

𝑟31𝑥𝑖+𝑟32𝑦𝑖+𝑟33𝑧𝑖+𝑡𝑧𝑐
 (2.6) 

 𝑦𝑐𝑝𝑖
= 

𝑟21𝑥𝑖+𝑟22𝑦𝑖+𝑟23𝑧𝑖+𝑡𝑦𝑐

𝑟31𝑥𝑖+𝑟32𝑦𝑖+𝑟33𝑧𝑖+𝑡𝑧𝑐
 (2.7) 

It is important to mention that 𝑋𝑐𝑝 is still located in the CCS. 

2.3 Lens distortion 

It is necessary to take into account that the image is distorted because of the 

lens distortion during the projection of the point 𝑋𝑐 into the sensor plane. The usual 

types of distortion are radial distortion and tangential distortion. Radial distortion 

can be defined as a function which depends on the distance from the principal point 

(center image), and tangential distortion is caused by a not perfect parallel alignment 

between the lens and the image sensor [3]. These distortions can be defined by the 

following equation 

𝑋𝑑𝑖
= [

𝑥𝑑𝑖
𝑦𝑑𝑖

] = [
𝑥𝑐𝑝𝑖

(1 + 𝑘1𝑟𝑖
2 + 𝑘2𝑟𝑖

4 + 𝑘3𝑟𝑖
6) + 2𝑝1𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖
+ 𝑝2(𝑟𝑖

2 + 2𝑥𝑐𝑝𝑖
2)

𝑦𝑐𝑝𝑖
(1 + 𝑘1𝑟𝑖

2 + 𝑘2𝑟𝑖
4 + 𝑘3𝑟𝑖

6) + 2𝑝2𝑥𝑐𝑝𝑖
𝑦𝑐𝑝𝑖

+ 𝑝1(𝑟𝑖
2 + 2𝑦𝑐𝑝𝑖

2)
](2.8) 

 

 

Where 𝑟𝑖
2 = 𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2 and  𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2 are the distortion coefficients, 

𝑋𝑑 is the point coordinates when the lens distortion is taken into account. Incase 

when there is no lens distortion (ideal lens), 𝑋𝑑𝑖
 and 𝑋𝑐𝑝𝑖

 are equal. 

2.4 Transformation from sensor plane to ICS 

Due to the fact that the ICS and sensor plane are parallel, and both located at 

the same plane, this transformation is based on scaling and translation of the points 

located in the sensor plane as follow: 

𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ (𝑓𝑥, 𝑓𝑦 , 𝑢0, 𝑣0, 𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝑅, 𝑇𝑐, 𝑋𝑖) = [
(𝑥𝑑𝑖

+ 𝑠𝑦𝑑𝑖
)𝑓𝑥 + 𝑢0

𝑦𝑑𝑖
𝑓𝑦 + 𝑣0

](2.9 ) 

Where: 

 𝑃 = (𝑢0, 𝑣0): Principal point. 

Radial distortion 
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𝑓𝑥 = 𝛼𝑥𝑓 : focal length axis-x (pixel). 

𝑓𝑦 = 𝛼𝑦𝑓 : focal length axis-y (pixel). 

𝛼𝑥 , 𝛼𝑦: number of pixel per unit distance. 

𝑠: skew coefficient, which usually is equal to zero. 

𝑋𝑝𝑖
: mapped point in the ICS from the BF. 

𝑋𝑖: Point in the BF. 

The equation (2.9 ) rewritten as follow: 

 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋𝑖
(𝑓𝑥, 𝑓𝑦 , 𝑢0, 𝑣0, 𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝑅, 𝑇𝑐) (2.10) 

where ℎ𝑋𝑖
  is called measurement model, which performs the projection of a 

point 𝑋𝑖 into the ICS from the BF. However, taking into account that the parameters 

𝑓𝑥 , 𝑓𝑦 , 𝑢0, 𝑣0, 𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2 are fixed values and specific for each camera, the 

equation (2.10) can be simplified to ℎ𝑋𝑖
(𝑹, 𝑻𝒄)  once those parameters are 

determined.  

2.5 Measurement model based on Rodrigues' rotation formula 

Due to the fact that the rotation matrix has 9 scalar elements, it is convenient to 

express the rotation matrix with less scalar elements, it can be done by mean of 

Rodrigues’s rotation formula as follow: 

 𝑅(𝛼, 𝒖) = 𝐼3 cos 𝛼 + (1 − cos𝛼)𝒖𝒖𝑇 + [𝒖]𝑥 sin 𝛼 (2.11) 

Where 𝒖 = [𝑢1, 𝑢2, 𝑢3]
𝑇 is the axis-rotation, 𝛼 is the angle rotation, and [𝒖]𝑥 

is skew-symmetric matrix of the vector 𝒖. 

 [𝒖]𝑥 = [

0 −𝑢3 𝑢2

𝑢3 0 −𝑢1

−𝑢2 𝑢1 0
] (2.12) 

In addition, as in [2], let the vector 𝝂 = [𝜈1, 𝜈2, 𝜈3]
𝑇 be defined as follow: 

 𝝂 = 𝛼𝒖 (2.13) 

where 𝛼 and 𝑢ሬԦ are given as a function of 𝜈Ԧ: 
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 𝛼(𝝂) = |𝝂| = √(𝝂, 𝝂) (2.14) 

 𝒖(𝝂) =
𝝂

|𝝂|
 (2.15) 

After substitutions, the rotation matrix 𝑅 can be written as a function of the 

vector 𝒗. 

 𝑅(𝒗) = 𝑅(𝒖(𝒗), 𝛼(𝒗)) = 𝐼3 cos 𝛼 + (1 − cos𝛼)𝒖𝒖𝑇 + [𝒖]𝑥 sin 𝛼 (2.16) 

As it can be noticed from the previous equations, the rotation matrix, which 

originally depends on 9 scalar values, now can be expressed by using a vector of 

three scalar values, hence the equation  (2.10) can be rewritten as follow: 

 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋𝑖
(𝑓𝑥, 𝑓𝑦 , 𝑢0, 𝑣0, 𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝒗, 𝑻𝒄) (2.17) 

It is convenient for an optimization problem, because in that way the number 

of parameters that have to be determined is decreased. 

2.6 Measurement model based on Quaternions 

Taking into account basic quaternion theory, let the multiplication of 

quaternions 𝑸 = [𝑞0, 𝑞1, 𝑞2, 𝑞3]
𝑇and 𝑷 = [𝑝0, 𝑝1, 𝑝2, 𝑝3]

𝑇 be defined as follow:  

 𝑷 ∘ 𝑸 = [
𝑝0

𝒑 ] ∘ [
𝑞0

𝒒 ] = [
𝑝0𝑞0 − 𝒑𝒒

𝑝0𝒒 + 𝑞0𝒑 + 𝒑 𝑥 𝒒] (2.18) 

Where 𝒒 = [𝑞1, 𝑞2, 𝑞3]
𝑇  and 𝒑 = [𝑝1, 𝑝2, 𝑝3]

𝑇  are vector parts of the 

quaternions 𝑸 and 𝑷 respectively. The previous equation also can be rewritten in a 

matrix form: 

𝑷 ∘ 𝑸 = [
𝑝0

𝒑 ] ∘ [
𝑞0

𝒒 ] = [
𝑝0 −𝒑𝑇

𝒑 𝑝0𝐼3 + [𝒑]𝑥
] [

𝑞0

𝒒 ] = [
𝑞0 −𝒒𝑇

𝒒 𝑞0𝐼3 − [𝒒]𝑥
] [

𝑝0

𝒑 ] 

  (2.19) 

𝑷 ∘ 𝑸 = [

𝑝0 −𝑝1

𝑝1 𝑝0

−𝑝2 −𝑝3

−𝑝3 𝑝2
𝑝2 𝑝3

𝑝3 −𝑝2

𝑝0 −𝑝1

𝑝1 𝑝0

] [
𝑞0

𝒒 ] = [

𝑞0 −𝑞1

𝑞1 𝑞0

−𝑞2 −𝑞3

𝑞3 −𝑞2
𝑞2 −𝑞3

𝑞3 𝑞2

𝑞0 𝑞1

−𝑞1 𝑞0

] [
𝑝0

𝒑 ] (2.20) 

The rotation of points by means of quaternions is defined as follow: 

 [
0
𝑋𝑐

] = Λ ∘ [
0
𝑋
] ∘ Λ̃ (2.21) 

Where 𝑋 = [𝑥, 𝑦, 𝑧]𝑇is a tri dimensional point, and Λ = [𝜆0, 𝜆1, 𝜆2, 𝜆3]
𝑇 is an 

unit quaternion , which modulus |Λ| is defined as follow: 
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 |Λ| = √𝜆0
2 + 𝜆1

2 + 𝜆2
2 + 𝜆3

2 = 1 (2.22) 

 And the conjugated of Λ  is represented by Λ̃. 

 Λ̃ = [
𝜆0

−𝝀
] (2.23) 

From the equation  (2.21) 

 [
0
𝑋𝑐

] = [
𝜆0

𝝀
] ∘ [

0
𝑋
] ∘ [

𝜆0

−𝝀
] (2.24) 

 [
0
𝑋𝑐

] = [
𝜆0 −𝝀𝑇

𝝀 𝜆0𝐼3 + [𝝀]𝑥
] [

𝜆0 −(−𝝀)𝑇

−𝝀 𝜆0𝐼3 − [−𝝀]𝑥
] [

0
𝑋
] (2.25) 

After mathematics, it is obtained in the next matrix form: 

 [
0
𝑋𝑐

] = [
1 𝟎𝑇

𝟎 𝑹(Λ)
] [

0
𝑋
] (2.26) 

Where 𝑹(Λ) represents the rotation matrix as a function of the quaternion Λ. 

 𝑹(Λ) = [

𝜆0
2 + 𝜆1

2 − 𝜆2
2 − 𝜆3

2 2(𝜆1𝜆2 − 𝜆0𝜆3) 2(𝜆1𝜆3 + 𝜆0𝜆2)

2(𝜆1𝜆2 + 𝜆0𝜆3) 𝜆0
2 − 𝜆1

2 + 𝜆2
2 − 𝜆3

2 2(𝜆2𝜆3 − 𝜆0𝜆1)

2(𝜆1𝜆3 − 𝜆0𝜆2) 2(𝜆2𝜆3 + 𝜆0𝜆1) 𝜆0
2 − 𝜆1

2 − 𝜆2
2 + 𝜆3

2

] (2.27) 

As it has been shown in the equation (2.27), the rotation matrix can be 

expressed as a function of a quaternion Λ, which in general is composed of four 

elements; however, due to the fact that Λ is a unit quaternion, 𝜆0 in itself depends on 

their three elements. 

 𝜆0(𝜆1, 𝜆2, 𝜆3) = 𝜆0(𝝀) = √1 − (𝜆1
2 + 𝜆2

2 + 𝜆3
2) (2.28) 

The rotation matrix 𝑹(Λ), can be expressed as a function of the vector part  

𝝀 = [𝜆1, 𝜆2, 𝜆3]
𝑇 of the next quaternion  

 𝑅(𝝀) = [

1 − 2(𝜆2
2 + 𝜆3

2) 2(𝜆1𝜆2 − 𝜆0𝜆3) 2(𝜆1𝜆3 + 𝜆0𝜆2)

2(𝜆1𝜆2 + 𝜆0𝜆3) 1 − 2(𝜆1
2 + 𝜆3

2) 2(𝜆2𝜆3 − 𝜆0𝜆1)

2(𝜆1𝜆3 − 𝜆0𝜆2) 2(𝜆2𝜆3 + 𝜆0𝜆1) 1 − 2(𝜆1
2 + 𝜆2

2)

] (2.29) 

Thus, the equation (2.10) can be rewritten as follow: 

 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋𝑖
(𝑓𝑥, 𝑓𝑦 , 𝑢0, 𝑣0, 𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝝀, 𝑻𝒄) (2.30) 

So the measurement model in quaternion form is obtained. 
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2.7 Measurement model gradient 

Due to the fact that measurement model based on Rodrigues' rotation formula 

in the equation (2.17) is a composed function of several transformations, which 

involves vector and matrices, it is convenient to determine the gradient by means of 

matrix calculus. Let the measurement model be rewritten as follow: 

 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋𝑖
(𝑭, 𝑪, 𝑆,𝑲𝑫, 𝒗, 𝑻𝒄) (2.31) 

Where 𝑭 = [𝑓𝑥 𝑓𝑦], 𝑪 = [𝑢0 𝑣0],  and 𝑲𝑫=[𝑘1 𝑘2 𝑝1 𝑝2 𝑘3], and let the 

measurement model gradient be defined as follow:  

 

 𝐷ℎ𝑋𝑖
= [

𝜕ℎ𝑋𝑖

𝜕𝑭

𝜕ℎ𝑋𝑖

𝜕𝑪

𝜕ℎ𝑋𝑖

𝜕𝑆

𝜕ℎ𝑋𝑖

𝜕𝑲𝑫

𝜕ℎ𝑋𝑖

𝜕𝒗

𝜕ℎ𝑋𝑖

𝜕𝑻𝒄
] (2.32) 

 

Where 𝜕ℎ𝑋𝑖
/𝜕𝑭, 𝜕ℎ𝑋𝑖

/𝜕𝑪, 𝜕ℎ𝑋𝑖
/𝜕𝑆, and 𝜕ℎ𝑋𝑖

/𝜕𝑲𝑫 are defined in a matrix 

form: 

 
𝜕ℎ𝑋𝑖

𝜕𝑭
= [

𝜕𝑥𝑝𝑖

𝜕𝑭
𝜕𝑦𝑝𝑖

𝜕𝑭

] = [
𝑥𝑑𝑖

+ 𝑠𝑦𝑑𝑖
0

0 𝑦𝑑𝑖

] (2.33) 

 
𝜕ℎ𝑋𝑖

𝜕𝑪
= [

𝜕𝑥𝑝𝑖

𝜕𝑪
𝜕𝑦𝑝𝑖

𝜕𝑪

] = [
1 0
0 1

] (2.34) 

 
𝜕ℎ𝑋𝑖

𝜕𝑠
= [

𝜕𝑥𝑝𝑖

𝜕𝑠
𝜕𝑦𝑝𝑖

𝜕𝑠

] = [
𝑦𝑝𝑖

𝑓𝑥

0
] (2.35) 

𝜕ℎ𝑋𝑖

𝜕𝑲𝑫
= [

𝜕𝑥𝑝𝑖

𝜕𝑲𝑫

𝜕𝑦𝑝𝑖

𝜕𝑲𝑫

] =

[
𝑥𝑐𝑝𝑖

(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2) 𝑥𝑐𝑝𝑖

(𝑥𝑐𝑝𝑖
2 + 𝑦𝑐𝑝𝑖

2)
2

2𝑥𝑑𝑖
𝑦𝑑𝑖

𝑦𝑐𝑝𝑖
2 + 3𝑥𝑐𝑝𝑖

2 𝑥𝑐𝑝𝑖
(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2)

3

𝑦𝑐𝑝𝑖
(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2) 𝑦𝑐𝑝𝑖

(𝑥𝑐𝑝𝑖
2 + 𝑦𝑐𝑝𝑖

2)
2

𝑥𝑐𝑝𝑖
2 + 3𝑦𝑐𝑝𝑖

2 2𝑥𝑑𝑖
𝑦𝑑𝑖

𝑦𝑐𝑝𝑖
(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2)

