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AHHOTaALUA

Pabora mocsiieHa 3agaue OICHKM OpPHUEHTAIMM OOBEKTAa W €ro YIJIOBOM
CKOPOCTH € MOMOUIbI0 00paboTKu n300pakeHui. s peleHus 1aHHOM 3a1auu
PaccMOTpPEH MOJAXO0/, COCTOSIIIMMI U3 IBYX YacTEl: ONPEEICHUE MAaTPUILIbI IOBOPOTA
yepe3 MOJIETb U3MEPEHUs, alalTUPOBAHHOM JI1 UCTIOJIb30BaHUSI KBATEPHUOHOB U
peanu3anus pacmupeHHoro ¢puiabTpa KanmaHna 11 OLEHKH yIriIoBOM CKOPOCTH.

Monens u3Mepenust - 3To (QyHKIUA obOecrmeunBaronias mIpeodpa3oBaHUE
KOOpAMHAT TOYKM B MPOCTPAHCTBE B KOOPAMHATHI 3Toi Touku Ha [I3C-matpuiie
kaMmepbl. OHa 3aBUCUT OT BHYTPEHHUX HEM3MEHHBIX IMapaMEeTPOB KaMEphl, a TAKKe
OT KBaTEpHHOHA OPHEHTAIlMU W PACCTOSHHUS MEXIy Kamepod u oObexkTtom. [y
OIpe/ieNIeHUs] BHYTPEHHUX MapaMeTPOB KaMepbl MPOBOIUTCS KaIUOpPOBKa, KOTOpast
TaKKe€ MO3BOJISET NOIYYUTh KBATEPHUOH U PACCTOSHUE.

Pe3ynbpTathl AKCIEPUMEHTAIbHBIX HMCCICJOBAHWM TOKa3alid, 4YTO TMpH
KaJTUOpPOBKE MOXKHO OIPEAEIUTh KBATEPHUOH OPUEHTAIUHU C XOPOIIEH TOYHOCTHIO,
OpU OSTO TOYHOCTh OLEHKH YIIOBOW CKOPOCTH, TOIYYEHHOH C TIOMOIIBIO
YHUCIEHHOTO JAU(PEepeHInpoBaHUs, OKa3ajlach HEYIOBIETBOpUTEIbHON. Jlis
NOBBIUICHUSI TOYHOCTH M3MEPEHUsS YIJOBOM CKOPOCTHM ObUI  MCHOJB30BaH

pacmmpensbiil punbTp Kanmana.
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Introduction

The measurement of angular movement is of great importance because it allows
to know and predict the orientation of the bodies with respect to a reference system,
such information is vital for missions where maneuvers and interactions of two
bodies or more are performed.

Researches on attitude and angular velocity estimation of objects have been
performed with the help of different sensors such as photelectric encoders,
tachometers, inertial sensors, and even laser. However, their implementation can be
expensive. The use of digital images as low-cost sources of information for
evaluating the angular motion is actively used in the field of robotics, control system,
augmented reality, and are also widely used in the field of satellite systems.

Over the last four decades, a variety researches have been done on measuring
motion parameters of objects using cameras, where a considerable importance had
the develop of methods for camera calibration, which consist in the determination
of internal parameters of the camera. In [4-7] calibration methods with analytical
solutions are presented, where in addition to determine internal parameters of the
camera, the 3-D object attitude in space are determined as part of the calibration
process. Tsai [6] used Euler angles, while Zhang [5] used Rodrigues’ rotation
formula.

Researches have been proposed to investigate the measurement of object pose
estimation. M. Dhome [8] proposed method to find the analytical solutions to the
problem of the determination of the 3-D object attitude in space from a single
perspective image. H. Kim [9] proposed a simple and fast stereo matching algorithm
for real-time robotic applications using 3D information of vertexes on the outline of
an object in image plane. Z. Zhong [10] presents a feature point pairs based
technique for object pose estimation and 3D structure recovery from a single view,
where it is defined strategies for small rotational and large rotational motion, X.
Zhang [11] present algorithms for recovering the camera pose and the 3D-to-2D line

correspondences simultaneously.



Measurement angular velocity by image processing is furthermore studied.
Zhang [14] by means blurred images processing, proposed the estimation of motion
parameters by measuring and comparing global geometric properties. Shigang [13]
proposed parameter measurement of rotation through analyzing the information of
visual rotation motion blur based on a single blurred image. By using event cameras,
which have independent pixels that respond asynchronously to brightness changes,
G. Gallego and D.Scaramuzza [11] proposed algorithm to estimate the angular
velocity of the camera by analyzing the spatio-temporal coordinates of the brightness
change.

Several years ago, it is increased the interest in parameters movement
estimation by image processing for space applications. A.A.Boguslavsky [20]
presented a software package that by means of video signal received from the TV-
camera, mounted on the spacecraft board, allows the automatic visual monitoring of
a spacecraft "Progress" docking to International Space Station. D. Ivanov [21],
proposed a satellite relative position and orientation determination algorithm by
performing image processing of the Sunlit spacecraft. This algorithm was used to
determine the relative movement of the ChibisM microsatellite developed by the IKI
RAS.

Koptev M.D. [22] proposed a method for the translational and rotational motion
determination of mock-ups suspended on an aerodynamic testbed. The algorithm
was based on the detection of installed special marks on the model’s body to evaluate
the location of the model’s center of mass, angular position and angular velocity in
the coordinate system associated with the aerodynamic testbed.

The difference between the determination algorithm developed and the one
described above is that it does not require the installation of an additional special
objective or photodiodes on the satellite to shoot; it is enough to know the geometry
of the object being shot. The algorithm does not require the transfer of any data from
the satellite being taken, therefore a piece of space debris can act as the second

device. Therefore, the algorithm is suitable for the tasks of removing space debris



from orbit: the satellite companion flies towards the debris, determines its
movement, captures it and takes it to dense layers of the atmosphere.

Most of researches on measuring angular motion parameters mentioned above
are focused on parameter 3-D object attitude determination or measurement angular
velocity, but not both, if 3-D object attitude determination and angular velocity are
considered to be estimated at the same time, usually it is considered to add one more
sensor in addition to camera.

While in [5] and [6] used Rodrigues' rotation formula and Euler angles
respectively, The purpose of this thesis work is the estimation of the 3-D object
attitude by using quaternions , and in addition the angular velocity estimation at the
same time by mean of a conventional low-cost camera without any additional sensor.
The section 1 elaborates the problem statement of this research, and it is explained
the importance of measurement model determination, which is the mathematical
model for the camera. In the section 2 it is explained step by step the mathematical
expression for the measurement model and its gradient. In the section 3 is the linear
measurement model which allows to determine some parameters of the
measurement model by linear methods. Due to the fact that the measurement model
h is nonlinear and depends on unknown parameters of the camera, a calibration
process is needed to be performed; In the section 4 the algorithm for calibration is
explained and applied for 3-D object attitude determination.

Because the estimation of the angular velocity from consecutives rotation
matrix has low precision, in the section 5 is shown the modeling system and the
application of the Extended Kalman Filter to improve 3-D object attitude accuracy
and for angular velocity estimation. And Finally, in section 6 the results for 3-D

object attitude determination angular velocity estimation are shown.



1 Problem statement

The problem of the angular motion determination by the image processing is
considered. The source of measurements is the camera which captures the object’s
movement by taking photographs at a certain frequency (see Figure 1), These
pictures are processed to estimate the angular motion of the object using the
following information:

o X;(x;,v;, z;): coordinates of the object points relative to the body-fixed frame
OXYZ
o X,'(x;/,y;"): coordinates of the same points X;, which are visualized and

located in the image coordinate system (image)

Camera coordinate system

V4

Image coordinate

system

Figure 1. Diagram of the problem statement

The basic structure of a camera is shown in the Figure 2, where two main
components are involved:

e Lens: Has the function of gathering and focus the light reflected from an
object or scene. As the reflected light rays enter the camera lens, they are
directed to the image sensor.

e |Image sensor: it is a rectangular plane into where the points are projected,

representing in that way the image of the object.



The image sensor is located parallel to the lens in the focal plane of the lens.

The distance between the lens and the focal plane is called focal length f.

Figure 2. Basic structure of a camera

The locations of specific points of an object in a photograph varies according
to the rotation matrix R, and its translation vector T, with respect to the camera.
Thus, the estimation of the rotation matrix of a rigid body is possible when function
h(R,T,), called measurement model, that performs the projection of point X; into
the Image coordinate system is found. In addition, an average angular velocity can
be calculated from two consecutive rotation matrices, thus, the first stage on this
work is focused on the rotation matrix determination.

In the Figure 3 are shown the cartesian coordinates system used in this work:

e 0XYZ — Body-fixed frame (BF). This coordinate system is placed on the
object.

o 0.X.Y.Z.— Camera Coordinate System (CCS). It is based on the pinhole
model, where its origin O, is located at camera center (center of the lens),
0.Z. is defined by the line from the camera center perpendicular to the image
sensor, O.X.is parallel to the horizontal side of the image sensor, O0.Y.is
parallel to the vertical side of the image sensor.

® 0imgUV — Image Coordinate System (ICS), also known as Image plane, is

located in the plane defined by Z. = f, Its origin 0;,,, location depends on



the size of the image, 0;,,,U is parallel to the axis O.X., O;m 4V is parallel to
the axis 0,.Y,. P = (uy, v,) is the principal point, which is located with respect
to ICS. The principal point is formed by the intersection point between the

0.Z .-axis and the sensor plane.

Oimg

Image Coordinate

Camera Coordinate U A%
System

Syst
¥2 iem f = focal length

)  P(u

.

h(R,T,)

Body-fixed frame

Y

e Xi(xir Yir Zi)

X
Figure 3. Pinhole camera model

The following notation of points in different coordinate systems is used:
o X;(x;,v; z;) — i-th point with respect to BF.
o Xc;(xcp Ve 2e;) — i-th point with respect to CCS.
e X;(x;,y;) — i-th point with respect to ICS.
With regard to X; , it is important to notice this point remain fixed with respect
to the BF.
In order to implement the above explained, the next are considered:
e In section 2 the measurement model h(R, T,) is defined. It shows the
interconnection between parameters R and T ., that must be defined and

points X; and X; coordinates which can be measured.
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e In section 3 the linearization of the measurement model is performed.
This is required in order to obtain initial values for R and T, which
will be used during the calibration.

e In section 4 the calibration algorithm of the of the camera is presented.
e Insection 5 the Kalman filter for angular velocity estimation is derived.
e Finally, in section 6 the results for 3-D object attitude determination

angular velocity estimation are shown.
Most of the elements mentioned in this section are considered for measurement
model h(R,T,) determination because of its importance and relevance in the
success of this work, for that reason is given in details the process to determine the

measurement model.
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2 Measurement model

In order to determine the measurement model A, which is a function that

performs the projection of point X; into the ICS from BF, it is required to consider

the following:

2.1

Transformation from BF to CCS

Projection of the points from CCS into the sensor plane
Distortion lens

Transformation from sensor plane to ICS

which going to be explained in detail in this section.

Transformation from BF to CCS

Let X; = [x;,V;,2;]" be any point in the BF, where its transformation to the

CCS 1s defined as follow:

X, X;
X, = |Yei| =R|yi| + T,
Zej Z

Where the rotation matrix R can be expressed as

2.2 Projection of the points from CCS into the image plane

R =1|T21 T2 T23

31 732 T3
and T, is translation vector with respect to CCS:

Tc = [txc tyc tzc]T
From equation (2.1), (2.2)

(2.3) the next expression

1 T2 7'13]

T11X; T T12Yi T T13Z; + Uy
T21X; t 122 + 123Z; + 1y
T31X; +T32); +133Z; + 5

ycl

performs the transition from points from BF to the CCS.

(2.1)

(2.2)

(2.3)

and

(2.4)

The point X, represents the projection into the image plane of the points from

CCS into the image plane, and it is expressed as

12



X, = [xc”‘] - [xci/ Zci] (2.5)

cp; —
Pi Yep; ycl'/Zci
Where
x T Xi+rYitTr13Zitiyc (2 6)
Pi 131Xi+7132Y+733Zi 15 '
T X7 itTa3Zitty (2 7)
pri 131X{+732Y+733Z;+85c .

It is important to mention that X, is still located in the CCS.

2.3 Lens distortion

It is necessary to take into account that the image is distorted because of the
lens distortion during the projection of the point X, into the sensor plane. The usual
types of distortion are radial distortion and tangential distortion. Radial distortion
can be defined as a function which depends on the distance from the principal point
(center image), and tangential distortion is caused by a not perfect parallel alignment
between the lens and the image sensor [3]. These distortions can be defined by the

following equation

xcpi(l + klri2 + kzri4 + k3ri6) + Zplxcpl-ycpi + D2 (Tiz + Zxcpl-z) (2 8)

Xd:
X /| =
¢ [ycpi(l + klri2 + kzri4 + k3ri6) + szxcpl-ycpi + pl(riz + ZYCpiZ)

i ydl‘

Radial distortion Tangential

Where 1;2 = xcpi2 + ycpl,2 and kq, k,, k3, p1, P2 are the distortion coefficients,

X, 1s the point coordinates when the lens distortion is taken into account. Incase

when there is no lens distortion (ideal lens), X5, and X cp; are equal.
2.4 Transformation from sensor plane to ICS

Due to the fact that the ICS and sensor plane are parallel, and both located at
the same plane, this transformation is based on scaling and translation of the points
located in the sensor plane as follow:

(Xa; +sya)fx + uo

xp_
X l
ydify + Vo

p; = yp] =h (fx;fy;uo,vO,S, kl, kZ'k3’p1'p21RiTc;Xi) = (29)
l

Where:

P = (uy, vy): Principal point.

13



fr = a,f : focal length axis-x (pixel).

fy = a, f : focal length axis-y (pixel).

., @, : number of pixel per unit distance.

s: skew coefficient, which usually is equal to zero.
Xp mapped point in the ICS from the BF.

X;: Point in the BF.

The equation (2.9 ) rewritten as follow:

%o, = [50'] = G fyrtor v S sk ks PR T (210

where hy, is called measurement model, which performs the projection of a
point X; into the ICS from the BF. However, taking into account that the parameters
fer fys U0, Vo, S, Ky, Ko, k3,01, D2 are fixed values and specific for each camera, the
equation (2.10) can be simplified to hy,(R,T.) once those parameters are
determined.

2.5 Measurement model based on Rodrigues' rotation formula

Due to the fact that the rotation matrix has 9 scalar elements, it is convenient to
express the rotation matrix with less scalar elements, it can be done by mean of
Rodrigues’s rotation formula as follow:

R(a,u) = I;cosa + (1 — cosa)uu’ + [u],sina (2.11)

Where u = [uy,u,,u3]" is the axis-rotation, « is the angle rotation, and [u],

1s skew-symmetric matrix of the vector u.