3
]    

  (2.36) 

With regard to the derivatives 𝜕ℎ𝑋𝑖
/𝜕𝒗 and 𝜕ℎ𝑋𝑖

/𝜕𝑻𝒄 ,they have remarkably 

complicated expressions due to the fact that the measurement model in the equation 

 (2.17) is a composed function of several transformations.  
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As the rotation matrix 𝑹 is a function of 𝒗 , see equation (2.16), the derivative 

𝜕ℎ𝑋𝑖
/𝜕𝒗 is 

 
𝜕ℎ𝑋𝑖

𝜕𝒗
=

𝜕ℎ𝑋𝑖

𝜕𝑹

𝜕𝑹(𝒗)

𝜕𝒗
 (2.37) 

 
𝜕ℎ𝑋𝑖

𝜕𝑹
= [

𝜕𝑥𝑝𝑖

𝜕𝑹
𝜕𝑦𝑝𝑖

𝜕𝑹

] (2.38) 

Where 𝜕𝑥𝑝𝑖
/𝜕𝑹 and 𝜕𝑥𝑝𝑖

/𝜕𝑹 are 

𝜕𝑥𝑝𝑖

𝜕𝑹
= 𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑥𝑐𝑝𝑖

𝜕𝑹
+ 𝑥𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑹
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑹
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑹
] + (2𝑝1𝑦𝑐𝑝𝑖

+ 6𝑝2𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑹
+

(2𝑝1𝑥𝑐𝑝𝑖
+ 2𝑝2𝑦𝑐𝑝𝑖

)
𝜕𝑦𝑐𝑝𝑖

𝜕𝑹
) + 𝑠𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑹
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑹
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑹
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑹
] +

(2𝑝2𝑦𝑐𝑝𝑖
+ 2𝑝1𝑥𝑐𝑝𝑖

)
𝜕𝑥𝑐𝑝𝑖

𝜕𝑹
+ (2𝑝2𝑥𝑐𝑝𝑖

+ 6𝑝1𝑦𝑐𝑝𝑖
)

𝜕𝑦𝑐𝑝𝑖

𝜕𝑹
) (2.39) 

 

𝜕𝑦𝑝𝑖

𝜕𝑹
= 𝑓𝑦 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑹
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑹
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑹
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑹
] + (2𝑝2𝑦𝑐𝑝𝑖

+

2𝑝1𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑹
+ (2𝑝2𝑥𝑐𝑝𝑖

+ 6𝑝1𝑦𝑐𝑝𝑖
)

𝜕𝑦𝑐𝑝𝑖

𝜕𝑹
) (2.40) 

  

 𝐷𝑟𝑖
= 1 + 𝑘1𝑟𝑖

2 + 𝑘2𝑟𝑖
4 + 𝑘3𝑟𝑖

6 (2.41) 

 
𝜕(𝑟𝑖

2)

𝜕𝑹
= 2[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑹
 (2.42) 

 
𝜕(𝑟𝑖

4)

𝜕𝑹
= 2𝑟𝑖

2 𝜕(𝑟𝑖
2)

𝜕𝑹
= 4(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2) [𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑹
 (2.43) 

 
𝜕(𝑟𝑖

6)

𝜕𝑹
= 3𝑟𝑖

4 𝜕(𝑟𝑖
2)

𝜕𝑹
= 6(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2)

2
[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑹
 (2.44) 

In order to calculate 𝜕𝑹/𝜕𝒗, some changes of variable are performed taking 

into account the equations  (2.14) and  (2.15) as follow: 

 𝑋1(𝒗) = [
𝒖(𝒗)
𝛼(𝒗)

] = [
𝒖
𝛼
] (2.45) 

Let 𝑋2(𝑋1) = [𝛽, 𝛾, 𝜑, 𝐴, 𝐵]𝑇  , 𝛽 = cos𝛼 , 𝛾 = (1 − cos𝛼) , 𝜑 = sin𝛼 , 𝐴 =

𝒖𝒖𝑇 , 𝐵 = [𝒖]𝑥. 

Then, the 𝑹(𝒗) ,  from the equation (2.16), can be rewritten as 

 𝑹(𝑋2) = 𝐼3β + 𝛾𝐴 + 𝐵𝜑 (2.46) 

The derivative of 𝑹 with respect to 𝜈Ԧ can be defined as 
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𝜕𝑅

𝜕𝒗
=

𝜕𝑅

𝜕𝑋2

𝜕𝑋2

𝜕𝑋1

𝜕𝑋1

𝜕𝒗
 (2.47) 

 
𝜕𝑋1

𝜕𝒗
=

[
 
 
 
 
 
 

1

𝛼
−

𝜈1
2

𝛼3
−

𝜈1𝜈2

𝛼3
−

𝜈1𝜈3

𝛼3

−
𝜈1𝜈2

𝛼3

1

𝛼
−

𝜈2
2

𝛼3
−

𝜈2𝜈3

𝛼3

−
𝜈1𝜈3

𝛼3
−

𝜈2𝜈3

𝛼3

1

𝛼
−

𝜈3
2

𝛼3

      
𝜈1

𝛼
            

𝜈2

𝛼
              

𝜈3

𝛼 ]
 
 
 
 
 
 

 (2.48) 

 

 
𝜕𝑋2

𝜕𝑋1
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0
0 0
0 0

0 − sin𝛼
0 cos𝛼
0 sin 𝛼

0 0
0 0
0 −1

0 0
1 0
0 0

0 0
0 0
1 0

−1 0
0 0
0 0

0 1
−1 0
0 0

0 0
0 0
0 0

2𝑢1 0
𝑢2 𝑢1

𝑢3 0

0 0
0 0
𝑢1 0

𝑢2 𝑢1

0 2𝑢2

0 𝑢3

0 0
0 0
𝑢2 0

𝑢3 0
0 𝑢3

0 0

𝑢1 0
𝑢2 0
2𝑢3 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.49) 

𝜕𝑅𝑘

𝜕𝑋2
=

[
 
 
 
 
 
 
 
 
1 𝐴11 𝐵11

0 𝐴21 𝐵21

0 𝐴31 𝐵31

0 𝐴12 𝐵12

1 𝐴22 𝐵22

0 𝐴32 𝐵32

0 𝐴13 𝐵13

0 𝐴23 𝐵23

1 𝐴33 𝐵33

𝛾 0 0
0 𝛾 0
0 0 𝛾
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
𝛾 0 0
0 𝛾 0
0 0 𝛾
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
𝛾 0 0
0 𝛾 0
0 0 𝛾

𝜑 0 0
0 𝜑 0
0 0 𝜑
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
𝜑 0 0
0 𝜑 0
0 0 𝜑
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
𝜑 0 0
0 𝜑 0
0 0 𝜑]

 
 
 
 
 
 
 
 

 

  (2.50) 

If 𝛼 is small, the equation (2.16) can be expressed as follow 
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 𝑹 = 𝐼3 + [𝒖]𝑥𝛼 (2.51) 

Then derivative of 𝑹 with respect to 𝒗 can be defined as 

 
𝜕𝑅

𝜕𝒗
= [

0
0
0

0
0
1

0
−1
0

0
0

−1

0
0
0

1
0
0

0
1
0

−1
0
0

0
0
0
]

𝑇

 (2.52) 

The derivative 𝜕ℎ𝑋𝑖
/𝜕𝑻𝒄 is 

 
𝜕ℎ𝑋𝑖

𝜕𝑻𝒄
= [

𝜕𝑥𝑝𝑖

𝜕𝑻𝒄

𝜕𝑦𝑝𝑖

𝜕𝑻𝒄

] (2.53) 

𝜕𝑥𝑝𝑖

𝜕𝑻𝒄
= 𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+ 𝑥𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑻𝒄
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑻𝒄
] + (2𝑝1𝑦𝑐𝑝𝑖

+ 6𝑝2𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+

(2𝑝1𝑥𝑐𝑝𝑖
+ 2𝑝2𝑦𝑐𝑝𝑖

)
𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
) + 𝑠𝑓𝑥 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑻𝒄
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑻𝒄
] +

(2𝑝2𝑦𝑐𝑝𝑖
+ 2𝑝1𝑥𝑐𝑝𝑖

)
𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+ (2𝑝2𝑥𝑐𝑝𝑖

+ 6𝑝1𝑦𝑐𝑝𝑖
)

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
) (2.54) 

𝜕𝑦𝑝𝑖

𝜕𝑻𝒄
= 𝑓𝑦 (𝐷𝑟𝑖

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
+ 𝑦𝑐𝑝𝑖

[𝑘1
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
+ 𝑘2

𝜕(𝑟𝑖
4)

𝜕𝑻𝒄
+ 𝑘3

𝜕(𝑟𝑖
6)

𝜕𝑻𝒄
] + (2𝑝2𝑦𝑐𝑝𝑖

+ 2𝑝1𝑥𝑐𝑝𝑖
)

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄
+

(2𝑝2𝑥𝑐𝑝𝑖
+ 6𝑝1𝑦𝑐𝑝𝑖

)
𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄
)  (2.55) 

 

 
𝜕(𝑟𝑖

2)

𝜕𝑻𝒄
= 2[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
 (2.56) 

 
𝜕(𝑟𝑖

4)

𝜕𝑻𝒄
= 2𝑟𝑖

2 𝜕(𝑟𝑖
2)

𝜕𝑻𝒄
= 4(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2) [𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
 (2.57) 

 
𝜕(𝑟𝑖

6)

𝜕𝑻𝒄
= 3𝑟𝑖

4 𝜕(𝑟𝑖
2)

𝜕𝑻𝒄
= 6(𝑥𝑐𝑝𝑖

2 + 𝑦𝑐𝑝𝑖
2)

2
[𝑥𝑐𝑝𝑖

𝑦𝑐𝑝𝑖]
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
 (2.58) 

 
𝜕𝑋𝑐𝑝𝑖

𝜕𝑻𝒄
= [

𝜕𝑥𝑐𝑝𝑖

𝜕𝑻𝒄

𝜕𝑦𝑐𝑝𝑖

𝜕𝑻𝒄

] = [

1

𝑧𝑐𝑖

0 −
𝑥𝑐𝑖

𝑧𝑐𝑖
2

0
1

𝑧𝑐𝑖

−
𝑦𝑐𝑖

𝑧𝑐𝑖
2

] (2.59) 

As it can be seen, using the Rodrigues’s rotation formula, the Jacobian matrix 

𝜕𝑹/𝜕𝒗 have remarkably complicated expression. On the other hand, if quaternions 

are used to represent the orientation matrix, the Jacobian matrix will yield a more 

convenient expression. 

From the equation (2.30), let the measurement model based on quaternion be 

rewritten as follow: 
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 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋𝑖
(𝑭, 𝑪, 𝑆,𝑲𝑫, 𝝀, 𝑻𝒄) (2.60) 

And its measurement model gradient is be defined as follow: 

 𝐷ℎ𝑋𝑖
= [

𝜕ℎ𝑋𝑖

𝜕𝑭

𝜕ℎ𝑋𝑖

𝜕𝑪

𝜕ℎ𝑋𝑖

𝜕𝑆

𝜕ℎ𝑋𝑖

𝜕𝑲𝑫

𝜕ℎ𝑋𝑖

𝜕𝝀

𝜕ℎ𝑋𝑖

𝜕𝑻𝒄
] (2.61) 

 

The components 𝜕ℎ𝑋𝑖
/𝜕𝑭 , 𝜕ℎ𝑋𝑖

/𝜕𝑪 ,  𝜕ℎ𝑋𝑖
/𝜕𝑆 , 𝜕ℎ𝑋𝑖

/𝜕𝑲𝑫 , and 𝜕ℎ𝑋𝑖
/𝜕𝑻𝒄 

have been already determined in previous equations. As the rotation matrix 𝑹 can 

be expressed as a function of 𝝀 , see the equation (2.29), the derivative 𝜕ℎ𝑋𝑖
/𝜕𝝀 is 

 
𝜕ℎ𝑋𝑖

𝜕𝝀
=

𝜕ℎ𝑋𝑖

𝜕𝑹

𝜕𝑹(𝝀)

𝜕𝝀
 (2.62) 

The expression for 𝜕ℎ𝑋𝑖
/𝜕𝑹 has been determined in the equation  (2.38), the 

expression for 𝜕𝑹/𝜕𝝀 is 

 
𝜕𝑹

𝜕𝝀
=

[
 
 
 
 
 
 
 
 
 

0 −4𝜆2 −4𝜆3

2𝜆2 − 2𝜆3𝜆1/𝜆0 2𝜆1 − 2𝜆3𝜆2/𝜆0 2𝜆0 − 2𝜆3𝜆3/𝜆0

2𝜆3 + 2𝜆2𝜆1/𝜆0 −2𝜆0 + 𝜆2𝜆2/𝜆0 2𝜆1 + 2𝜆2𝜆3/𝜆0

2𝜆2 + 2𝜆3𝜆1/𝜆0 2𝜆1 + 2𝜆3𝜆2/𝜆0 −2𝜆0 + 2𝜆3𝜆3/𝜆0

−4𝜆1 0 −4𝜆3

2𝜆0 − 2𝜆1𝜆1/𝜆0 2𝜆3 − 2𝜆1𝜆2/𝜆0 2𝜆2 − 2𝜆1𝜆3/𝜆0

2𝜆3 − 2𝜆2𝜆1/𝜆0 2𝜆0 − 2𝜆2𝜆2/𝜆0 2𝜆1 − 2𝜆2𝜆3/𝜆0

−2𝜆0 + 2𝜆1𝜆1/𝜆0 2𝜆3 + 2𝜆1𝜆2/𝜆0 2𝜆2 + 2𝜆1𝜆3/𝜆0

−4𝜆1 −4𝜆2 0 ]
 
 
 
 
 
 
 
 
 

 (2.63) 

As it can be noticed, the expression for 𝜕𝑹/𝜕𝝀 is simpler than the expression 

for 𝜕𝑅/𝜕𝒗, this is convenient for time computing. 
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3 Linearization of the measurement model 

The linearization of the measurement model allows to solve the nonlinear 

calibration problem for cameras by linear method, in which the nonlinear radial and 

tangential distortion components are ignored. 

The equations  (2.6) and (2.7) are nonlinear functions, which 

perform the projection to the sensor plane, and can be linearized by means of 

Homogeneous coordinates provided that the vector 𝑋𝑐𝑖
  and 𝑋𝑐𝑝𝑖

  are expressed 

homogeneous vectors [1], obtaining the equation (3.1) as a linear expression, where 

the symbol ~ in the equation (3.1) means that the two homogeneous vectors are not 

equal, but they have the same direction. 

 [

𝑥𝑐𝑝𝑖
𝑦𝑐𝑝𝑖
𝑧𝑐𝑝𝑖

]~ [

𝑥𝑐𝑖
𝑓

𝑦𝑐𝑖
𝑓

𝑧𝑐𝑖

] = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑥𝑐𝑖
𝑦𝑐𝑖
𝑧𝑐𝑖

1

] (3.1) 

With regard to the effect of the lens distortion, it is convenient to consider it to 

be equal to zero during the linearization process [2]. Therefore, considering this 

particular case it is possible to obtain a linear expression, see equation (3.2), from 

the nonlinear measurement model (2.9 ) by means of the homogeneous coordinates 

which is usually done in order to determine initial values of internal and external 

parameter. 