0 _U3 uz
[ul, = l uz 0 —u1] (2.12)
—u2 u1 O

In addition, as in [2], let the vector v = [v4,V,,v3]T be defined as follow:
V=aqau (2.13)

where a and U are given as a function of v:

14



a() = vl = (,v) (2.14)

u(v) = (2.15)

After substitutions, the rotation matrix R can be written as a function of the
vector v.

R(w) = R(u(v),a(v)) = Iz cosa + (1 — cosa)uu’ + [u],sina (2.16)

As it can be noticed from the previous equations, the rotation matrix, which

originally depends on 9 scalar values, now can be expressed by using a vector of

three scalar values, hence the equation ~ (2.10) can be rewritten as follow:

Xp;
Xp, = [ ] hy,(for fir Uy Voo S, Ky, ke, K3, 1, D2 0, T) (2.17)

It is convenient for an optimization problem, because in that way the number

of parameters that have to be determined 1s decreased.

2.6 Measurement model based on Quaternions

Taking into account basic quaternion theory, let the multiplication of

quaternions Q = [qo, 91,92, q3]7and P = [py, p1, P2, p3]" be defined as follow:

Po0=[p]°[q1=[oa rawppra (2.18)

Where q = [q,92,q3]7 and p = [py,p,,p3]T are vector parts of the

quaternions Q and P respectively. The previous equation also can be rewritten in a

matrix form:
— q7
Pee= [I;’O] ) [Cz;] - [I;O Pols + p ] [qo] - q %I3 [‘I] ] [2;0]
(2.19)
Po —P1 D2 o —q91 —92 —Qq3
P-Q= IZ;; gg P}(g)3 _Pl [qo] l _q6(1)3 qéo qz [ ] (2.20)
Ps —P2 Pi1 Do 'Y —q1 CIo

The rotation of points by means of quaternions is defined as follow:

07 01 ~
[Xc] =Ao [X] oA (2.21)
Where X = [x,y, z]Tis a tri dimensional point, and A = [1,, 4, 1,,45]7 is an

unit quaternion , which modulus |A| is defined as follow:

15



|A| = \/,102 T LA =1 (2.22)

And the conjugated of A is represented by A.

=| f‘jl] (2.23)
From the equation (2.21)
01 _12],[07,[Zo
[XC] N [A] [X] [—A] (2.24)
0 _ /10 _AT ] /10 _( A)T ]
[Xc] B [a Aols + [Al d1=2 Aoz — [-2 [X] (2.25)
After mathematics, it is obtained in the next matrix form:
0
[XC] [0 R(A)] [X] (2.26)
Where R(A) represents the rotation matrix as a function of the quaternion A.
A0° + 4" = 2" = 25" 2z — 2o3) 2(M1As + Aohz)
RN =| 2Mdy+2043) > =A%+ 27— 25° 2(Ad5 — Aohy) (2.27)
2(A1A3 — 2p42) 223 + Aody) A" — AP — A7 + 457

As it has been shown in the equation (2.27), the rotation matrix can be
expressed as a function of a quaternion A, which in general is composed of four
elements; however, due to the fact that A is a unit quaternion, A, in itself depends on

their three elements.

Ao(A1, 43, 43) = Ao(A) = \/1 - @12 + 122 + /132) (2.28)
The rotation matrix R(A), can be expressed as a function of the vector part
A = [A4,1,,23]7 of the next quaternion

1-2% + 235 2y — Aods)  2(Mds + Aghy)
R =] 2(MA, + 2ph3)  1=2(A%+ 235 245 — ApAy) | (2.29)
2023 —AoAz)  2(aAs + AA)  1—2(4°% 4+ 4,°)

Thus, the equation (2.10) can be rewritten as follow:

%o = |y | = b fyrtto v S e e s P12 AT (230)

So the measurement model in quaternion form is obtained.

16



2.7 Measurement model gradient

Due to the fact that measurement model based on Rodrigues' rotation formula
in the equation (2.17) is a composed function of several transformations, which
involves vector and matrices, it is convenient to determine the gradient by means of

matrix calculus. Let the measurement model be rewritten as follow:

Xy, = [yp;] = hy (F,C,S,Kp,v,T,) (2.31)
Where F = [fx fy],C=[Uo Vo], and Kp=[k; k, p; D2 ks3], and let the
measurement model gradient be defined as follow:

ath. ath. ahxi ahxi ath. ahxi]

oF dc 3s oKp v  OT,

Dhy, = | (2.32)

Where 0hy, /OF, 0hy, /0C, dhx, /3S, and Ohy, /0K are defined in a matrix

form:
6xpi 0
ohx, _ |TaF | _ |¥a; T SVa;
35 = o, _[ 0 Ve, (2.33)
OF
6xpi
Ohx, ac 11 0
Fe = o, ol P (2.34)
ac |
axpl.'
ath._ ds | _ yp-fx
= o] =175 239
L Js
6xpl
ohx; _ |oKp| _
oKp  |0vp;|
6KD

3
2 2 2
xCPi (xCPi + pri )

2 2 2 2 z 2 2 2 2 3
YCpi(xcpl- +yCPi ) pri(xCPl' +yCPl' ) xcpl- +3ycpl- Zxdiydi ycpl-(xcpl- +pri )
(2.36)

With regard to the derivatives dhy,/dv and dhy, /9T ,they have remarkably

2
2 2 2 2 2
xCPi(xCPi + Yoy, ) xCpi(xCpi + Yoy, ) 2Xq;Ya; Yep; +3xCpi

complicated expressions due to the fact that the measurement model in the equation

(2.17) is a composed function of several transformations.

17



As the rotation matrix R is a function of v, see equation (2.16), the derivative
dhy, /0v is

Ohx; _ Ohx; R(v)

ov OR v (237)
axpl,

ahXi_ OR

= o (2.38)
OR

Where 0x,./0R and 0x,, /OR are

c a(r?) ) rl‘L 0 rl Oxcp;
a—:‘ = fx( - aRpL + Xep, [kl T | e & )+ k3L ] (Zplycp_ + 6p2xcp,)a—Rp+
8 cp; a cp; 1,.12 r,, 0 ri
(Zplxcpi + 2p2ycpi) Wpl) + sfx( s a: + Yep, [kl 200 4 k2 a( + k3% )] +
0xcp 0Yep .
(ZPZYCp + 2plxcp ) R (szxcp + 6p1ycp ) aRpl) (239)
ypl _ 9Yep; a(ri?) a(h‘*) a(h )
= £ (Dr, S+ Yo, [k1 + 2200 4 g3 ] (szycpi +
0Xcp aycpi
2plxcp ) aR (szxcp + 6p1ycp ) R ) (2-40)
Dri == 1 + k1Ti2 + kzri4 + k3ri6 (2.41)
a(r:i?®) OXep,
W = Z[XCPi pri] 6Rp (242)
) 200 _ 2 2\ rx OXep,
or = 2T g 4(xcpi * Yep, )[ v Yoy R (2.43)

3(r:%) a(r?) 2 Xep;
20 = 30200 = 6 (s 2 Y 2) Pomy Yor] 52 (2.44)

In order to calculate dR/0v, some changes of variable are performed taking

into account the equations (2.14) and (2.15) as follow:
_[u)] _u
X1(v) = [a(v)] = [a] (2.45)

Let X,(X) =[B,v,9,A,B]T , B =cosa,y=(1—cosa), ¢p =sina, A =
uu’ | B = [u],.
Then, the R(v) , from the equation (2.16), can be rewritten as
R(X,) =LB+YyA+ B (2.46)
The derivative of R with respect to v can be defined as

18
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If « is small, the equation (2.16) can be expressed as follow



R=1;+ [u],« (2.51)
Then derivative of R with respect to v can be defined as

00 0 0 01 0 -1 01"
00 -1 0 001 0 0 (2.52)
01 0 -1 0 0 0 0 0

The derivative dhy, /0T is

aR
617

axpi
Ohy. T
1 — c 2
= (o (2.53)
T,

"’xm a(r;?)