 [
�̃�
�̃�
�̃�

] ~ [

𝛼𝑥 𝑠 𝑢0

0 𝛼𝑦 𝑣0

0 0 1
] [

𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [
𝑹 𝑻𝒄

01𝑥3 1
] [

𝑥𝑖

𝑦𝑖
𝑧𝑖

1

] (3.2) 

Where �̃�, �̃�, �̃� are homogeneous coordinates for the points in the ICS. 

The equation  (3.2) can be expressed as follows: 

 [
�̃�
�̃�
�̃�

] ~[𝐻3𝑥4] [

𝑥𝑖

𝑦𝑖
𝑧𝑖

1

] (3.3) 

where matrix H is the transition matrix, or linear measurement model. The BF 

is chosen in such a way that the points 𝑋𝑖  are located on the 𝑋𝑌 -plane, in 
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consequence, the component 𝑧𝑖 is zero, it means that the equation (3.3) can be 

reduced to equation  (3.4). 

 [

�̃�𝑖

�̃�𝑖

�̃�𝑖

]~ [

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

] [
𝑥𝑖

𝑦𝑖

1
] = 𝐻 [

𝑥𝑖

𝑦𝑖

1
] (3.4) 

Due to the fact that the vectors [�̃�𝑖 , �̃�𝑖 , �̃�𝑖]
𝑇  and 𝐻[𝑥𝑖 , 𝑦𝑖 , 1]𝑇  have the same 

direction, their cross product is zero and based on the Direct Linear Transformation 

(DLT) algorithm [1] the equation is  

 [

�̃�𝑖

�̃�𝑖

�̃�𝑖

]  x  𝐻 [
𝑥𝑖

𝑦𝑖

1
] = [

0
0
0
] (3.5) 

 [
0𝑇 −�̃�𝑖𝑋𝑖

𝑇 �̃�𝑖𝑋𝑖
𝑇

�̃�𝑖𝑋𝑖
𝑇 0𝑇 −�̃�𝑖𝑋𝑖

𝑇] 𝐿 = [
0
0
] (3.6) 

Where 𝐿 = [𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎8 𝑎9]
𝑇 and 𝑋𝑖 = [𝑥𝑖 𝑦𝑖 1]𝑇. 

As it can be seen, the equation (3.6) has the form of a homogeneous  system, 

where 𝐿 can be determined by the Single Values Decomposition (SVD). This DLT 

algorithm is widely used to calculate the transition matrix H where is needed a set 

of four points as minimum. However, because matrix H is a projective 

transformation, it has a non-linear nature, therefore, an iterative method can be 

performed in order to optimize the components of the matrix H by means of 

reduction of the error projection [2]. Thus, it is necessary to work in inhomogeneous 

coordinates. 

Let the matrix 𝐻 already determined by means of DLT, then  

 [

�̃�𝑖

�̃�𝑖

�̃�𝑖

] = [

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

] [
𝑥𝑖

𝑦𝑖

1
] = 𝐻 [

𝑥𝑖

𝑦𝑖

1
] (3.7) 

Where (�̃�𝑖 , �̃�𝑖 , �̃�𝑖)  is the homogeneous coordinate representation of a point 

(𝑢𝑖 , 𝑣𝑖)  located in the ICS, then the projective transformation in the equation 

 (3.7) can be written in inhomogeneous form as  
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 𝑢𝑖 =
�̃�𝑖

�̃�𝑖 
=

𝑎1𝑥𝑖 + 𝑎2𝑦𝑖 + 𝑎3 

𝑎7𝑥𝑖 + 𝑎8𝑦𝑖 + 𝑎9 
 (3.8) 

 𝑣𝑖 =
�̃�𝑖

�̃�𝑖 
=

𝑎4𝑥𝑖 + 𝑎5𝑦𝑖 + 𝑎6 

𝑎7𝑥𝑖 + 𝑎8𝑦𝑖 + 𝑎9 
 (3.9) 

Where (𝑢𝑖 , 𝑣𝑖) finally represents the mapped point in the ICS from the BF. The 

Jacobian matrix for projective transformation is shown below, which is widely used 

by the most of the iterative methods.  

 𝐽 =
𝜕[

𝑢𝑖
𝑣𝑖

]

𝜕𝐿
=

1

�̃�𝑖
[
𝑥𝑖 𝑦𝑖 1 0 0 0 −𝑢𝑖𝑥𝑖 −𝑢𝑖𝑦𝑖 −𝑢𝑖

0 0 0 𝑥𝑖 𝑦𝑖 1 −𝑣𝑖𝑥𝑖 −𝑣𝑖𝑦𝑖 −𝑣𝑖
] (3.10) 

Before determining the transition matrix it is recommended to perform a 

normalization of the data to avoid bad results because of noisy data. In [1] is 

recommended a normalization data so that the centroid of the new set of points is 

the origin of coordinates (0,0) and the average distance from the origin equals to √2 

, as  it is shown in the Figure 4. 

 

This preconditioning can be expressed as a matrix 𝐻𝑝𝑟𝑒𝑐 as below: 

 𝐻𝑝𝑟𝑒𝑐 = [
𝛽𝑥 0 −𝛽𝑥�̅�
0 𝛽𝑦 −𝛽𝑦�̅�

0 0 1

] (3.11) 

Where �̅�, �̅�  are means of the location of the points in the image, and 𝛽𝑥 and 𝛽𝑦 

are given in [2] as:  

Figure 4 Preconditioning for image coordinate system points 
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 𝛽𝑥 =
1

1

𝑁
∑ |𝑥𝑖−�̅�|𝑁

𝑖=1

 (3.12) 

 𝛽𝑦 =
1

1

𝑁
∑ |𝑦𝑖−�̅�|𝑁

𝑖=1

  (3.13) 

The explained above is summarized in the Algorithm  1 

 

 

In the next section is shown how the Computing transition matrix algorithm is 

not only used to linearized the measurement model, it also can be used to estimate 

I. Initialize data:  

• Let 𝑖 = 1,2,… , 𝑛 , where 𝑛 ≥ 4  is the number of mapped 

points. 

• Let 𝑋𝑖 = [𝑥𝑖 𝑦𝑖 1]𝑇  be a homogeneous coordinate 

representation of a 𝑖-th point from the BF, where the component 

𝑧𝑖 is zero. 

• Let (�̃�𝑖 , �̃�𝑖 , �̃�𝑖) be a homogeneous coordinate representation of 

a 𝑖-th point located in the ICS. 

• Let �̃�𝑖 to be one, in order to make (�̃�𝑖 , �̃�𝑖) points measured in 

the ICS. 

✓  Apply the preconditioning matrix to each point as 

follow: 

[

�̃�𝑖′

�̃�𝑖′

�̃�𝑖′

] = 𝐻𝑝𝑟𝑒𝑐 [

�̃�𝑖

�̃�𝑖

�̃�𝑖

] 

• Write the homogeneous system according to the equation 

 (3.6) for 𝑛 points: 

[
 
 
 
 

0𝑇 −�̃�1′𝑋1
𝑇 �̃�1′𝑋1

𝑇

�̃�1′𝑋1
𝑇 0𝑇 −�̃�1′𝑋1

𝑇

⋮
0𝑇 −�̃�𝑛′𝑋𝑛

𝑇 �̃�𝑛′𝑋𝑛
𝑇

�̃�𝑛′𝑋𝑛
𝑇 0𝑇 −�̃�𝑛′𝑋𝑛

𝑇]
 
 
 
 

𝐿 =

[
 
 
 
 
0
0
⋮
0
0]
 
 
 
 

 

• Solve the homogenous system in order to obtain 𝐿, and obtain 

the transition matrix 𝐻 from 𝐿. 

• Update the transition matrix as follow: 

𝐻 ← 𝐻/𝑎9 

𝐻 ← 𝐻 −1𝐻 
Algorithm  1. Computing Transition matrix H 
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the rotation matrix and translation vector of the BF with respect to CCS by a linear 

method. 
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4 Calibration Algorithm 

In this section the calibration algorithm of the widely known tool for camera 

calibration developed by Bouguet, J. Y. “Camera Calibration Toolbox for Matlab” 

[2] is described in details. 

In the Figure 5, it is shown that a chessboard is photographed with different 

orientations and translation vectors in order to obtain considerable amount of points 

for calibration process. Additionally, intrinsic parameters are shown, which are 

internal fixed parameters of the camera itself. They have to be determined in the 

calibration process and then will remain fixed. On the other hand, extrinsic 

parameters, rotation matrix and translation vector, are determined for each image, 

and they are not fixed parameters because the location and orientation of the object 

can change. 

Calibration Process is based on two main steps: Initialization of the parameters 

and optimization of the parameters by the gradient method. 

𝑹𝟏, 𝑻𝒄𝟏
 

𝑹𝟐, 𝑻𝒄𝟐
 

𝑹𝟑, 𝑻𝒄𝟑
 

Z

c 

X

c 
Y

c 

𝑹𝒌, 𝑻𝒄𝒌
 

Parameters for calibration:  

Intrinsic parameters(camera): 𝑓𝑥, 𝑓𝑦, 𝑢0, 𝑣0, 𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2 

Extrinsic parameters(images): 𝑹𝟏, 𝑻𝒄𝟏
, 𝑹𝟐, 𝑻𝒄𝟐

, 𝑹𝟑, 𝑻𝒄𝟑
, … , 𝑹𝒌, 𝑻𝒄𝒌

 

, 

Figure 5 Intrinsic and Extrinsic parameters 



28 

4.1 Initialization of the parameters 

The initial value of the principal point can be initialized as the center point of 

the image, for example, if the resolution of the camera is 640x480 pixels, then the 

principal point 𝑷 = (𝑢0, 𝑣0) = (320,240). The Skew parameter can be initialized 

as zero as well as the distortions coefficients 𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2. 

With regards to the focal distance (𝑓𝑥, 𝑓𝑦), it can be initialized using vanishing 

points as in [1] and different methods as in [2] and [4], which make use of transition 

matrices from BF to the ICS by using the Algorithm  1.  

Considering initial values for skew factor ‘S’ and distortion coefficients 𝑲𝑫 

equal to zero, the points in the ICS (𝑥𝑖
′, 𝑦𝑖

′) can be transformed into CCS as follows:  

 𝑥𝑐𝑝𝑖
= (𝑥𝑖

′ − 𝑢0)/𝑓𝑥 (4.1) 

 𝑦𝑐𝑝𝑖
= (𝑦𝑖

′ − 𝑣0)/𝑓𝑦 (4.2) 

The equations above show that the point (𝑥𝑖
′, 𝑦𝑖

′)  is located in the sensor plane 

in the CCS, and it is related to the BF by the next equation, where the points in the 

ICS and BF are expressed by homogeneous coordinate. 

 [
𝑥𝑐

𝑦𝑐

1
]~ [

𝑹 𝑻𝒄

𝟎𝟏𝒙𝟑 1
] [

𝑥𝑖

𝑦𝑖
𝑧𝑖

1

] (4.3) 

Because of component 𝑧𝑖 is zero for flat objects, equation (4.3) can be 

rewritten as 

 [
𝑥𝑐

𝑦𝑐

1
]~[𝒓𝟏 𝒓𝟐 𝑻𝒄] [

𝑥𝑖

𝑦𝑖

1
] = 𝐻𝑟 [

𝑥𝑖

𝑦𝑖

1
] (4.4) 

where 𝑻𝒄 is translation vector and 𝒓𝒊 are the columns of rotation matrix R, and 

‖𝒓𝒊‖ = 1 . The matrix 𝐻𝑟  can be computed by means of the Algorithm  1 , and 

additionally it is necessary to perform a normalization so that the vectors 𝒓𝒊 have 

modulus equal to one, then to use the QR decomposition to obtain a better result in 

the orthogonality of the vector 𝒓𝒊. 
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4.2 Optimization process 

Due to the non-linearity of the measurement model, an optimization process is 

required to be performed in order to tune up the parameters, which have been 

initialized previously. The essential step is the definition of the equations system. 

Let us considerer a scheme where it is available just one image, as it is shown 

in the Figure 6. Let 𝑖 = 1,2,… , 𝑛, where 𝑛 is the number of mapped points to the 

ICS. Let 𝑋′𝑖 = [𝑥′
𝑖 , 𝑦

′
𝑖
]𝑇  and 𝑋𝑖 = [𝑥𝑖 , 𝑦𝑖 , 0]𝑇  be the vector representations of a 

point in the ICS and BF, 𝑋′𝑖 and 𝑋𝑖 are known values.  

 

 

Let 𝑋𝑝𝑖 = [𝑥𝑝𝑖 , 𝑦𝑝𝑖]
𝑇 be 𝑖-th point already mapped to the ICS from the BF by 

using the measurement model ℎ𝑋𝑖
 from the equation (2.31) or from the equation 

(2.60), where the rotation matrix can be expressed by using the vector 𝜻, below the 

system of equations for one image with 𝑛 points. 

 

𝑋𝑝
1

= ℎ𝑋1
(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻, 𝑻𝒄)

𝑋𝑝
2

= ℎ𝑋2
(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻, 𝑻𝒄)

⋮
𝑋𝑝

𝑖
= ℎ𝑋𝑖

(𝑭, 𝑪, 𝑆, 𝑲𝑫, 𝜻, 𝑻𝒄)

⋮
𝑋𝑝

𝑛
= ℎ𝑋𝑛

(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻, 𝑻𝒄)

 (4.5) 

Let ∆𝑋 be the error vector, which is defined as the difference between the points 𝑋𝑝𝑖 and 𝑋′𝑖 

as follow. 

 ℎ𝑋𝑖
(𝑭, 𝑪, 𝑆, 𝑲𝑫, 𝜻, 𝑻𝒄) 

Z 

X 

Y 

𝑋1 = (𝑥1, 𝑦1, 0) 
𝑋2 = (𝑥2, 𝑦2, 0) 

𝑋𝑛 = (𝑥𝑛 , 𝑦𝑛 , 0) 

Body-fixed frame 

𝑋′1 = (𝑥′1, 𝑦′1) 𝑋′2 = (𝑥′2, 𝑦′2) 

Image coordinate system 

𝑋′𝑛 = (𝑥′𝑛 , 𝑦′𝑛) 

U 

V 

Figure 6. Projection from Body-fixed frame to image coordinate system 
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 ∆𝑋 = [

𝑒1

𝑒2

⋮
𝑒𝑛

] = [

𝑋𝑝1 − 𝑋′1
𝑋𝑝2 − 𝑋′2

⋮
𝑋𝑝𝑛 − 𝑋′𝑛

] =

[
 
 
 
 
 
 
 
𝑥𝑝1 − 𝑥′1
𝑦𝑝1 − 𝑦′1
𝑥𝑝2 − 𝑥′2
𝑦𝑝2 − 𝑦′2

⋮
𝑥𝑝𝑛 − 𝑥′𝑛
𝑦𝑝𝑛 − 𝑦′𝑛]

 
 
 
 
 
 
 

 (4.6) 

Now let us consider that is available 𝑚  images with 𝑛 points in each image. 

Let 𝑖 = 1,2,… , 𝑛, and 𝑘 = 1,2,… ,𝑚; where 𝑛 is the number of mapped points to the 

ICS, and 𝑚 is the number images, it is important to mention that the location of 

points in each image depends on the translation vector and orientation of the BF with 

respect to the CCS. 

Let 𝑋′𝑖
𝑘 = [𝑥′𝑖

𝑘 , 𝑦′𝑖
𝑘]𝑇  be the vector representation of the 𝑖-th point in the 𝑘-th 

image (ICS). 

Let 𝑋𝑖 = [𝑥𝑖 , 𝑦𝑖 , 0]𝑇 be the vector representation of the 𝑖-th point in the BF. 

Let 𝑋𝑝𝑖
𝑘 = [𝑥𝑝𝑖

𝑘 , 𝑦𝑝𝑖
𝑘]𝑇 be the point 𝑋𝑖 already mapped to the 𝑘-th image (ICS) 

from the BF by using the nonlinear model ℎ𝑋𝑖

𝑘 , which represent the projection of  the 

point 𝑋𝑖  to the 𝑘 -th image. Below the system of equations for 𝑚  images with 𝑛 

points in each image. 

 

𝑋𝑝1
1 = ℎ𝑋1

1 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟏, 𝑻𝒄𝟏
)

𝑋𝑝2
1 = ℎ𝑋2

1 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟏, 𝑻𝒄𝟏
)

⋮
𝑋𝑝𝑛

1 = ℎ𝑋𝑛

1 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟏, 𝑻𝒄𝟏
)

𝑋𝑝1
2 = ℎ𝑋1

2 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟐, 𝑻𝒄𝟐
)

𝑋𝑝2
2 = ℎ𝑋2

2 (𝑭,𝐶, 𝑆,𝑲𝑫, 𝜻𝟐, 𝑻𝒄𝟐
)

⋮
𝑋𝑝𝑛

2 = ℎ𝑋𝑛

2 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟐, 𝑻𝒄𝟐
)

⋮
𝑋𝑝𝑖

𝑘 = ℎ𝑋𝑖

𝑘 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒌, 𝑻𝒄𝒌
)

⋮
𝑋𝑝1

𝑚 = ℎ𝑋1

𝑚 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒎, 𝑻𝒄𝒎
)

𝑋𝑝2
𝑚 = ℎ𝑋2

𝑚 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒎, 𝑻𝒄𝒎
)

⋮
𝑋𝑝𝑛

𝑚 = ℎ𝑋𝑛

𝑚 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒎, 𝑻𝒄𝒎
)

 (4.7) 

Let ℎ𝑘 be defined as 
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 ℎ𝑘(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒌, 𝑻𝒄𝒌
) =

[
 
 
 
 
ℎ𝑋1

𝑘 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒌, 𝑻𝒄𝒌
)

ℎ𝑋2

𝑘 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒌, 𝑻𝒄𝒌
)

⋮
ℎ𝑋𝑛

𝑘 (𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒌, 𝑻𝒄𝒌
)]
 
 
 
 

 (4.8) 

From the measurement model gradients in the equations (2.32) and 

 (2.61), the partial derivatives of ℎ𝑘 are 

 [
𝜕ℎ𝑘

𝜕𝑭
 
𝜕ℎ𝑘

𝜕𝑪
 
𝜕ℎ𝑘

𝜕𝑆
 
𝜕ℎ𝑘

𝜕𝑲𝑫
 
𝜕ℎ𝑘

𝜕𝜻𝒌
 

𝜕ℎ𝑘

𝜕𝑻𝒄𝒌

] =

[
 
 
 
 
 
 𝜕ℎ𝑋1

𝑘

𝜕𝑭

𝜕ℎ𝑋2
𝑘

𝜕𝑭
⋮

𝜕ℎ𝑛
𝑘

𝜕𝑭

𝜕ℎ𝑋1
𝑘

𝜕𝑪

𝜕ℎ𝑋2
𝑘

𝜕𝑪
⋮

𝜕ℎ𝑛
𝑘

𝜕𝑪

𝜕ℎ𝑋1
𝑘

𝜕𝑆

𝜕ℎ𝑋2
𝑘

𝜕𝑆
⋮

𝜕ℎ𝑛
𝑘

𝜕𝑆

𝜕ℎ𝑋1
𝑘

𝜕𝑲𝑫

𝜕ℎ𝑋2
𝑘

𝜕𝑲𝑫

⋮
𝜕ℎ𝑛

𝑘

𝜕𝑲𝑫

𝜕ℎ𝑋1
𝑘

𝜕𝜻𝒌

𝜕ℎ𝑋2
𝑘

𝜕𝜻𝒌

⋮
𝜕ℎ𝑛

𝑘

𝜕𝜻𝒌

𝜕ℎ𝑋1
𝑘

𝜕𝑻𝒄𝒌

𝜕ℎ𝑋2
𝑘

𝜕𝑻𝒄𝒌

⋮
𝜕ℎ𝑛

𝑘

𝜕𝑻𝒄𝒌]
 
 
 
 
 
 

 (4.9) 

Then the system of equations (4.7) can be expressed in a shorter form as follow 

 

𝑋𝑝1 = ℎ1(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟏, 𝑻𝒄𝟏
) → ∆𝑋1 = 𝑋𝑝1 − 𝑋′1

𝑋𝑝2 = ℎ2(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟐, 𝑻𝒄𝟐
) → ∆𝑋2 = 𝑋𝑝2 − 𝑋′2

⋮
𝑋𝑝𝑘 = ℎ𝑘(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒌, 𝑻𝒄𝒌

) → ∆𝑋𝑘 = 𝑋𝑝𝑘 − 𝑋′𝑘

⋮
𝑋𝑝𝑚 = ℎ𝑚(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒎, 𝑻𝒄𝒎

) → ∆𝑋𝑚 = 𝑋𝑝𝑚 − 𝑋′𝑚

 (4.10) 

 

Where 𝑋𝑝𝑘 = [𝑥𝑝1
𝑘 , 𝑦𝑝1

𝑘 , 𝑥𝑝2
𝑘 , 𝑦𝑝2

𝑘 , … , 𝑥𝑝𝑛
𝑘 , 𝑦𝑝𝑛

𝑘]
𝑇
 is column vector 

representation of the points mapped to the 𝑘-th image (ICS) from the BF, and 𝑋′𝑘 =

[𝑥′1
𝑘, 𝑦′1

𝑘 , 𝑥′2
𝑘 , 𝑦′2

𝑘 , … , 𝑥′𝑛
𝑘 , 𝑦′𝑛

𝑘]
𝑇

 is vector representation of all the points in the 𝑘-th 

image.  

In the equation (4.6), the error vector ∆𝑋  can be express as ∆𝑋𝑘  ,where 𝑘 

indicates the error vector for the corresponding 𝑘-th image and nonlinear model ℎ𝑘. 

Finally, the system of equation can be express as a column of functions. 

ℏ(𝑭,𝑪, 𝑆,𝑲𝑫, 𝑹𝟏, 𝑻𝒄𝟏
, … ,𝑹𝒎, 𝑻𝒄𝒎

) =

[
 
 
 
𝑋𝑝1

𝑋𝑝2

⋮
𝑋𝑝𝑚]

 
 
 
=

[
 
 
 
 

ℎ1(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟏, 𝑻𝒄𝟏
)

ℎ2(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟐, 𝑻𝒄𝟐
)

⋮
ℎ𝑚(𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝒎, 𝑻𝒄𝒎

)]
 
 
 
 

 (4.11) 

Let 𝑋′ be the column vector [𝑋′1
𝑇
, 𝑋′2

𝑇
, … , 𝑋′𝑚

𝑇
]
𝑇
, and the global error vector 

can be defined as follow: 
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 𝝐 = ℏ(𝑀) − 𝑋′ = [

∆𝑋1

∆𝑋2

⋮
∆𝑋𝑚

] (4.12) 

The Gauss–Newton Method is used to solve the optimization problem, which 

is based on the minimization of the global error vector 𝝐 ; Let 𝑴 =

[𝑭,𝑪, 𝑆,𝑲𝑫, 𝜻𝟏, 𝑻𝒄𝟏
, … , 𝜻𝒎, 𝑻𝒄𝒎

] be the vector of parameters, let 𝑴𝟎 be the initial 

values for the vector of parameters 𝑴 , and let 𝝐𝟎 be the initial error vector. 

 𝝐𝟎 = ℏ(𝑴𝟎) − 𝑋′ (4.13) 

Let 𝝐𝒍 the error vector and 𝑴𝒍 be vector of parameters, which are updated for 

each iteration, as follow: 

 𝝐𝒍 = ℏ(𝑴𝒍) − 𝑋′ (4.14) 

 ∆𝑴 = (𝑱𝑇𝑱)−1𝑱𝑇𝝐𝒍 (4.15) 

 𝑴𝑙+1 = 𝑴𝑙 + ∆𝑴 (4.16) 

Where 𝑱 , the Jacobian matrix, is defined as follow: 

𝑱 =
𝜕ℏ

𝜕𝑀
=

[
 
 
 
 
 
 
 
 
 
 
𝜕ℎ1

𝜕𝑴

𝜕ℎ2

𝜕𝑴

𝜕ℎ3

𝜕𝑴

⋮
𝜕ℎ𝑘

𝜕𝑴

⋮
𝜕ℎ𝑚

𝜕𝑴 ]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

𝜕ℎ1

𝜕𝑭

𝜕ℎ1

𝜕𝑪

𝜕ℎ1

𝜕𝑆

𝜕ℎ1

𝜕𝑲𝑫

𝜕ℎ1

𝜕𝜻𝟏

𝜕ℎ1

𝜕𝑻𝒄𝟏

0 0 0 0 … 0

𝜕ℎ2

𝜕𝑭

𝜕ℎ2

𝜕𝑪

𝜕ℎ2

𝜕𝑆

𝜕ℎ2

𝜕𝑲𝑫
0 0

𝜕ℎ2

𝜕𝜻𝟐

𝜕ℎ2

𝜕𝑻𝒄𝟐

0 0 … 0

𝜕ℎ3

𝜕𝑭

𝜕ℎ3

𝜕𝑪

𝜕ℎ3

𝜕𝑆

𝜕ℎ3

𝜕𝑲𝑫
0 0 0 0

𝜕ℎ3

𝜕𝜻𝟑

𝜕ℎ3

𝜕𝑻𝒄𝟑
… 0

  

⋮
𝜕ℎ𝑘

𝜕𝑭

⋮

  

⋮
𝜕ℎ𝑘

𝜕𝑪

⋮

⋮
𝜕ℎ𝑘

𝜕𝑆

⋮

⋮
𝜕ℎ𝑘

𝜕𝑲𝑫

⋮

⋮
0
⋮

⋮
0
⋮

⋮
0
⋮

⋮
…
⋮

⋮
0
⋮

⋱
𝜕ℎ𝑘

𝜕𝜻𝒌

⋱

⋱
𝜕ℎ𝑘

𝜕𝑻𝒄𝒌

⋱

0
⋮
0
 

𝜕ℎ𝑚

𝜕𝑭

𝜕ℎ𝑚

𝜕𝑪

𝜕ℎ𝑚

𝜕𝑆

𝜕ℎ𝑚

𝜕𝑲𝑫
0 0 0 0 … 0

𝜕ℎ𝑚

𝜕𝜻𝒎

𝜕ℎ𝑚

𝜕𝑻𝒄𝒎]
 
 
 
 
 
 
 
 
 
 
 

 (4.17) 

Where 𝐹 = [𝑓𝑥 𝑓𝑦], 𝐶 = [𝑢0 𝑣0],  and 𝐾𝐷=[𝑘1 𝑘2 𝑝1 𝑝2 𝑘3].  
 

4.3 Algorithm for camera calibration 

Given 𝑚   images with 𝑛  points in each image, let 𝑖 = 1,2,… , 𝑛 , and 𝑘 =

1,2,… ,𝑚; where 𝑛 is the number of mapped points to the ICS, and 𝑚 is the number 

images. The calibration algorithm is shown below. 
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I. Initialize parameters: Use the algorithm 1 to initialize the vector parameters  

𝑀 = [𝐹, 𝐶, 𝑆, 𝐾𝐷 , 𝜈Ԧ1, 𝑇𝑐1
, … , 𝜈Ԧ𝑚, 𝑇𝑐𝑚

]  , if quaternions are used the vector  

parameters is 𝑀 = [𝐹, 𝐶, 𝑆, 𝐾𝐷 , 𝜆Ԧ1, 𝑇𝑐1
, … , 𝜆Ԧ𝑚, 𝑇𝑐𝑚

]. 

II. Initialize global error vector 𝝐𝟎: 𝜖0 = ℏ(𝑀0) − 𝑋′  
III. Iterative process: 

a. ∆𝑀0 = (𝐽0
𝑇𝐽0)

−1𝐽0
𝑇𝜖0, where 𝐽0 is 𝐽 jacobian matrix evaluated at 𝑀0 

b. 𝑀1 = 𝑀0 + ∆𝑀0 

c. Change ← |∆𝑀0|/|𝑀1| 

d. Iteration ← 0 

e. While ((Change > 1e-10) & (Iterarion < MaxIteration )) 

i. 𝜖1 = ℏ(𝑀1) − 𝑋′ 

ii. ∆𝑀1 = (𝐽1
𝑇𝐽1)

−1𝐽1
𝑇𝜖1 

iii. 𝑀2 = 𝑀1 + ∆𝑀1 

iv. If Quaternions is used, the quaternion part of 𝑀2  must be 

normalized for each iteration, and then 𝑀2 must be updated. 

v. Change ← |∆𝑀1|/|𝑀2| 

vi. Iterarion ← Iterarion + 1 

The vector 𝑴𝟐 is the optimal vector 𝑴. 

Algorithm  2. Camera calibration 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

After the calibration, the Algorithm 2 can be used to determine the matrix rotation and  𝑇𝑐 

without considering the other parameters in vector 𝑀. 

 

4.4 Application algorithm for camera calibration 

Using 50 images and 70 points per image. The images were taken using the 

camera Model FI8918W with resolution 480x640 pixels. 

Figure 7 Image used for calibration 
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As the result of the calibration process using the Algorithm  2 the values of the 

intrinsic parameters are obtained: 

• Principal point 𝑃 = (318.85122 ,255.46648) (pixel) 

• Focal length axis-x 𝑓𝑥 = 633.54607(pixel) 

• Focal length axis-y 𝑓𝑦 = 634.02213(pixel) 

• Skew 𝑠 = 0.0 

• Distortion coefficients 𝑘1 = -0.46378, 𝑘2 = 0.28011, 

𝑘3 =0.0, 𝑝1 =0.00083, 𝑝2 =0.00269 

• The total error is expressed in pixels 𝜎𝑥 = 0.20879, 𝜎𝑦 = 0.24828 

It is necessary to keep in mind that only intrinsic parameters remain fixed 

because they are fixed values which depend on the camera assembly. On the other 

hand, the external parameters, rotation matrix and translation vector change as the 

BF or the camera move. 

In the Figure 8 the extrinsic parameters by mean of the locations and 

orientations of the chessboard with respect to the CCS are shown, which has been 

obtained during the calibration process.  