= fx ( Ti a;pl tx Xep; [kl +k2——— 3(7’14) + k3 8(7‘16)] (2P1)’cp + 6p2Xcp, )axcfi +

9yc i 9yc i 9 i a i d l.
0Xcp dyc i
(2P2Yen, + 2P1%ep, ) 52t (szxcp +6p1ycp) =) (2.54)
aym _ yfpl (%) A a(rl Oxcp,
0yc
(zpzxcp + 6P1Yep, ) 2 ) (2.55)
aLiz) = 2[X Y OXep,
T, 2[*cp;  Yep] oT, (2.56)
A 20(r® 0Xcp,
T = T = 4 (2 + Y ) Feve Yo )5 (25)
a(ri®) 4 ar®) _ 2 2\ 1x 0Xep;
o =3t I = 6 (xop v 2) ey Ve T (258)
Oxep; 1 o0 -Za
aXCpl _ 6TC _ Zci ZCiz (2 59)
oTc  |9Vep;| 0 =~ 2 '
0T, Zci Zciz

As it can be seen, using the Rodrigues’s rotation formula, the Jacobian matrix
JR /v have remarkably complicated expression. On the other hand, if quaternions
are used to represent the orientation matrix, the Jacobian matrix will yield a more
convenient expression.

From the equation (2.30), let the measurement model based on quaternion be
rewritten as follow:
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xp ,
Xp, = || = b (F €5, Kp, 2,70 (2.60)

l

And its measurement model gradient is be defined as follow:
6th. 6th. ahXi ahXi 6th. ahxi]
aF aC ds oKp oA  OT.

(2.61)

The components dhy,/dF, 0hy,/dC, Ohy,/0S, Ohy /0Kp, and dhy, /0T,
have been already determined in previous equations. As the rotation matrix R can

be expressed as a function of 4, see the equation (2.29), the derivative dhy, /04 is

Ohx;  Ohx; 9R(1)

oy OR 024 (2.62)

The expression for dhy,/dR has been determined in the equation (2.38), the

expression for dR /A is

0 —42, —4),

20, — 22301 /Ay 241 — 2A32, /g 22g — 2A3A35/ 2,
223 + 22,41 /g —2A + AAy/Ag 244 + 22,23/,
24, + 20301 /A 2M4 + 2434,/ —2Ao + 224323/,
o= —4A, 0 —42, (2.63)

240 — 20441 /Ag 223 —2M42,/Ag 21y — 2243/,
223 = 20,A1 /A 24g — 2M5A5/ A0 224 — 22503/ 2
=240 + 2001 /g 2A3 + 24,4,/ 22, + 2A4A3/ 2

—4), —42, 0

As it can be noticed, the expression for dR/dA is simpler than the expression

for dR /0v, this is convenient for time computing.
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3 Linearization of the measurement model

The linearization of the measurement model allows to solve the nonlinear
calibration problem for cameras by linear method, in which the nonlinear radial and
tangential distortion components are ignored.

The equations (2.6) and (2.7) are nonlinear functions, which
perform the projection to the sensor plane, and can be linearized by means of

Homogeneous coordinates provided that the vector X, and chl, are expressed

homogeneous vectors [1], obtaining the equation (3.1) as a linear expression, where
the symbol ~ in the equation (3.1) means that the two homogeneous vectors are not

equal, but they have the same direction.

Xepy|  [Xeif 0 0 0 ;Cl
Yep; [ ~ ycl [0 f oo ol 3.1)
Zep; 0 0 1 olf

With regard to the effect of the lens distortion, it is convenient to consider it to
be equal to zero during the linearization process [2]. Therefore, considering this
particular case it is possible to obtain a linear expression, see equation (3.2), from
the nonlinear measurement model (2.9 ) by means of the homogeneous coordinates

which is usually done in order to determine initial values of internal and external

parameter.
a] [4x S 0 0 0 X
7|~|0 ayvo()fooo 1]321% (3:2)
wl Lo 00 1 ol ‘
w 1
Where i, ¥, w are homogeneous coordinates for the points in the ICS.
The equation  (3.2) can be expressed as follows:
il Xi
[17 ~[H3x4] )Z]; (3.3)
w 1

where matrix H 1s the transition matrix, or linear measurement model. The BF

is chosen in such a way that the points X; are located on the XY -plane, in

22



consequence, the component z; is zero, it means that the equation (3.3) can be

reduced to equation (3.4).

az
Wl 8 Qg

Due to the fact that the vectors [&;, ¥;, W;]T and H[x;, y;, 1]7 have the same

Xi
yll =H [yi] (3.4)
1 1

direction, their cross product is zero and based on the Direct Linear Transformation

(DLT) algorithm [1] the equation is

ﬁi X 0
Uil x H|yi| =10 (35)
W, 11 o
ofT —w.xT ©.xT
WiXi 0 _uin' 0

Where L = [a; a, az a, as ag ag ag)” and X; = [x; y; 1]7.

As it can be seen, the equation (3.6) has the form of a homogeneous system,
where L can be determined by the Single Values Decomposition (SVD). This DLT
algorithm i1s widely used to calculate the transition matrix H where is needed a set
of four points as minimum. However, because matrix H 1is a projective
transformation, it has a non-linear nature, therefore, an iterative method can be
performed in order to optimize the components of the matrix H by means of
reduction of the error projection [2]. Thus, it is necessary to work in inhomogeneous
coordinates.

Let the matrix H already determined by means of DLT, then

a4 o ] [ (3.7)

Where (X;, y;, @;) is the homogeneous coordinate representation of a point

(u;, v;) located in the ICS, then the projective transformation in the equation

(3.7) can be written in inhomogeneous form as
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X aix;+ayyi+as

Uy =~—= (3.8)
(L)l a,7xl' + asyl + ag
Vi azxi+asy;+a

vi — # — 4N 51 6 (39)
(l)l a7xl' + a8yl + ag

Where (u;, v;) finally represents the mapped point in the ICS from the BF. The
Jacobian matrix for projective transformation is shown below, which is widely used

by the most of the iterative methods.

_iﬁi]_ixi yi 1 0 0 0 —wXx; —Wyi —UY 310
)= Rz 0 0 x; yi 1 —vixy —Viyi —V; (3.10)

Before determining the transition matrix it is recommended to perform a
normalization of the data to avoid bad results because of noisy data. In [1] is

recommended a normalization data so that the centroid of the new set of points is

the origin of coordinates (0,0) and the average distance from the origin equals to v2

, as it is shown in the Figure 4.