 

As a result of the calibration process, the equation (2.17) for the measurement 

model based on Rodrigues’ rotation formula can be rewritten as follow: 

 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋1
(𝜈Ԧ, 𝑇𝑐) (4.18) 

And the equation (2.30) for the measurement model based on quaternions can 

be rewritten as follows: 

Figure 8 Visualization of the extrinsic parameters with a fixed camera 
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 𝑋𝑝𝑖
= [

𝑥𝑝𝑖
𝑦𝑝𝑖

] = ℎ𝑋𝑖
(𝜆Ԧ, 𝑇𝑐) (4.19) 

Thus, if the points 𝑋𝑝𝑖
 and points 𝑋𝑖 are known, it is possible to determine the 

orientation and the translation vector by means of Algorithm  2 as in the next section 

is shown. 

4.5 Testing measurement model 

In this part, the results of the camera calibration by means of a rotating table is 

presented. The facilities for testing are shown in the Figure 9. It is used to determine 

how accurate the measurement model is. The kinematic equation of the schema is 

analyzed for initial time 𝑡0 and for the time 𝑡1 when a rotation angle 𝛼 around the 

axis-𝑌𝑇is performed.  

Kinematic equation in 𝑡0: 

 𝑅𝐶𝑊𝑡0
𝑋𝑖 + 𝑇𝐶𝑡0

= 𝑅𝐶𝑇(𝑅𝑇𝑊𝑋𝑖 + 𝑇𝑊) + 𝑇𝑇 (4.20) 

 𝑅𝐶𝑊𝑡0
𝑋𝑖 + 𝑇𝐶𝑡0

= 𝑅𝐶𝑇𝑅𝑇𝑊𝑋𝑖 + 𝑅𝐶𝑇𝑇𝑊 + 𝑇𝑇 (4.21) 

Kinematic equation in 𝑡1: 

 𝑅𝐶𝑊𝑡1
𝑋𝑖 + 𝑇𝐶𝑡1

= 𝑅𝐶𝑇𝑅𝑇𝑊𝑅𝛼𝑋𝑖 + 𝑅𝐶𝑇𝑇𝑊 + 𝑇𝑇 (4.22) 

where:  

𝑋𝑖: Points with respect to the coordinate system 𝑂𝑤𝑋𝑤𝑌𝑤𝑍𝑤. 
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𝑹𝑻𝑾 

𝑹𝑪𝑾 

𝑹𝑪𝑻 

𝑇𝑤 

𝑻𝑻 

𝑋𝑇 

𝑻𝒄 
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Figure 9 Testing schema using rotation table 
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𝑅𝑇𝑊 : Transformation matrix from the coordinate system 𝑂𝑤𝑋𝑤𝑌𝑤𝑍𝑤  to the 

rotating table coordinate system 𝑂𝑇𝑋𝑇𝑌𝑇𝑍𝑇. 

𝑅𝐶𝑇 : Transformation matrix from the rotating table coordinate system 

𝑂𝑇𝑋𝑇𝑌𝑇𝑍𝑇 to the CCS. 

𝑅𝐶𝑊𝑡0
, 𝑅𝐶𝑊𝑡1

:  Transformation matrix at time 𝑡0  and 𝑡1  from the coordinate 

system 𝑂𝑤𝑋𝑤𝑌𝑤𝑍𝑤 to the CCS obtained by the Algorithm  2. 

𝑇𝐶𝑡0
, 𝑇𝐶𝑡1

: Transformation vectors at time 𝑡0 and 𝑡1  with respect to the camera 

coordinate system obtained by the Algorithm  2. 

𝑇𝑊 : Translation vectors with respect to the rotating table coordinate system 

𝑂𝑇𝑋𝑇𝑌𝑇𝑍𝑇. 

𝑇𝑇: Translation vectors with respect to the CCS.  

From the equation  (4.21) and  (4.22) it is seen that: 

 𝑅𝐶𝑊𝑡0
= 𝑅𝐶𝑇𝑅𝑇𝑊 (4.23) 

 𝑅𝐶𝑊𝑡1
= 𝑅𝐶𝑇𝑅𝑇𝑊𝑅𝛼 (4.24) 

From the previous equations it is possible to obtain a direct formula to estimate 

the rotation matrix 𝑅𝛼 (intrinsic rotation) with respect to 𝑂𝑤𝑋𝑤𝑌𝑤𝑍𝑤, see the next 

equation.  

 𝑅𝛼 = 𝑅𝐶𝑊𝑡0
−1𝑅𝐶𝑊𝑡1

 (4.25) 

The equation (4.25) can be rewritten using quaternions: 

 Λ𝛼 = Λ𝐶𝑊𝑡0
−1 ∘ Λ𝐶𝑊𝑡1

 (4.26) 

As it can be noticed in the previous equations  (4.25), 𝑅𝛼 depends on two 

consecutives rotations of coordinate system 𝑂𝑤𝑋𝑤𝑌𝑤𝑍𝑤. The rotation matrix 𝑅𝐶𝑊, 

which can be expressed as a function of 𝒗, and Λ𝐶𝑊 can be obtained by mean of 

Algorithm  2 considering only extrinsic parameters, orientation and the translation 

vector, with regard to intrinsic parameters, they are not included in the parameters, 

because they are fixed values, and they already have been determined during the 

calibration. 
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A testing with the rotating table which consists of three rotations of 1°, 2° and 

3° around axis-𝑌𝑇 is performed where the measurement model accuracy is shown. 

In the Figure 10 it is noticed that the mean (𝜇) of consecutively rotations is very 

close to the true angle α with small standard deviation (𝜎). 

 

Another testing is performed in order to know if it is possible to detect very 

small rotation angles such as 1 arcmin (0.0167°), 5 arcmin (0.0833°) and 15 arcmin 

(0.25°) using low resolution camera. 

As it can be seen in the Figure 11, the accuracy, defined as how close the mean 

value (µ) to the true angle value (α) is, it is less as the rotation angle is smaller. On 

the other hand, the precision (𝜎) is still maintained. 

 

 

 

 

 

 

 

Figure 10 Detections for three rotations of 1°,2° and 3° using the intrinsic 

parameters 
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Until this point the testing has been performed using chessboard where a 

remarkable amount of points is provided. However, it is not possible to establish the 

correspondence between the point from the BF and the ICS automatically, this 

required the user support. It is very important that the program for image processing 

detects and localizes automatically and accurately the points of correspondence 

between the BF and the ICS, since the accuracy of the rotation matrix and translation 

vector depends on it. 

It is shown in the Figure 12, that once the four points are detected and their 

position in the image is evaluated, it is impossible to determine which point is P1, 

P2, P3 or P4. Therefore, the correspondences are not possible to be determined. 

Figure 11 Detection of three rotations 1arcmin (0.0167°), 5arcmin (0.0833°) and 

15arcmin (0.25°) using the intrinsic parameters 
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To solve this problem, a pattern between each point can be used in order to 

determine the correspondences. In order to do that the utilization of the Aruco pattern 

is considered [4], [5]. It helps to establish the correspondence between the point from 

the BF and the ICS as it can be seen in the next figure. 

 

In this  experiment the  correspondences are established automatically using 

the aruco library. As it  is  understood, the measurement model’s error is inherent, 

and in addition to that error, another source of errors appears, such as: the error 

produced by change of brightness in the enviroment, by the digitization of the image, 

and by the algorithm for corner detection. 

 

 

 

 

Figure 12 Example where correspondences are not possible determined 

Body-fixed frame Image coordinate 

Figure 13 Correspondences determined by using Aruco patterns 

Body-fixed Image coordinate 
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In the Figure 14 the used aruco pattern is shown, and in the Figure 15 it is 

shown how the locations of the detected corners change for each image with the 

rotating table being static. 

From the Figure 15 to the Figure 18,  it can be  seen that the located corners 

present in coordinates x(pixel) and y(pixel) maximum standard deviation  0.110 and 

0.124 respectively. 

 

 

Figure 14 Aruco pattern and rotating table 

(𝑥1, 𝑦1) (𝑥2, 𝑦2)

(𝑥3, 𝑦3)(𝑥4, 𝑦4) 

Figure 15 Mean and standard deviation (STD) of the point X1 
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Figure 17 Mean and standard deviation (STD) of the point X2 

Figure 16 Mean and standard deviation (STD) of the point X3 
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As it is oberved in the previous figures the location of the each detected corner 

has small deviation in each image even if the rotating table is static, and the effects 

of this deviation are reflected in the precision (𝜎) of the rotation angle. In the Figure 

19(a) it is shown that the rotation angle has a mean value of 158.777° , and the 

standard deviaton (𝜎) equals to 0.156°. The distance showed in the Figure 19(b) 

represent the modulus of the translation vector 𝑻𝑪. 

 

 

Another experiment has been peformed where the rotating table rotates 90° 

around the axis-Z. In the Figure 20 , it is seen that, as it is expected, the estimated 

Figure 18 Mean and standard deviation (STD) of the point X4 

a) b) Figure 19 (a) Estimation of initial angle position with the rotating table 

being static. (b) Estimated distance with the rotating table being static. 
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rotated angle is close to 90° . Additionally, the featuring of some peaks are seen, 

which appers due to the corner detecter’s errors 

 

The angular velocity can be calculated from consecutive rotation matrices, see 

Figure 21.  

 

However, it can be observed that the angular velocity measurement is strongly 

imprecise, its standard deviation 𝜎  can reach 4.474°/s. In order to improve the 

angular velocity precision kalman filter is required to be  implemented.  

  

Figure 20 Estimated angle position with a rotation of 90° 
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Figure 21 Angular velocity (°/s) 
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5 Extended Kalman Filter and system modeling 

In this section is given a briefly introduction to Extended Kalman filter (EKF) 

[17-19], whereby it is pretended to improve the 3-D object attitude and angular 

velocity precision taking in to account the state-space models of our system. 

5.1 Extended Kalman Filter 

A system can be expressed as a continuous-time as follow: 

 �̇�(𝑡) = 𝒇(𝒙(𝑡), 𝑡) + 𝒘(𝑡) (5.1) 

 𝒛(𝑡) = 𝒉(𝒙(𝑡)) + 𝒗(𝑡) (5.2) 

The equation (5.1) represent the motion equation of the system, where 𝒇 

represents the state transition model, which depends on the state vector 𝒙. With 

regard to the equation  Error! Reference source not found., 𝒛  is called the 

measurement vector and 𝒉 is called observation model.  

Due to the fact that every system is affected by external and inherent noise, 𝒘 

and 𝒗 are supposed to be noises with Gaussian distribution with zero expected value, 

𝒘 ∼ 𝒩(𝟎,𝑸(𝑡)) and 𝒗 ∼ 𝒩(𝟎,𝑹(𝑡)). 

Similarly, a nonlinear system can be expressed as a discrete-time system as 

follow: 

 𝒙𝑘 = 𝒇(𝒙𝑘−1) + 𝒘𝑘−1 (5.3) 

 𝒛𝑘 = 𝒉(𝒙𝑘) + 𝒗𝑘 (5.4) 

Where 𝒘𝑘 and 𝒗𝑘 are supposed to be noises with Gaussian distribution with 

zero expected value, 𝒘𝑘  ∼ 𝒩(𝟎,𝑸𝑘) and 𝒗𝑘  ∼ 𝒩(𝟎,𝑹𝑘). 

Considering the continuous-time nonlinear system in the equations (5.1) and 

 (5.2) the EKF is described below. 

Let �̂�𝑘
+ be the posteriori estimation of the state vector estimation at 𝑡𝑘 , let �̂�𝑘+1

−  

be the priori estimation of the state vector at the moment of time 𝑡𝑘+1 , �̂�𝑘+1
−  is 

calculated by integration of nonlinear equation (5.1) without considering the noise 

component 𝒘 using the state vector �̂�𝑘
+ . 

The Discrete Riccatti equation is used for prediction of the error covariance 

matrix vector estimation 𝑃𝑘+1
−  at time 𝑡𝑘+1. 
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 𝑷𝑘+1
− = 𝑭𝑘𝑷𝑘

+𝑭𝑘
𝑇 + 𝑸𝑘 (5.5) 

Where 𝑸𝑘 = 𝑸(𝑡𝑘), and 𝑭𝑘 is the linearization of the state transition model 𝒇 

in the neighborhood of �̂�𝑘
+ ,called transition matrix from the state 𝒙𝑘 to 𝒙𝑘+1 , let 

𝑷𝑘
+ be the error covariance matrix at 𝑡𝑘.  

Due to the fact that the measurements are frequently taken in a discrete form, 

the measurement model 𝒛(𝑡) = 𝒉(𝒙(𝑡)) + 𝒗(𝑡) (5.2) are given by  

 𝒛𝑘 = 𝒉(𝒙𝑘) + 𝒗𝑘,     𝒗𝑘  ∼ 𝒩(𝟎,𝑹𝑘) (5.6) 

Where 𝒙𝒌 = 𝒙(𝑡𝑘). The gain matrix 𝑲𝑘 can be written as 

 𝑲𝑘+1 = 𝑷𝑘+1
− 𝑯𝑘+1

𝑇 [𝑯𝑘+1𝑷𝑘+1
− 𝑯𝑘+1

𝑇 + 𝑹]−1 (5.7) 

Where 𝑯𝑘 is the linearization of the observation model in the neighborhood of 

�̂�𝑘+1
−  . 

The corrected posteriori estimation is �̂�𝑘+1
+  of the Kaman filter is given by 

 �̂�𝑘+1
+ = �̂�𝑘+1

− + 𝑲𝑘+1[𝒛𝑘+1 − 𝒉(�̂�𝑘+1
− )] (5.8) 

A posteriori estimation for the error covariance matrix is given by the formula 

 𝑷𝑘+1
+ = [𝐼 − 𝑲𝑘+1𝑯𝑘+1]𝑷𝑘+1

−  (5.9) 

where 𝐼 is an identity matrix. 

The EKF algorithm for discrete-time system is remarkably similar for 

continuous-time system, but with �̂�𝑘+1
−  being calculated by means of  the nonlinear 

equation (5.2)  without considering the noise component 𝒘𝑘−1 using the state vector 

�̂�𝑘
+ .  

The error covariance matrix vector estimation 𝑷𝑘+1
−  at time 𝑡𝑘+1 is calculated 

from the equation  (5.5). 

5.2 State-space modeling 

In the Figure 22 the studied system in this thesis work is shown, The camera 

captures the object’s movement by taking photographs at a certain frequency (see 

Figure 22). Then by means of image processing it is detected and determined the 

position of the points 𝑋𝑖′ in the image. The points represent the projection of the 

points 𝑋𝑖 into the image. 
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The angular motion of the object can be defined by means of its rotation matrix 

R with respect to the CCS, and its angular velocity 𝒘𝑟𝑒𝑙 , which is respect to the BF. 

The continuous-time angular motion equation can be obtained using Poisson 

equation for relative motion also can be expressed using quaternions 

 �̇� =
1

2
𝛬 ∘ 𝒘𝑟𝑒𝑙 , |Λ| = 1 (5.10) 

and can be written in a matrix form 

 �̇� =
1

2
[

0 −𝒘𝑟𝑒𝑙
𝑇

𝒘𝑟𝑒𝑙 −[𝒘𝑟𝑒𝑙]𝑥
] 𝛬 (5.11) 

 �̇� =
1

2
Ψ(𝒘𝑟𝑒𝑙)𝛬 (5.12) 

Were Ψ(𝒘𝑟𝑒𝑙) is defined as follow: 

 Ψ(𝒘𝑟𝑒𝑙) = [

0 −𝑤𝑥

𝑤𝑥 0

−𝑤𝑦 −𝑤𝑧

𝑤𝑧 −𝑤𝑦

𝑤𝑦 −𝑤𝑧

𝑤𝑧 𝑤𝑦

0 𝑤𝑥

−𝑤𝑥 0

] (5.13) 

The solution of the equation (5.10) for interval of time ∆𝑡, where 𝒘𝑟𝑒𝑙 can be 

assumed to be constant, can be written in a linear discrete-time form:  

XC YC 

Camera coordinate system 

𝑋𝑖′(𝑥𝑖′, 𝑦𝑖′) 

𝑋𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 

Figure 22 System Diagram 

𝒘𝑟𝑒𝑙 

Body-fixed frame 

O 
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 𝛬𝑘 = [𝐼4𝑥4 +
1

2
Ψ𝑘−1∆𝑡]𝛬𝑘−1, ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1 (5.14) 

Observation model is a function that provides information whereby directly or 

indirectly allow for estimation of the state of the system. Therefore, an observation 

model is closely related to the sensors function. 

In the Figure 23 is shown that camera function can be written as a mathematical 

model by means of  the measurement model ℎ𝑋𝑖
 expressed in the equation (4.18) 

and in the equation (4.19), which are based on Rodrigues' rotation formula and 

quaternions respectively.  

Additionally, in the section 4.5 it has been shown that by means of the 

Algorithm  2 it is possible to determine 3-D object attitude by obtaining the vector 

𝒒, this process can be represented by the observation model ℎ𝑜𝑝𝑡 represented in the 

Figure 23. 

The observation model ℎ𝑜𝑝𝑡 is expressed as follow: 

 [
𝒒
𝑻𝒄

] = ℎ𝑜𝑝𝑡(𝒒, 𝑻𝒄) (5.15) 

Where 𝑰𝟔 is an identity matrix. As it is shown in the equation (5.15), the 

measurement model ℎ𝑜𝑝𝑡  has the advantage of being represented by a linear 

function. However, for measuring it requires more computational time. The 

Figure 23 Measurement models 

C
 Y
C
 

𝑋𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) 

𝑋𝑖′(𝑥𝑖′, 𝑦𝑖′) 

ℎ𝑋𝑖
 

𝒘𝑟𝑒𝑙 

Body-fixed frame 

Algorithm 

2 

𝒒, 𝑻𝒄 

 
ℎ𝑜𝑝𝑡 O 

𝒒, 𝑻𝒄,𝒘𝑟𝑒𝑙 

 

Calculate  

𝒘𝑟𝑒𝑙 
ℎ𝑓𝑠 
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measurement model ℎ𝑋𝑖
, in contrast, does not requires much computational time, but 

is strongly nonlinear. 

In some cases, it is required to add angular velocity measurements, which are 

obtained from consecutive 3-D object attitudes measured every period of time ∆𝑡. 

Then the measurement model ℎ𝑓𝑠 can be defined as follow: 

 [

𝒒
𝑻𝒄

𝒘𝑟𝑒𝑙

] = ℎ𝑓𝑠(𝒒, 𝑻𝒄, 𝒘𝑟𝑒𝑙) (5.16) 

In order to apply the Extender Kalman Filter, it is required that our system be 

represented by means of state-space model. Different state-space models are 

described below, and then in the section 6 the best state-space model for Kalman 

filter is going to be choose. 

In order to apply the Extender Kalman Filter, it is required that our system be 

represented by means of state-space model. Different state-space models are 

described below, and then in the section 6 the best state-space model for Kalman 

filter is going to be choose. In this chapter is considered to use a state-space model 

based on quaternion. However, a state-space model based on Rodrigues rotation 

formula is given in detailed in the Appendix A. 

5.2.1 State-space model based on Quaternions 

Let the state vector be represented by: 

 𝒙 = [𝒒𝑇 , 𝑻𝒄
𝑇 , 𝒘𝑟𝑒𝑙

𝑇]𝑇 (5.17) 

Where 𝒒  represents the vector part of the unit quaternion, 𝑻𝒄  represent the 

distance vector between the camera and the BF, and 𝒘𝑟𝑒𝑙 represents angular velocity 

with respect to the BF.  

5.2.1.1 Observation model 

By means of the measurement model ℎ𝑋𝑖
  using quaternions, defined in the 

equation (4.19),  Let the observation model 𝒉𝒒 be defined as follow: 
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 𝒉𝒒(𝒙) =

[
 
 
 
 
 
 
 
𝑥𝑝1

𝑦𝑝1
𝑥𝑝2

𝑦𝑝2
𝑥𝑝3

𝑦𝑝3
𝑥𝑝4

𝑦𝑝4]
 
 
 
 
 
 
 

=

[
 
 
 
 
ℎ𝑋1

(𝒒, 𝑇𝑐)

ℎ𝑋2
(𝒒, 𝑇𝑐)

ℎ𝑋3
(𝒒, 𝑇𝑐)

ℎ𝑋4
(𝒒, 𝑇𝑐)]

 
 
 
 

 (5.18) 

From the observation model defined in the equation (5.18), let 𝑯𝒒  be the 

linearized matrix of the observation model 𝒉𝒒  

 𝑯𝒒 =

[
 
 
 
 
𝜕ℎ𝑋1

/𝜕𝒙

𝜕ℎ𝑋2
/𝜕𝒙

𝜕ℎ𝑋3
/𝜕𝒙

𝜕ℎ𝑋4
/𝜕𝒙]

 
 
 
 

 (5.19) 

 
𝜕ℎ𝑋𝑖

𝜕𝒙
= [

𝜕ℎ𝑋𝑖

𝜕𝒒

𝜕ℎ𝑋𝑖

𝜕𝑻𝒄

𝜕ℎ𝑋𝑖

𝜕𝒘𝑟𝑒𝑙
] , 𝑖 = 1,… ,4 (5.20) 

Where 𝜕ℎ𝑋1
/𝜕𝒒 and 𝜕ℎ𝑋1

/𝜕𝑻𝒄 were defined in the equation (2.62) and 

 (2.53) respectively. 

From the measurement model ℎ𝑜𝑝𝑡 , defined in the equation (5.15), the 

observation model 𝒉𝒐𝒑𝒕 can be defined as follow: 

 [
𝒒
𝑻𝒄

] = 𝒉𝒐𝒑𝒕(𝒒, 𝑻𝒄) (5.21) 

Let 𝑯𝒐𝒑𝒕 be the linearized matrix of the observation model 𝒉𝒐𝒑𝒕 defined as: 

 𝑯𝒐𝒑𝒕 =
𝜕𝒉𝒐𝒑𝒕

𝜕𝒙
= [

𝜕𝒒

𝜕𝒙
𝜕𝑻𝒄

𝜕𝒙

] = [
𝑰𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝑰𝟑 𝟎𝟑𝒙𝟑
] (5.22) 

Where 𝑰𝟑 is identity matrix. 

Additionally, from the measurement model ℎ𝑓𝑠  , defined in the equation 

 (5.16), the observation model 𝒉𝒇𝒔 can be defined as follow: 

 [

𝒒
𝑻𝒄

𝒘𝑟𝑒𝑙

] = 𝒉𝒇𝒔(𝒒, 𝑻𝒄, 𝒘𝑟𝑒𝑙) (5.23) 

Let 𝑯𝒇𝒔 be the linearized matrix of the observation model 𝒉𝒇𝒔 defined as: 
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 𝑯𝒇𝒙 =
𝜕𝒉𝒇𝒙

𝜕𝒙
=

[
 
 
 
 

𝜕𝒒

𝜕𝒙
𝜕𝑻𝒄

𝜕𝒙
𝜕𝒘

𝜕𝒙 ]
 
 
 
 

= [

𝑰𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝑰𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝑰𝟑

] (5.24) 

It is important to mention that the observation models 𝒉𝒒 , 𝒉𝒐𝒑𝒕  and 𝒉𝒇𝒔  are 

discrete-time measurements, and they are suitable for discrete-time state transition 

model 𝒇.  

Due to the fact that the measurements, in most physical continuous-time 

system, are frequently taken in a discrete form the observation models 𝒉𝒒, 𝒉𝒐𝒑𝒕 and 

𝒉𝒇𝒔 are completely suitable for the continuous-time state transition model.   

5.2.1.2 State transition model 

5.2.1.2.1 Discrete-time model 

From the equation (5.14), the state transition model 𝒇 can be expressed in a 

discrete-time form: 

 𝛬𝑘 = [𝐼4𝑥4 +
1

2
Ψ𝑘−1∆𝑡]𝛬𝑘−1 (5.25) 

 𝑻𝒄𝑘
= 𝑻𝒄𝑘−1

 (5.26) 

 𝒘𝑟𝑒𝑙𝑘
= 𝒘𝑟𝑒𝑙𝑘−1

 (5.27) 

As it has been mentioned previously, the state transition models for 𝑻𝒄𝑘
 and 

𝒘𝑟𝑒𝑙𝑘
 are unknown, thus it is convenient to consider them to be constant for small 

period of time ∆𝑡. 

From the equations  (5.25), (5.26) and 

(5.27),  let 𝑭 be the linearized matrix of the state transition model defined as: 

 𝑭 = [

𝜕𝒒𝑘/𝜕𝒙
𝜕𝑻𝒄𝑘

/𝜕𝒙

𝜕𝒘𝑟𝑒𝑙𝑘
/𝜕𝒙

] (5.28) 

In order to obtain the expression for 𝜕𝒒𝑘/𝜕𝒙 , it is performed 𝜕𝛬𝑘/𝜕𝒙  

 
𝜕𝛬𝑘

𝜕𝒙
= [

𝜕𝛬𝑘

𝜕𝒒

𝜕𝛬𝑘

𝜕𝑻𝒄

𝜕𝛬𝑘

𝜕𝒘𝑟𝑒𝑙
] (5.29) 

The equation  (5.25) can be expressed as follow:  
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 𝛬𝑘 = 𝛬𝑘−1 +
1

2
Ψ𝑘−1𝛬𝑘−1∆𝑡 (5.30) 

Then 𝜕𝛬𝑘/𝜕𝒒 is  

 
𝜕𝛬𝑘

𝜕𝒒
=

𝜕𝛬𝑘−1

𝜕𝒒
+

∆𝑡

2

𝜕(Ψ𝑘−1𝛬𝑘−1)

𝜕𝒒
 (5.31) 

 Where 𝜕𝛬𝑘−1/𝜕𝒒 is: 

 
𝜕𝛬𝑘−1

𝜕𝒒
=

[
 
 
 
−𝑞1

𝑞0

−𝑞2

𝑞0

−𝑞3

𝑞0

1 0 0
0 1 0
0 0 1 ]

 
 
 
 (5.32) 

And 𝜕(Ψ𝑘−1𝛬𝑘−1)/𝜕𝒒 is: 

 
𝜕(Ψ𝑘−1𝛬𝑘−1)

𝜕𝒒
=

[
 
 
 
 
 

−𝑤𝑥
−𝑞1

𝑞0
𝑤𝑥

−𝑞1

𝑞0
𝑤𝑦 − 𝑤𝑧

−𝑞1

𝑞0
𝑤𝑧 − 𝑤𝑦

−𝑤𝑦
−𝑞2

𝑞0
𝑤𝑥 + 𝑤𝑧

−𝑞2

𝑞0
𝑤𝑦

−𝑞2

𝑞0
𝑤𝑧 − 𝑤𝑥

−𝑤𝑧
−𝑞3

𝑞0
𝑤𝑥 − 𝑤𝑦

−𝑞3

𝑞0
𝑤𝑦 + 𝑤𝑥

−𝑞3

𝑞0
𝑤𝑧 ]

 
 
 
 
 

 (5.33) 

Thus,  𝜕𝛬𝑘/𝜕𝒒 from the equation  (5.31) can be rewritten as follow: 

 
𝜕𝛬𝑘

𝜕𝒒
=

[
 
 
 
 
 
 
𝜕𝑞0

𝜕𝒒

𝜕𝑞1

𝜕𝒒

𝜕𝑞2

𝜕𝒒

𝜕𝑞3

𝜕𝒒 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 −

𝑞1

𝑞0
−

𝑤𝑥∆𝑡

2

1 −
𝑞1

𝑞0

𝑤𝑥∆𝑡

2

−
𝑞1

𝑞0

𝑤𝑦∆𝑡

2
−

𝑤𝑧∆𝑡

2

−
𝑞1

𝑞0

𝑤𝑧∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝑞2

𝑞0
−

𝑤𝑦∆𝑡

2

−
𝑞2

𝑞0

𝑤𝑥∆𝑡

2
+

𝑤𝑧∆𝑡

2

1 −
𝑞2

𝑞0

𝑤𝑦∆𝑡

2

−
𝑞2

𝑞0

𝑤𝑧∆𝑡

2
−

𝑤𝑥∆𝑡

2

−
𝑞3

𝑞0
−

𝑤𝑧∆𝑡

2

−
𝑞3

𝑞0

𝑤𝑥∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝑞3

𝑞0

𝑤𝑦∆𝑡

2
+

𝑤𝑥∆𝑡

2

1 −
𝑞3

𝑞0

𝑤𝑧∆𝑡

2 ]
 
 
 
 
 
 

 (5.34) 

Then the 𝜕𝒒𝑘/𝜕𝒒 is: 

 
𝜕𝒒𝑘

𝜕𝒒
=

[
 
 
 
 
𝜕𝑞1

𝜕𝒒

𝜕𝑞2

𝜕𝒒

𝜕𝑞3

𝜕𝒒 ]
 
 
 
 

=

[
 
 
 
 1 −

𝑞1

𝑞0

𝑤𝑥∆𝑡

2

−
𝑞1

𝑞0

𝑤𝑦∆𝑡

2
−

𝑤𝑧∆𝑡

2

−
𝑞1

𝑞0

𝑤𝑧∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝑞2

𝑞0

𝑤𝑥∆𝑡

2
+

𝑤𝑧∆𝑡

2

1 −
𝑞2

𝑞0

𝑤𝑦∆𝑡

2

−
𝑞2

𝑞0

𝑤𝑧∆𝑡

2
−

𝑤𝑥∆𝑡

2

−
𝑞3

𝑞0

𝑤𝑥∆𝑡

2
−

𝑤𝑦∆𝑡

2

−
𝑞3

𝑞0

𝑤𝑦∆𝑡

2
+

𝑤𝑥∆𝑡

2

1 −
𝑞3

𝑞0

𝑤𝑧∆𝑡

2 ]
 
 
 
 

 (5.35) 

Because 𝛬𝑘 does not depends on 𝑻𝒄, 𝜕𝛬𝑘/𝜕𝑻𝒄 is a null matrix, thus 𝜕𝒒𝑘/𝜕𝑻𝒄 

is: 

 
𝜕𝒒𝑘

𝜕𝑻𝒄
= 03𝑥3 (5.36) 

Additionally, 𝜕𝛬𝑘/𝜕𝒘𝑟𝑒𝑙 is: 
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𝜕𝛬𝑘

𝜕𝒘𝑟𝑒𝑙
= [

𝜕𝑞0

𝜕𝒘𝑟𝑒𝑙

𝜕𝒒𝑘

𝜕𝒘𝑟𝑒𝑙

] = [

−𝑞1

𝑞0
𝑞3

−𝑞2

−𝑞2

−𝑞3
𝑞0

𝑞1

−𝑞3

𝑞2
−𝑞1

𝑞0

] (5.37) 