(xifyi) - (}?,")7)

(xf,¥)) = (Be(xi=2), By i — 7))

di = X;Z + y{z

Figure 4 Preconditioning for image coordinate system points

This preconditioning can be expressed as a matrix H,,... as below:

.Bx 0 _Bxf
Hprec = [O .By _By:)_’ (3.11)
0 0 1

Where X,y are means of the location of the points in the image, and B, and §3,,

are given in [2] as:
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1
ﬁx:1

NI, |xi—x]
1

1 <N _

v 2i=1|Yi=Vl

ﬁyz

The explained above is summarized in the Algorithm 1

(3.12)

(3.13)

. Initialize data:

Let i=1,2,...,n, where n = 4 is the number of mapped
points.
Let X;=[x; ¥ 1]7 be a homogeneous coordinate
representation of a i-th point from the BF, where the component
Z; 1 zero.
Let (&i;, U;, W;) be a homogeneous coordinate representation of
a i-th point located in the ICS.
Let w; to be one, in order to make (ii;, ;) points measured in
the ICS.

v' Apply the preconditioning matrix to each point as

follow:
U;
w;

Write the homogeneous system according to the equation
(3.6) for n points:

[ OT —W{X{ 171,X1 i

w,'XT of —ii,'XT

;'

~ I _

Vi | = Hprec
w;'

N
0
: L= I : I
OT _\,/17‘,«7',)(‘;«17'~ ﬁn,X;I; lOJ
w,'xT 0T —ii, X7 | 0

Solve the homogenous system in order to obtain L, and obtain
the transition matrix H from L.

Update the transition matrix as follow:
H < H/aq

Algorithm 1. Computing Transition matrix H

In the next section is shown how the Computing transition matrix algorithm is

not only used to linearized the measurement model, it also can be used to estimate
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the rotation matrix and translation vector of the BF with respect to CCS by a linear

method.
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4 Calibration Algorithm

In this section the calibration algorithm of the widely known tool for camera
calibration developed by Bouguet, J. Y. “Camera Calibration Toolbox for Matlab”
[2] is described in details.

In the Figure 5, it is shown that a chessboard is photographed with different
orientations and translation vectors in order to obtain considerable amount of points
for calibration process. Additionally, intrinsic parameters are shown, which are
internal fixed parameters of the camera itself. They have to be determined in the
calibration process and then will remain fixed. On the other hand, extrinsic
parameters, rotation matrix and translation vector, are determined for each image,
and they are not fixed parameters because the location and orientation of the object

can change.

Parameters for calibration:

Intrinsic parameters(camera): fy, fy, Uo, Vo, S, k1, k2, k3, p1, 2

Extrinsic parameters(images): Ry, T¢,,R,,T.,,R3, T Ry, T,

cq’ cp’ [ T

Figure 5 Intrinsic and Extrinsic parameters

Calibration Process is based on two main steps: Initialization of the parameters

and optimization of the parameters by the gradient method.
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4.1 Initialization of the parameters

The 1nitial value of the principal point can be initialized as the center point of
the image, for example, if the resolution of the camera is 640x480 pixels, then the
principal point P = (u,, vy) = (320,240). The Skew parameter can be initialized
as zero as well as the distortions coefficients k4, ko, k3, p1, 2.

With regards to the focal distance (fy, f; ), it can be initialized using vanishing
points as in [1] and different methods as in [2] and [4], which make use of transition
matrices from BF to the ICS by using the Algorithm 1.

Considering initial values for skew factor ‘S’ and distortion coefficients K

equal to zero, the points in the ICS (x;, y;) can be transformed into CCS as follows:
Xep, = (6 = uo) [ (4.)

Ve, = i = vo)/fy (4.2)

The equations above show that the point (x;,y;) is located in the sensor plane

in the CCS, and it is related to the BF by the next equation, where the points in the

ICS and BF are expressed by homogeneous coordinate.

X Xi
¢ R T \y;
hcl - [01x3 1 ] Zi (4.3)
1
Because of component z; is zero for flat objects, equation (4.3) can be
rewritten as
Xc Xi Xi
[)’c] ~[ry r2 T(] [3’1'] = H, [3’1'] (4.4)
1 1 1

where T, is translation vector and r; are the columns of rotation matrix R, and
lr;ll = 1. The matrix H, can be computed by means of the Algorithm 1 , and
additionally it is necessary to perform a normalization so that the vectors 7; have
modulus equal to one, then to use the QR decomposition to obtain a better result in

the orthogonality of the vector r;.
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4.2 Optimization process

Due to the non-linearity of the measurement model, an optimization process is
required to be performed in order to tune up the parameters, which have been
initialized previously. The essential step is the definition of the equations system.

Let us considerer a scheme where it is available just one image, as it is shown
in the Figure 6. Leti = 1,2, ...,n, where n is the number of mapped points to the

ICS. Let X'; = [x';,¥',]" and X; = [x;,¥;,0]" be the vector representations of a

point in the ICS and BF, X’; and X; are known values.

Image coordinate system Body-fixed frame
z
X =Ly X2=EY5%)

Xy = (%2,¥2,0)

X = (Xn, Y0, 0)

Figure 6. Projection from Body-fixed frame to image coordinate system

Let Xp; = [xp;, yp;]T be i-th point already mapped to the ICS from the BF by
using the measurement model hy, from the equation (2.31) or from the equation
(2.60), where the rotation matrix can be expressed by using the vector ¢, below the

system of equations for one image with n points.

Xp1 = th(F' C; Sr KD' (' TC)
Xp, = th(F' C,5,Kp,¢,T,)

Xp, = hx,(F,C,5,Kp,{,T,) (4.5)

Xp, = th(F, C,5,Kp (,T)
Let AX be the error vector, which is defined as the difference between the points Xp; and X';

as follow.
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[ Xp1 — x:1_
e Xp, — X'y ig: : i':
ax = | 7| = [P E_XIZ = |z =" (4.6)
€n Pn — X’n Xpy, _ x,n
LyPn = ¥'n

Now let us consider that is available m images with n points in each image.
Leti =1,2,...,n,and k = 1,2, ..., m; where n is the number of mapped points to the
ICS, and m is the number images, it is important to mention that the location of
points in each image depends on the translation vector and orientation of the BF with

respect to the CCS.

Let X'¥ = [x'¥,y'¥]T be the vector representation of the i-th point in the k-th
image (ICS).

Let X; = [x;,v;,0]7 be the vector representation of the i-th point in the BF.

Let Xp¥ = [xp¥, yp¥]" be the point X; already mapped to the k-th image (ICS)
from the BF by using the nonlinear model h)’ﬁi, which represent the projection of the
point X; to the k-th image. Below the system of equations for m images with n

points in each image.

Xpl = hy,(F,C,S,Kp,§;,Te,)
Xp% = h)l(z(F; C;S; KDI (1' Tcl)

Xpi =iy (F,C,S,Kp, 1, Te,)
Xp? = h)z(l(F, CS, KD'(erCZ)
Xp% = hg(z(F; C; S; KD' (2» TCZ)

Xp,zl = h)z(n(F, C,S; KD) {2; TCz) (47)
Xplc = h§L(F' C;S; KD' (k' Tck)

Xp{n = h;(nl(F; C)S) KD' (m' Tcm)
ngl = h?Z(F' C;S; KD' (m' Tcm)

Xpn = h;(nn(F; C} S' KD' {m' Tcm)
Let h* be defined as
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n (F,C,S,Kp,{,,Tc,)
We(F,C,5,Kp,{, Te,) = | % (F 65 Kp 8 Te,) (4.8)
Wy (F,C,S,Kp,§\Te,)
From the measurement model gradients in the equations (2.32) and

(2.61), the partial derivatives of h* are

k -
onlg,

[k k k k K
ong, ong, ok, Ok, Ohx,
T,

oF ac as OKp 0¢
onk, ony, onk, On, Onk, oh,

an* on* on* an* o ant |
OF 9C S 0Kp 9gy dT | — | 9F ac 9s alfp agk T,

(4.9)

oMy oMy o onh oMk ang
| oF  ac s  9Kp 9y, T

cr-
Then the system of equations (4.7) can be expressed in a shorter form as follow

Xp! = hl(F, C,S Kp, (1'T¢‘1) — AX! = Xpt — X1
xp?=h*(F,C,S,Kp,{,,T¢,) = AX? = Xp? — X'?