 
𝜕𝒒𝑘

𝜕𝒘𝑟𝑒𝑙
= [

𝑞0 −𝑞3 𝑞2

𝑞3 𝑞0 −𝑞1

−𝑞2 𝑞1 𝑞0

] (5.38) 

From the equations  (5.26) and (5.27), the 𝜕𝑻𝒄𝑘
/𝜕𝒙  and 𝜕𝒘𝑟𝑒𝑙𝑘

/𝜕𝒙 

are expressed as follows: 

 
𝜕𝑻𝒄𝑘

𝜕𝒙
= [03𝑥3 𝐼3 03𝑥3] (5.39) 

 
𝜕𝒘𝑟𝑒𝑙𝑘

𝜕𝒙
= [03𝑥3 03𝑥3 𝐼3] (5.40) 

5.2.1.2.2 Continuous-time model 

The State-space model based on Quaternions can be also expressed in a 

continuous-time form: 

 �̇� =
1

2
𝛬 ∘ 𝒘𝑟𝑒𝑙 , |Λ| = 1 (5.41) 

 𝑻�̇� = 𝟎3𝑥1 (5.42) 

 �̇�𝑟𝑒𝑙 = 𝟎3𝑥1 (5.43) 

The linearized matrix of state transition model 𝑭 is defined as: 

 [

𝛿�̇�

𝛿𝑻�̇�

𝛿�̇�𝑟𝑒𝑙

] = 𝑭 [

𝛿𝒒
𝛿𝑻𝒄

𝛿𝒘𝑟𝑒𝑙

]  (5.44) 

Where  

 𝑭 = [
−[𝒘𝑟𝑒𝑙]𝑥

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

0.5𝑰𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑

] (5.45) 

The linearized matrix 𝑯 of the observable model is the same as in the equation 

 (5.19), because the 𝒉(x) is supposed that estimations of the state vector are 

not continuous but discrete 

From the continuous-time model, its linearized matrix 𝑭𝑪𝒐𝒏𝒕  shows that 

𝛿�̇�𝑟𝑒𝑙/𝛿𝒙 results in a null matrix 𝟎𝟑𝒙𝟗,  and from the gain matrix 𝑲𝑘 in the equation 

𝑲𝑘+1 = 𝑷𝑘+1
− 𝑯𝑘+1

𝑇  [𝑯𝑘+1 𝑷𝑘 + 1−𝑯𝑘 + 1𝑇 + 𝑹] − 1 (5.7) Error! 



53 

Reference source not found., is deducted that it is necessary angular velocity 

measurements to estimate angular velocity by EKF. 

As the mentioned above, the measurement model 𝒉𝒇𝒔  is suitable for the 

continuous-time model. With regard to discrete-time model, its linearized matrix 

𝑭𝑫𝒊𝒔𝒄 shows that its component 𝜕𝒘𝑟𝑒𝑙𝑘
/𝜕𝒙 is different than a null matrix, it gives 

the possibility to use  the measurement models 𝒉𝒐𝒑𝒕 and  𝒉𝒇𝒔. 

On the other hand, because of the high non-linearity of the measurement model 

𝒉𝒒 it would require more analysis for future work.  
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6 Experiment and results 

In this section, the results of the rotation matrix and angular velocity estimation 

by means of a rotating table are presented. 

The facilities are shown in the Figure 24, where Aruco marker is used to allows 

to stablish the correspondences between the points in the coordinate system 𝑂𝑋𝑌𝑍 

and the points located in the images. This marker is installed on the rotating table in 

a way that the maker will be rotated around its axis-Z.  

The camera FI8918W, previously calibrated in section 4.4, is used to capture 

the Aruco marker’s movement every period of time ∆𝑡, where ∆𝑡 = 1/15 seconds.  

 

In order to estimate the rotation matrix and the angular velocity of the Aruco 

marker the EKF is implemented in according to the section 5. 

Let 𝒙 = [𝒒𝑇 , 𝒘𝑟𝑒𝑙
𝑇]𝑇  be the state vector of the continuous-time state space 

model where 𝒒 = [𝑞1, 𝑞2, 𝑞3]
𝑻  is the vector part of a unit quaternion 𝜦 . This 

quaternion represents the Aruco marker’s rotation matrix with respect to the camera. 

The vector 𝒘𝑟𝑒𝑙 = [𝑤𝑥, 𝑤𝑦 , 𝑤𝑧]
𝑇
  represents the local angular velocity, with 

respect to the coordinate system 𝑂𝑋𝑌𝑍. 

𝑋1 𝑋2 

𝑋3 
𝑋4 

𝑤𝑟𝑒𝑙 

Figure 24 Rotary table rotates on the axis-Z 
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The process model is represented by the equations  (5.41) and  (5.43). The 

observation model is based on the equation  (5.23) and is defined as follows:  

𝒁 = [
𝒒

𝒘𝑟𝑒𝑙
] = 𝒉𝒇𝒔(𝒒,𝒘𝑟𝑒𝑙) 

The translation vector 𝑻𝒄  is not taken into account. The process model 

integration is performed every period of time ∆𝑡 by means of the Runge-Kutta 4th 

order method. 

The covariance matrix of the process noise 𝑸 is 

𝑸 = 𝑑𝑖𝑎𝑔([𝜎𝑞1
2 ,𝜎𝑞2

2 , 𝜎𝑞3
2 , 𝜎𝑞4

2 , 𝜎𝑞5
2 , 𝜎𝑞6

2 ]) 

 

where 𝜎𝑞1
2 =1e-8, 𝜎𝑞2

2 =1e-8, 𝜎𝑞3
2 =1e-8,  𝜎𝑞4

2 =9.243e-5,  𝜎𝑞5
2 =1.329e-

4, 𝜎𝑞6
2 =2.172e-5. The covariance of the observation noise 𝑹 is  

𝑹 = 𝑑𝑖𝑎𝑔([𝜎𝑟1
2 ,𝜎𝑟2

2 , 𝜎𝑟3
2 , 𝜎𝑟4

2 , 𝜎𝑟5
2 , 𝜎𝑟6

2 ]) 

where 𝜎𝑟1
2 =6.123e-4, 𝜎𝑟2

2 =1.318e-8, 𝜎𝑟3
2 =3.377e-7, 𝜎𝑟4

2 =2.73e-4, 𝜎𝑟5
2 =6.069e-

4, 𝜎𝑟6
2 =3.627e-5. 

Similarly, the state vector x is also used for the discrete-time state model, its 

process model is represented by the equation  (5.25) and  (5.27). The 

observation model is based on the equation  (5.21) and is defined as follows: 

𝒒 = 𝒉𝒐𝒑𝒕(𝒒) 

The covariance matrix of the process noise 𝑸𝒌 is 

𝑸𝒌 = 𝑑𝑖𝑎𝑔([𝜎𝑞𝑘1
2 ,𝜎𝑞𝑘2

2 , 𝜎𝑞𝑘3
2 , 𝜎𝑞𝑘4

2 , 𝜎𝑞𝑘5
2 , 𝜎𝑞𝑘6

2 ]) 

where 𝜎𝑞𝑘1
2 =1e-8, 𝜎𝑞𝑘2

2 =1e-8, 𝜎𝑞𝑘3
2 =1e-8,  𝜎𝑞𝑘4

2 =9.243e-5,  𝜎𝑞𝑘5
2 =1.329e-

4, 𝜎𝑞𝑘6
2 =2.172e-5. The covariance of the observation noise 𝑹𝒌 is  

𝑹𝒌 = 𝑑𝑖𝑎𝑔([𝜎𝑟𝑘1
2 ,𝜎𝑟𝑘2

2 , 𝜎𝑟𝑘3
2 , 𝜎𝑟𝑘4

2 , 𝜎𝑟𝑘5
2 , 𝜎𝑟𝑘6

2 ]) 

where 𝜎𝑟𝑘1
2 =6.123e-4, 𝜎𝑟𝑘2

2 =1.318e-8, 𝜎𝑟𝑘3
2 =3.377e-7, 𝜎𝑟𝑘4

2 =2.73e-4, 

𝜎𝑟𝑘5
2 =6.069e-4, 𝜎𝑟𝑘6

2 =3.627e-5. 

The covariance matrices of the process noise and observation noise were 

determined experimentally by means of a graphical user interface (GUI) developed 

in Python 3.7 during this thesis work. This GUI is implemented in order to fine-tune 

the covariance matrix. 
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An experiment has been performed where the rotating table rotates 90° around 

the axis-Z. The next pictures shown three graphics defined as follows: 

• Red line: Measurement without filter. 

• Green line: Results for EKF using the continuous-time process model 

integrated every period of time ∆𝑡 by means of the Runge-Kutta 4th order 

method. 

• Blue lines: Results for EKF using the discrete-time process model. 

The components of  the vector 𝒒 are shown in the Figure 25. 

 

In the next table , the mean (𝜇) and standard deviation (𝜎) for the vector 𝒒 are 

calculated for the first 30 seconds of the experiment, when the rotating table is static. 

(a) Quaternion component (b) Quaternion component 

(c) Quaternion component q3 

Figure 25 Components of the vector part of the unit quaternion  
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It can be seen that as for the orientation, which is determined by the 

quaternions, there was no significant improvement, this is because the measurement 

models 𝒉𝒇𝒔 and 𝒉𝒐𝒑𝒕 is already accurate for orientation determination. 

Table 1 Quaternion measurements for the first 30 seconds for a static rotating table 

 Mean (𝝁) Standard deviation (𝝈) 

 𝝁𝒎𝒆𝒂𝒔 𝝁𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝁𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 𝝈𝒎𝒆𝒂𝒔 𝝈𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝈𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 

𝒒𝟏 0.96463 0.96463 0.96463 0.00009 0.00010 0.00007 

𝒒𝟐 0.05652 0.05652 0.05652 0.00012 0.00012 0.00010 

𝒒𝟑 -0.05326 -0.05326 -0.05326 0.00043 0.00043 0.00026 

 

In the Figure 26, the results for the angular velocity estimation are  shown. It 

can be noticed that there is a remarkable increase in precision. 

(a) Angular velocity along the axis-X (b) Angular velocity along the axis-Y 

(c) Angular velocity along the axis-Z 

Figure 26 Angular velocity (°/s) with respect to the coordinate system 

OXYZ 
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In the next table, it is shown the mean (𝜇 ) and standard deviation (𝜎 ) 

measurements of the angular velocity for the first 30 seconds of the experiment, 

when the rotating table is static. It can be seen that the precision increase can reach 

up to 89.7% by means of the Discrete EKF, it is a better option than the Continuous-

time EKF which can reach up to 86.2%. However, It is important to mention that the 

previous results depend on the efficiency for covariance matrices determination. On 

the other hand, it is remarkable that an important precision increase is obtained with 

regard to angular velocity estimation.  

Table 2 Angular velocity measurements for the first 30 seconds for a static rotating 

table 

 Mean (°/s) Standard deviation (°/s) Improve (%) 

 𝝁𝒎𝒆𝒂𝒔 𝝁𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝁𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 𝝈𝒎𝒆𝒂𝒔 𝝈𝑪𝒐𝒏𝒕.𝑬𝑲𝑭 𝝈𝑫𝒊𝒔𝒄.𝑬𝑲𝑭 Cont.EKF Disc.EKF 

𝒘𝒙 0.00237 0.0019 -0.0013 0.8411 0.1503 0.0863 82.1 89.7 

𝒘𝒚 0.00008 -0.0012 -0.0036 1.005 0.1352 0.1117 86.5 88.8 

𝒘𝒛 
-

0.00216 
-0.0016 -0.0054 0.405 0.1205 0.0511 70.3 87.4 

In the Figure 27, The angle rotated around the axis-Z is shown, and as it is 

expected, the estimated rotated angle is close to 90° with an error of not more than 

0.1 °. 

Measurement: 

μ : 90.089 °, σ : 0.029 ° 
Disc. EKF: 

μ : 90.090 ° , σ : 0.0228 ° 
Cont. EKF: 

μ : 90.089 ° , σ : 0.02767 ° 

Figure 27 Angle rotated (°) around the axis-Z 
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The angle rotated is not calculated by angular velocity integration, but it is 

measured taking into account the first rotation matrix to the current rotation matrix, 

due to the fact that orientation estimation y more precise. 
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Conclusion 

This work is dedicated to the problem of estimating the orientation of an object 

and its angular velocity by image processing. Two different approches were 

considered: The rotation matrix determination by means of the measurement model 

adapted for the use of quaternions, in addition the implementation of EKF for the 

angular velocity estimation. 

As result  of  using quaternions, simulations showed that there is no difference 

with respect to the precision with its analog adapted measurement model for 

Rodrgiues rotation formula. However, using measurement model based on 

quaternions is a slight advantage in computing time. 

Experiments for rotation matrix determination by means of quaternions showed 

high precision. However, the estimation of the angular velocity from consecutives 

rotation matrix has low precision, thus ,in order to improve the precision of the 

angular velocity measurement the EKF is implemented. 

The EKF has been implemented taking into account the matrix rotation 

measurment ,which are express by quaternions, the result showed a significatly 

accuracy increase for angular velocity estimation. As for the rotation matrix, which 

is determined by the quaternions, there was no significant improvement, this is 

because the measurement is already accurate. 
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Appendix А. State-space model based on Rodrigues’ 

rotation formula 

The angular motion of the object can be defined by means of its rotation matrix 

R with respect to the CCS, and its angular velocity 𝒘𝑟𝑒𝑙 , which is respect to the BF. 

The continuous-time angular motion equation can be obtained using Poisson 

equation for relative motion 

 �̇� = 𝑅Ω (A. 1) 

  

 Where Ω is skew-symmetric matrix of the vector 𝒘𝑟𝑒𝑙 :  

 Ω = [𝒘𝑟𝑒𝑙]𝑥 = [

0 −𝑤𝑧 𝑤𝑦

𝑤𝑧 0 −𝑤𝑥

−𝑤𝑦 𝑤𝑥 0
] (A.2) 

Due to the fact that the angular velocity 𝒘𝑟𝑒𝑙 depends on time, it is convenient 

to perform an analysis for small enough interval of time [𝑡0, 𝑡𝑓], where 𝒘𝑟𝑒𝑙 can be 

considered constant; Taking into account the mentioned above, the general solution 

can be written as follow:  

 𝑅(𝑡) = 𝑅0𝑒
Ω𝑡 (A.3) 

Where 𝑅0(𝑡0) = 𝑅0  and 𝑡 ∈  [𝑡0, 𝑡𝑓] , additionally, the solution can be 

expressed in a discrete-time form: 

 𝑅𝑘 = 𝑅𝑘−1𝑒
Ω𝑘−1∆𝑡 , ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1, 𝑘 = 1,2,3,…  (A.4) 

Where ∆𝑡 is small enough to assumed Ω𝑘−1 to be constant in the interval of 

time [𝑡𝑘, 𝑡𝑘−1]. Also ∆𝑡 represents the period of time whereby the system is updated.  

By mean of the definition of matrix exponential the equation can be expressed 

as a Taylor series 

 𝑅𝑘 = 𝑅𝑘−1(𝐼 + Ω𝑘−1∆𝑡 +
1

2
(Ω𝑘−1∆𝑡)2 + ⋯) (A.5) 

Considering only the first two terms, a linear form can be given as follow: 

 𝑅𝑘 = 𝑅𝑘−1(𝐼 + Ω𝑘−1∆𝑡) (A.6) 

Below is described the state-space model based on Rodrigues' rotation formula. 
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The measurement model ℎ𝑋1
(𝒗, 𝑻𝒄)  originally does not depends on the angular 

velocity 𝒘𝑟𝑒𝑙. However, due to the fact that the angular velocity is needed in every 

angular motion, the angular velocity 𝒘𝑟𝑒𝑙 must be considered in the state vector 𝒙. 

Let the state vector be 𝒙 = [𝒗𝑇 , 𝑻𝒄
𝑇 , 𝒘𝑟𝑒𝑙

𝑇]𝑇 and the observation model be defined 

as follow: 

 𝒉𝒓𝒐𝒅(𝒙) =

[
 
 
 
 
 
 
 
𝑥𝑝1

𝑦𝑝1
𝑥𝑝2

𝑦𝑝2
𝑥𝑝3

𝑦𝑝3
𝑥𝑝4

𝑦𝑝4]
 
 
 
 
 
 
 

=

[
 
 
 
 
ℎ𝑋1

(𝒗, 𝑻𝒄)

ℎ𝑋2
(𝒗, 𝑻𝒄)

ℎ𝑋3
(𝒗, 𝑻𝒄)

ℎ𝑋4
(𝒗, 𝑻𝒄)]

 
 
 
 

 (A.7) 

It is important to notice that the previous observation model consists on the 

projection of for points from the BF to the ICS. 

In order to apply the Extended Kalman filter, it is required a linearization of the 

state transition and observation model. 

Let 𝑯𝒓𝒐𝒅 be the linearized matrix of the observation model 𝒉𝒓𝒐𝒅(𝒙) defined as: 

 𝑯𝒓𝒐𝒅 =

[
 
 
 
 
𝜕ℎ𝑋1

/𝜕𝒙

𝜕ℎ𝑋2
/𝜕𝒙

𝜕ℎ𝑋3
/𝜕𝒙

𝜕ℎ𝑋4
/𝜕𝒙]

 
 
 
 

 (A.8) 

 
𝜕ℎ𝑋𝑖

𝜕𝒙
= [

𝜕ℎ𝑋𝑖

𝜕𝒗

𝜕ℎ𝑋𝑖

𝜕𝑻𝒄

𝜕ℎ𝑋𝑖

𝜕𝒘𝑟𝑒𝑙
] , 𝑖 = 1,… ,4 (A.9) 

Where 𝜕ℎ𝑋𝑖
/𝜕𝒗 and 𝜕ℎ𝑋𝑖

/𝜕𝑻𝒄 were defined in the equation (2.37) and 

(2.53) respectively, and 𝜕ℎ𝑋𝑖
/𝜕𝒘𝑟𝑒𝑙 results in a null matrix 𝟎𝟐𝒙𝟐, because ℎ𝑋𝑖

 does 

not depends on 𝒘𝑟𝑒𝑙. 

According to the state vector, the state transition model in continuous-time is 

required to be in the next form:  
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 �̇� = 𝑓1(𝒗, 𝑻𝒄, 𝒘𝑟𝑒𝑙 , 𝑡) (A.10) 

 𝑻�̇� = 𝑓2(𝒗, 𝑻𝒄, 𝒘𝑟𝑒𝑙 , 𝑡) (A.11) 

 �̇�𝑟𝑒𝑙 = 𝑓3(𝒗, 𝑻𝒄, 𝒘𝑟𝑒𝑙 , 𝑡) (A.12) 

However, there is no a direct expression for previous differential system of 

equations, therefore with Rodrigues' rotation formula it is preferable to work with 

discrete-time system with the next form: 

 𝒗𝑘 = 𝑓1(𝒗𝑘−1, 𝑻𝒄𝑘−1
, 𝒘𝑟𝑒𝑙𝑘−1

, 𝑘 − 1) (A.13) 

 𝑻𝒄𝒌
= 𝑓2(𝒗𝑘−1, 𝑻𝒄𝑘−1

, 𝒘𝑟𝑒𝑙𝑘−1
, 𝑘 − 1) (A.14) 

 𝒘𝑟𝑒𝑙𝑘
= 𝑓3(𝒗𝑘−1, 𝑻𝒄𝑘−1

, 𝒘𝑟𝑒𝑙𝑘−1
, 𝑘 − 1) (A.15) 

The state transition model for 𝒗𝑘 can be derived from the equation (A.6), let 

the rotation matrix 𝑅𝑘 be defined as follow: 

 𝑅𝑘 = 𝑅𝑘−1[𝐼 + Ω𝑘−1∆𝑡] (A.16) 

 𝑅𝑘 = [

𝑟𝑘,11

𝑟𝑘,21

𝑟𝑘,31

𝑟𝑘,12

𝑟𝑘,22

𝑟𝑘,32

𝑟𝑘,13

𝑟𝑘,23

𝑟𝑘,31

] (A.17) 

Where 𝑅𝑘−1 is the matrix  rotation at moment of time 𝑡𝑘−1, 𝑅𝑘−1 is defined as 

function of 𝒗𝑘−1 in the equation (2.16), and Ω𝑘−1 is the skew-symmetric matrix of 

the vector 𝒘𝑟𝑒𝑙𝑘−1
  as in the equation (A.2). Thus, 𝑅𝑘  can be expressed as 

𝑅𝑘(𝒗𝑘−1, 𝒘𝑟𝑒𝑙𝑘−1
). 

As it is widely known, from rotation matrix angle rotation 𝛼𝑘  can be 

determined as follow: 

 𝛼𝑘 = arccos (
𝑇𝑟(𝑅𝑘)−1

2
) (A.18) 

Where  𝑇𝑟(𝑅𝑘) is the trace of the matrix 𝑅𝑘. The axis of rotation 𝒖𝑘 is defined 

as: 

 𝒖𝑘 =
𝒃

2𝑠𝑖𝑛𝛼𝑘
, |𝒖𝑘| = 1 (A.19) 

Where the vector 𝒃 is: 

 𝒃 = [𝑟𝑘,32 − 𝑟𝑘,23, 𝑟𝑘,13 − 𝑟𝑘,31, 𝑟𝑘,21 − 𝑟𝑘,12]
𝑇 (A.20) 

Then  𝒗𝑘 is obtained as a function of 𝒗𝑘−1 and 𝒘𝑟𝑒𝑙𝑘−1
 as follow: 
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 𝒗𝑘 = 𝑓1(𝒗𝑘−1, 𝒘𝑟𝑒𝑙𝑘−1
) = 𝛼𝑘𝑢ሬԦ𝑘 (A.21) 

Due to the fact that the state transition models 𝑓2 and 𝑓3 are unknown for 𝑻𝒄𝒌
 

and 𝒘𝑟𝑒𝑙𝑘
 respectively, it is possible to consider them to be constant for small period 

of time ∆𝑡. 

 𝑻𝒄𝑘
= 𝑻𝒄𝑘−1

 (A.22) 

 𝒘𝑟𝑒𝑙𝑘
= 𝒘𝑟𝑒𝑙𝑘−1

 (A.23) 

From the equations (A.13), (A.14) and (A.15) , Let 𝑭 be the linearized matrix 

of state transition model 𝒇 defined in the equation defined as: 

 𝑭 = [
𝑭𝟏

𝑭𝟐

𝑭𝟑

] = [

𝜕𝑓1/𝜕𝒙
𝜕𝑓2/𝜕𝒙
𝜕𝑓3/𝜕𝒙

] (A.24) 

From the equation (A.21), The linearized matrix 𝑭𝟏 is defined as follow: 

 𝑭𝟏 =
𝜕𝑓1

𝜕𝒙
=

𝜕𝒗𝑘

𝜕𝒙
 (A.25) 

Where 𝒗𝑘 can be written as a function of the state vector 𝒙: 

 𝒗𝑘 = 𝛼𝑘(𝒙) 𝒖𝑘(𝒙) (A.26) 

Then 

 
𝜕𝒗𝑘

𝜕𝒙
=

𝜕𝒗𝑘

𝜕𝛼𝑘

𝜕𝛼𝑘

𝜕𝒙
+

𝜕𝒗𝑘

𝜕𝒖𝑘

𝜕𝒖𝑘

𝜕𝒙
 (A.27) 

Where 𝜕𝒗𝑘/𝜕𝛼𝑘 = 𝒖𝑘, and  𝜕𝒗𝑘/𝜕𝒖𝑘 = 𝛼𝑘𝐼3 

 
𝜕𝒗𝑘

𝜕𝒙
= 𝒖𝑘

𝜕𝛼𝑘

𝜕𝒙
+ 𝛼𝑘

𝜕𝒖𝑘

𝜕𝒙
 (A.28) 

From the equation (A.18), let 𝜙 = (𝑇𝑟(𝑅𝑘) − 1)/2 , then 𝜕𝛼𝑘/𝜕𝒙   can be 

expressed by mean of partial derivatives: 

 
𝜕𝛼𝑘

𝜕𝒙
=

𝜕𝛼𝑘

𝜕𝜙

𝜕𝜙

𝜕𝑇𝑟

𝜕𝑇𝑟

𝜕𝑅𝑘

𝜕𝑅𝑘

𝜕𝒙
 (A.29) 

Where 𝜕𝛼𝑘/𝜕𝜙 = −1/√1 − 𝜙2 ,  𝜕𝜙/𝜕𝑇𝑟 = 1/2 , and 𝜕𝜙/𝜕𝑇𝑟 is: 

 
𝜕𝜙

𝜕𝑇𝑟
= [1 0 0 0 1 0 0 0 1] (A.30) 

From the equation (A.19), let 𝜁 = 1/(2𝑠𝑖𝑛𝛼𝑘) , then 𝒖𝑘 can be written as: 

 𝒖𝑘 = 𝜁(𝛼𝑘)𝒃(𝑅𝑘) (A.31) 

Thus 𝜕𝒖𝑘/𝜕𝒙 can be defined as: 
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𝜕𝒖𝑘

𝜕𝒙
=

𝜕𝒖𝑘

𝜕𝜁

𝜕𝜁

𝜕𝛼𝑘

𝜕𝛼𝑘

𝜕𝒙
+

𝜕𝒖𝑘

𝜕𝒃

𝜕𝒃

𝜕𝑅𝑘

𝜕𝑅𝑘

𝜕𝒙
 (A.32) 

Where 𝜕𝒖𝑘/𝜕𝜁 = 𝒃 ,  𝜕𝜁/𝜕𝛼𝑘 =  −𝑐𝑜𝑠(𝛼𝑘)/(2𝑠𝑖𝑛2(𝛼𝑘)) ,  𝜕𝒖𝑘/𝜕𝒃 = 1/

(2𝑠𝑖𝑛𝛼𝑘),  and 𝜕𝒃/𝜕𝑅𝑘 is: 

 
𝜕𝒗

𝜕𝑅𝑘
= [

0 0 0
0 0 −1
0 1 0

0 0 1
0 0 0

−1 0 0

0 −1 0
1 0 0
0 0 0

] (A.33) 

The equation (A.16) can be rewritten as follow: 

 𝑅𝑘 = 𝑅𝑘−1𝑀 (A.34) 

Where 𝑀 = 𝐼 + Ω𝑘−1∆𝑡 , then by means of matrix calculus 𝜕𝑅𝑘/𝜕𝒙  is 

expressed as: 

 
𝜕𝑅𝑘

𝜕𝒙
= [

𝜕𝑅𝑘−1𝑀

𝜕𝑅𝑘−1

𝜕𝑅𝑘−1𝑀

𝜕𝑀
] [

𝜕𝑅𝑘−1

𝜕𝒙
𝜕𝑀

𝜕𝒙

] (A.35)

 
𝜕𝑅𝑘

𝜕𝒙
= [𝑀𝑇 ⊗ 𝐼𝟑 𝐼𝟑 ⊗ 𝑅𝑘−1] [

𝜕𝑅𝑘−1

𝜕𝒗𝑘−1

𝜕𝑅𝑘−1

𝜕𝑻𝒄𝑘−1

𝜕𝑅𝑘−1

𝜕𝒘𝑟𝑒𝑙𝑘−1

𝜕𝑀

𝜕𝒗𝑘−1

𝜕𝑀

𝜕𝑻𝒄𝑘−1

𝜕𝑀

𝜕𝒘𝑟𝑒𝑙𝑘−1

] (A.36)

 
𝜕𝑅𝑘

𝜕𝒙
= [𝑀𝑇 ⊗ 𝐼𝟑 𝐼𝟑 ⊗ 𝑅𝑘−1] [

𝜕𝑅𝑘−1

𝜕𝒗𝑘−1
𝟎𝟗𝒙𝟑 𝟎𝟗𝒙𝟑

𝟎𝟗𝒙𝟑 𝟎𝟗𝒙𝟑
𝜕𝑀

𝜕𝒘𝑟𝑒𝑙𝑘−1

] (A.37) 

 
𝜕𝑅𝑘

𝜕𝒙
= [𝑀𝑇 ⊗ 𝐼𝟑

𝜕𝑅𝑘−1

𝜕𝒗𝑘−1
𝟎𝟗𝒙𝟑 𝐼𝟑 ⊗ 𝑅𝑘−1

𝜕𝑀

𝜕𝒘𝑟𝑒𝑙𝑘−1
] (A.38) 

Where ⊗ is Kronecker product operator, the partial derivative 𝜕𝑅𝑘−1/𝜕𝒗𝑘−1 

was calculated in the equation (2.47), and  𝜕𝑀/𝜕𝒘𝑟𝑒𝑙𝑘−1
 is: 

 
𝜕𝑀

𝜕𝒘𝑟𝑒𝑙𝑘−1

= [
0 1 0
0 0 −1
0 0 0

−1 0 0
0 0 0
0 0 1

0 0 0
1 0 0
0 −1 0

]

𝑻

∆𝑡 (A.39) 

From the equation Error! Reference source not found. , the linearized matrix 

𝑭𝟐 can be defined as follow: 

 𝑭𝟐 =
𝜕𝑓2

𝜕𝒙
=

𝜕𝑻𝒄𝑘

𝜕𝒙
= [

𝜕𝑻𝒄𝑘−1

𝜕𝒗𝑘−1

𝜕𝑻𝒄𝑘−1

𝜕𝑻𝒄𝑘−1

𝜕𝑻𝒄𝑘−1

𝜕𝒘𝑟𝑒𝑙𝑘−1
] (A.40) 

 𝑭𝟏 = [03𝑥3 𝐼3 03𝑥3] (A.41) 

Similarly, from the equation (A.23) for the linearized matrix 𝑭𝟑: 
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 𝑭𝟑 =
𝜕𝑓3

𝜕𝒙
=

𝜕𝒘𝑟𝑒𝑙𝑘

𝜕𝒙
= [

𝜕𝒘𝑟𝑒𝑙𝑘−1

𝜕𝒗𝑘−1

𝜕𝒘𝑟𝑒𝑙𝑘−1

𝜕𝑻𝒄𝑘−1

𝜕𝒘𝑟𝑒𝑙𝑘−1

𝜕𝒘𝑟𝑒𝑙𝑘−1
] (A.42) 

 𝑭𝟑 = [03𝑥3 03𝑥3 𝐼3] (A.43) 

In this section was described how is the state-space modeling with Rodrigues 

rotation formula. 