: 4.1
xp* = h*(F,C,S,Kp,{,,Tc,) > AX* = Xp* — X'* (4.10)

Xp™ = hm(F, CS, KD'(m' Tcm) - AX™ = Xp™ —X'm

Where Xp* = [xpf,yp{‘,xpé‘,ypé‘,...,xplf,yplf]T is  column  vector

representation of the points mapped to the k-th image (ICS) from the BF, and X'* =

[x%, y'%, x5, y'%, . XK y'K " is vector representation of all the points in the k-th
image.
In the equation (4.6), the error vector AX can be express as AX* ,where k
indicates the error vector for the corresponding k-th image and nonlinear model h*.
Finally, the system of equation can be express as a column of functions.
xp! n(F,C,S5,Kp,{,,Tc,)
W(F,C,S,Kp,Ry,Te, .. R Te, ) =| 17" | =| W(F.C.S, Kb,y Te,) | (411)
) (€5, Kp T, T )

1T

T
Let X' be the column vector [X X 'ZT, . ¢ 'mT] , and the global error vector

can be defined as follow:
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AX?
e = h(M) — X' = | X (4.12)

Ax™
The Gauss—Newton Method is used to solve the optimization problem, which
is based on the minimization of the global error vector € ; Let M =
[F, C,5Kp, {4, T, i Cmo Tcm] be the vector of parameters, let M be the initial

values for the vector of parameters M , and let €, be the initial error vector.

€ =h(My) — X' (4.13)
Let €, the error vector and M, be vector of parameters, which are updated for

each iteration, as follow:

€ = h(Ml) - X (414)
— (ITN-1JT
AM =N e (4.15)
Ml+1 = Ml + AM (416)
Where J , the Jacobian matrix, is defined as follow:
- on  onl 1 1 ghl  9nt 7
ontq [ 2L o on on SR 0000 .. 0
o aF aC 3s 09Kp 0¢1 0Ty
| | ow ow o2 ow o on?
M OF dC 3s 9Kp 0 0 35, 0Ty 00 .0
oh3 oh® 9h® o9n® ond oh®  9hns
— — — — — 0 0 0 0 — . 0
P B o s 0 )
an¥ onk  onk  onk ﬁ O O 0 : O ok ank 0
oM OF ac 09s 0Kp L LY 0
om| | BB o
— dn™ 9n™ 9n™ 9n™ oh oh
oM |TF ¢ s okp 00000 . 0 G or

Where F = [fx fy], C =[Yo Vo], and KD:[kl k, p1 D2 ks]-
4.3 Algorithm for camera calibration

Given m images with n points in each image, let i = 1,2,...,n, and k =
1,2, ..., m; where n is the number of mapped points to the ICS, and m is the number

images. The calibration algorithm is shown below.
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Initialize parameters: Use the algorithm 1 to initialize the vector parameters
[F C,S, Ky, vy, T, ey oV, T, ] if quaternions are used the vector
parameters is M = [F, CS, KD,Al, 1 ...,Zm, Tcm].
Initialize global error vector €y: €, = h(M,) — X’
Iterative process:
a. AMy = (Jo"Jo) Yo" €y, where J, is J jacobian matrix evaluated at M,
M; = My + AM,
Change « |AM,|/|M|
Iteration « 0
While ((Change > 1e-10) & (Iterarion < MaxlIteration ))
i. € =hM;)—-X
. AM; = () ]1) e
iii. M, = M; + AM,
iv. If Quaternions is used, the quaternion part of M, must be
normalized for each iteration, and then M, must be updated.
v. Change < |AM,|/|M,|
Vi. Iterarion « Iterarion + 1
The vector M, is the optimal vector M.

® a0

After the calibration, the Algorithm 2 can be used to determine the matrix rotation and T,

Using 50 images and 70 points per image. The images were taken using the

camera Model FI8918W with resolution 480x640 pixels.

Algorithm 2. Camera calibration

without considering the other parameters in vector M.

4.4 Application algorithm for camera calibration

Figure 7 Image used for calibration
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As the result of the calibration process using the Algorithm 2 the values of the
intrinsic parameters are obtained:

e Principal point P = (318.85122,255.46648) (pixel)
e Focal length axis-x f,, = 633.54607(pixel)
e Focal length axis-y f, = 634.02213(pixel)

e Skews = 0.0

e Distortion coefficients k; = -0.46378, k, = 0.28011,
ks =0.0, p; =0.00083, p, =0.00269

e The total error is expressed in pixels g, = 0.20879, g, = 0.24828

It is necessary to keep in mind that only intrinsic parameters remain fixed
because they are fixed values which depend on the camera assembly. On the other
hand, the external parameters, rotation matrix and translation vector change as the
BF or the camera move.

In the Figure 8 the extrinsic parameters by mean of the locations and
orientations of the chessboard with respect to the CCS are shown, which has been

obtained during the calibration process.

Extrinsic paramaters (camera-cantered)

100 S
150 \\_/ 100

200 g

Figure 8 Visualization of the extrinsic parameters with a fixed camera

As a result of the calibration process, the equation (2.17) for the measurement

model based on Rodrigues’ rotation formula can be rewritten as follow:

xp . R
Xy, = yplf] = hy, (3, T.) (4.18)

And the equation (2.30) for the measurement model based on quaternions can

be rewritten as follows:

34



Xy ,
X, = [yp:] = hy (I T,) (4.19)

=
Thus, if the points Xp, and points X; are known, it is possible to determine the

orientation and the translation vector by means of Algorithm 2 as in the next section

is shown.

4.5 Testing measurement model

In this part, the results of the camera calibration by means of a rotating table is
presented. The facilities for testing are shown in the Figure 9. It is used to determine
how accurate the measurement model is. The kinematic equation of the schema is
analyzed for initial time ¢, and for the time t; when a rotation angle a around the

axis-Yris performed.

Figure 9 Testing schema using rotation table

Kinematic equation in t,:
RewoXi + Tcyy = Rer(RewXi + Tw) + Ty (4.20)
Rew,oXi + Tcyy = RerRrwXi + RerTw + Ty (4.21)
Kinematic equation in t;:
Rew Xi + Ty = RerRrwReXi + Rer Ty + Ty (4.22)
where:

X;: Points with respect to the coordinate system 0, X,,Y,,Z,,.
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Rry : Transformation matrix from the coordinate system O0,,X,,Y,,Z,, to the
rotating table coordinate system O XY, Zr.

Ror : Transformation matrix from the rotating table coordinate system
Or X7 YrZr to the CCS.

Rew o Rewq+ Transformation matrix at time ¢, and ¢; from the coordinate
system 0,,X,,Y,, Z,, to the CCS obtained by the Algorithm 2.

T¢,o Tc,q: Transformation vectors at time t, and t; with respect to the camera
coordinate system obtained by the Algorithm 2.

Ty : Translation vectors with respect to the rotating table coordinate system
OrXrYrZr.

Tr: Translation vectors with respect to the CCS.

From the equation (4.21) and (4.22) it is seen that:
Rcwto = RerRrw (4.23)
Rcwtl = RerRrwRg (4.24)

From the previous equations it is possible to obtain a direct formula to estimate

the rotation matrix R, (intrinsic rotation) with respect to 0, X,,Y,,Z,,, see the next

equation.
Ry = RCWto_lRCth (4.25)
The equation (4.25) can be rewritten using quaternions:
Ay = Acwto_1 ° Acwt1 (4.26)
As it can be noticed in the previous equations (4.25), R, depends on two

consecutives rotations of coordinate system O, X,, Y,,Z,, . The rotation matrix Ry,
which can be expressed as a function of v, and Ay, can be obtained by mean of
Algorithm 2 considering only extrinsic parameters, orientation and the translation
vector, with regard to intrinsic parameters, they are not included in the parameters,
because they are fixed values, and they already have been determined during the

calibration.
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A testing with the rotating table which consists of three rotations of 1°,2" and
3° around axis-Yy is performed where the measurement model accuracy is shown.
In the Figure 10 it is noticed that the mean (¢) of consecutively rotations is very

close to the true angle a with small standard deviation (o).

Rotation
T T

3.5 T T

T T T
a=1°,p=1.002" 0=0.072°
a=2°,u=2.006.0=0.140°
a=3",p=3.001" 0 = 0.006°

[
(&2}
T

|

o (° degree)
2%
T
|
\
]

o=
(&1}
T
|

0.5 I I I I I I I
0 5 10 15 20 25 30 35 40 45

points

Figure 10 Detections for three rotations of 1°,2° and 3° using the intrinsic
parameters

Another testing is performed in order to know if it is possible to detect very
small rotation angles such as 1 arcmin (0.0167"), 5 arcmin (0.0833") and 15 arcmin
(0.25") using low resolution camera.

As it can be seen in the Figure 11, the accuracy, defined as how close the mean
value (W) to the true angle value (a) is, it is less as the rotation angle is smaller. On

the other hand, the precision (o) is still maintained.
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Rotation

0.3

a=0.0167° ,u =0.0599" .0 = 0.0343°
a =0.0833" .y =0.1120" ,0 = 0.0339°
a =0.2500° ,p =0.2571" .0 =0.0120° |

0.25 -

<
)
T

o (° degree)
o
P

<o
T
<

points

Figure 11 Detection of three rotations larcmin (0.0167°), 5arcmin (0.0833°) and
15arcmin (0.25°) using the intrinsic parameters

Until this point the testing has been performed using chessboard where a
remarkable amount of points is provided. However, it is not possible to establish the
correspondence between the point from the BF and the ICS automatically, this
required the user support. It is very important that the program for image processing
detects and localizes automatically and accurately the points of correspondence
between the BF and the ICS, since the accuracy of the rotation matrix and translation
vector depends on it.

It is shown in the Figure 12, that once the four points are detected and their
position in the image is evaluated, it is impossible to determine which point is P1,

P2, P3 or P4. Therefore, the correspondences are not possible to be determined.
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X v
Body-fixed frame Image coordinate

Figure 12 Example where correspondences are not possible determined

To solve this problem, a pattern between each point can be used in order to
determine the correspondences. In order to do that the utilization of the Aruco pattern

1s considered [4], [5]. It helps to establish the correspondence between the point from

the BF and the ICS as it can be seen in the next figure.

" U
Z P,
p. .
> Pl
P4- P2 P4
Y
X P3 -
\.:

Body-fixed Image coordinate

Figure 13 Correspondences determined by using Aruco patterns
In this experiment the correspondences are established automatically using
the aruco library. As it is understood, the measurement model’s error is inherent,
and in addition to that error, another source of errors appears, such as: the error

produced by change of brightness in the enviroment, by the digitization of the image,
and by the algorithm for corner detection.
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Figure 14 Aruco pattern and rotating table

In the Figure 14 the used aruco pattern is shown, and in the Figure 15 it is
shown how the locations of the detected corners change for each image with the
rotating table being static.

From the Figure 15 to the Figure 18, it can be seen that the located corners
present in coordinates x(pixel) and y(pixel) maximum standard deviation 0.110 and

0.124 respectively.
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Figure 15 Mean and standard deviation (STD) of the point X1
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As it is oberved in the previous figures the location of the each detected corner
has small deviation in each image even if the rotating table is static, and the effects
of this deviation are reflected in the precision (o) of the rotation angle. In the Figure
19(a) it is shown that the rotation angle has a mean value of 158.777°, and the

standard deviaton (o) equals to 0.156°. The distance showed in the Figure 19(b)

represent the modulus of the translation vector T.

Rotated angle(degree): mean =158.777694 STD=0.156856 Distance(cm) : mean =41.833826 STD=0.018651
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Figure 19 (a) Estimation of initial angle position with the rotating table
being static. (b) Estimated distance with the rotating table being static.

Another experiment has been peformed where the rotating table rotates 90°

around the axis-Z. In the Figure 20 , it is seen that, as it is expected, the estimated
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rotated angle is close to 90°. Additionally, the featuring of some peaks are seen,

which appers due to the corner detecter’s errors
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Figure 20 Estimated angle position with a rotation of 90°

The angular velocity can be calculated from consecutive rotation matrices, see

Figure 21.
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Figure 21 Angular velocity (°/s)

However, it can be observed that the angular velocity measurement is strongly
imprecise, its standard deviation o can reach 4.474°/s. In order to improve the

angular velocity precision kalman filter is required to be implemented.
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5 Extended Kalman Filter and system modeling

In this section is given a briefly introduction to Extended Kalman filter (EKF)
[17-19], whereby it is pretended to improve the 3-D object attitude and angular

velocity precision taking in to account the state-space models of our system.
5.1 Extended Kalman Filter

A system can be expressed as a continuous-time as follow:

x(t) = f(x(1), ) + w(t) (5.1)
z(t) = h(x(t)) + v(t) (5.2)

The equation (5.1) represent the motion equation of the system, where f
represents the state transition model, which depends on the state vector x. With
regard to the equation Error! Reference source not found., z is called the
measurement vector and h is called observation model.

Due to the fact that every system is affected by external and inherent noise, w
and v are supposed to be noises with Gaussian distribution with zero expected value,
w ~N(0,Q(t)) andv ~ N(0,R(t)).

Similarly, a nonlinear system can be expressed as a discrete-time system as
follow:

X = f(xr_q) + wiq (5.3)
z;, = h(xy) + vy (5.4)

Where w;, and v, are supposed to be noises with Gaussian distribution with
zero expected value, wy, ~ N (0,Q;) and v, ~ N(0,Ry).

Considering the continuous-time nonlinear system in the equations (5.1) and

(5.2) the EKF is described below.

Let X; be the posteriori estimation of the state vector estimation at ¢, , let X5, ;
be the priori estimation of the state vector at the moment of time t;,,, X),; IS
calculated by integration of nonlinear equation (5.1) without considering the noise
component w using the state vector X, .

The Discrete Riccatti equation is used for prediction of the error covariance

matrix vector estimation P, ; at time ¢t ,.
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Piy1 = FiPiFi + Qy (5.5)

Where Q,, = Q(t,), and Fy, is the linearization of the state transition model f

in the neighborhood of X; ,called transition matrix from the state x; to xj. , let
P;; be the error covariance matrix at t;.

Due to the fact that the measurements are frequently taken in a discrete form,

the measurement model z(t) = h(x(t)) + v(t) (5.2) are given by
z, = h(x) +v,, v, ~N(O,Ry) (5.6)
Where x;, = x(t;). The gain matrix K, can be written as
K11 = PiyiHio 1 [His1 Py Hiyr + R (5.7)

Where H,, is the linearization of the observation model in the neighborhood of
Xi+1 -

The corrected posteriori estimation is X3, ; of the Kaman filter is given by

X1 = Xjpr + Kiy1 21 — R(Xiy)] (5.8)
A posteriori estimation for the error covariance matrix is given by the formula
Plt+1 = [ — Kiy1Hy41]Priq (5.9)

where I is an identity matrix.

The EKF algorithm for discrete-time system is remarkably similar for
continuous-time system, but with X} ., being calculated by means of the nonlinear
equation (5.2) without considering the noise component w,,_, using the state vector
X

The error covariance matrix vector estimation P, at time t,,, is calculated
from the equation (5.5).

5.2 State-space modeling

In the Figure 22 the studied system in this thesis work is shown, The camera
captures the object’s movement by taking photographs at a certain frequency (see
Figure 22). Then by means of image processing it is detected and determined the
position of the points X;" in the image. The points represent the projection of the

points X; into the image.
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Figure 22 System Diagram

The angular motion of the object can be defined by means of its rotation matrix
R with respect to the CCS, and its angular velocity w,.; , which is respect to the BF.
The continuous-time angular motion equation can be obtained using Poisson

equation for relative motion also can be expressed using quaternions

A= %A oW, |Al =1 (5.10)
and can be written in a matrix form
) _ T
A= 1[ 0 Wret 14 (5.11)
2 Wye _[Wrel]x
A= 2W(W,e)A (5.12)
Were W (w,.;) is defined as follow:
0 —w, TW, —W;
Wy 0 Wy —Wy
YW, = Wy, —w, 0w, (5.13)
Wy Wy, — Wy 0

The solution of the equation (5.10) for interval of time At, where w,.,; can be

assumed to be constant, can be written in a linear discrete-time form:
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A = [laxa +5 Peo1 At Mgy, At =ty — ey (5.14)

Observation model is a function that provides information whereby directly or

indirectly allow for estimation of the state of the system. Therefore, an observation
model is closely related to the sensors function.

In the Figure 23 is shown that camera function can be written as a mathematical

model by means of the measurement model hy, expressed in the equation (4.18)

and in the equation (4.19), which are based on Rodrigues' rotation formula and

quaternions respectively.

Xi'(xi', yih)

Xi(x0, Y, 2i
Body-fixed frame

Figure 23 Measurement models

Additionally, in the section 4.5 it has been shown that by means of the
Algorithm 2 it is possible to determine 3-D object attitude by obtaining the vector
q, this process can be represented by the observation model h,,, represented in the
Figure 23.

The observation model h,,,; is expressed as follow:

[;‘Ic] = hopt(q' Tc) (5_15)

Where I is an identity matrix. As it is shown in the equation (5.15), the

measurement model h,,, has the advantage of being represented by a linear

function. However, for measuring it requires more computational time. The
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measurement model hy_, in contrast, does not requires much computational time, but
is strongly nonlinear.

In some cases, it is required to add angular velocity measurements, which are
obtained from consecutive 3-D object attitudes measured every period of time At.
Then the measurement model hs; can be defined as follow:

q
T,
Wiel

= hfs (@, T, Wrer) (5.16)

In order to apply the Extender Kalman Filter, it is required that our system be
represented by means of state-space model. Different state-space models are
described below, and then in the section 6 the best state-space model for Kalman
filter is going to be choose.

In order to apply the Extender Kalman Filter, it is required that our system be
represented by means of state-space model. Different state-space models are
described below, and then in the section 6 the best state-space model for Kalman
filter is going to be choose. In this chapter is considered to use a state-space model
based on quaternion. However, a state-space model based on Rodrigues rotation

formula is given in detailed in the Appendix A.

5.2.1 State-space model based on Quaternions
Let the state vector be represented by:

x=[q"T. w1 (5.17)

Where q represents the vector part of the unit quaternion, T, represent the

distance vector between the camera and the BF, and w,.,; represents angular velocity
with respect to the BF.

5.2.1.1 Observation model
By means of the measurement model hy, using quaternions, defined in the

equation (4.19), Let the observation model h, be defined as follow:
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_xpl_

yp
xp; th (q: Tc)

_Nyp2| | (@ T)
ho(6) = xp, ‘[hx3(q.Tc) |

Y3
XDy hX4 (q' TC)

LY D4
From the observation model defined in the equation (5.18), let H, be

linearized matrix of the observation model hq

[Ohx,/0x]
b Iahxz /ox|
q ahxé/ax|

dhy, /0%

[ahx th. Ohy.

T, OWrel

Where dhy /0q and ahxl /0T . were defined in the equation (2.62)
(2.53) respectively.

From the measurement model h,,, , defined in the equation (5.15),

observation model h,,, can be defined as follow:

[](‘IC] = hopt(q» T.) (5.

(5.

| (5.

L, i=1,..4 (5.

18)

the

19)

20)

and

the

21)

Let H,y,, be the linearized matrix of the observation model h,,,, defined as:

13 03x3

ah,, 0 0
Hopt — JMopt _ ‘ [03x3 3x3 3x3 (5.

Where I3 is identity matrix.

22)

Additionally, from the measurement model hss , defined in the equation

(5.16), the observation model kg, can be defined as follow:
q

Wiel

Let Hg be the linearized matrix of the observation model hy, defined as:
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aq

| 9% | I3 03,3 0343
Ohyy oT,
Hp ==L =251 = 053 I3 0345 (5.24)

lan 03x3 03x3 13

ax
It is important to mention that the observation models hy, hop,; and g, are
discrete-time measurements, and they are suitable for discrete-time state transition
model f.
Due to the fact that the measurements, in most physical continuous-time

system, are frequently taken in a discrete form the observation models hg, ko, and

hsg are completely suitable for the continuous-time state transition model.

5.2.1.2 State transition model

5.2.1.2.1Discrete-time model
From the equation (5.14), the state transition model f can be expressed in a

discrete-time form:

1
Ay = [lgxs + Elpk—lAt]Ak—l (5.25)
Te, =Tep, (5.26)
Wrel, = Wrelp_4 (5.27)

As it has been mentioned previously, the state transition models for T, and

W, are unknown, thus it is convenient to consider them to be constant for small

period of time At.
From the equations (5.25), (5.26) and
(5.27), let F be the linearized matrix of the state transition model defined as:
2q/0x
F=| 0T /ox (5.28)
OW,e,, /0X

In order to obtain the expression for dq, /dx , it is performed dA; /ox

oA [6Ak 0y 0y ] (5 29)
ox dq 0T, OWye .

The equation  (5.25) can be expressed as follow:
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Ak = Ak—l + %lpk—lAk—lAt (530)

Then 04, /dq is

At 0 (Wk—14k-1)

0Ag 0Agk—1
= 5.31
aq daq t 2 aq ( )
Where 04,_,/0q is:
[—Ch —d> —Q3-|
aA qo do qo
Mea_| 710 0 (5.32)
1 0 1 0
0 0 1
And d(W,_,A_,)/0q is:
— _WX —Wy _WZ -
—4 —q2 —4.,
(W11 W 20 Wx T Wz We = Wy
k—14k—-1
Aimatien) _ | g, ~a; ~a; (5.33)
P) —w, —w —w —w, +w
1 do Y d a0 7 % 7 x
—d1 —d; ks
— W w. — W, — W —W.
Lgo 2 7Y qo 2 % a 7
Thus, dA,/dq from the equation  (5.31) can be rewritten as follow:
9401 1 _ 91 _ Wkl _ 4z _ Wyt _ 43 _ WAL ]
aq do 2 do 2 o 2
9q1 _ 1 WAt Gz wilit n wzAt gz Wit wy At
94k _ | 9q | _ 4o 2 do 2 2 4o 2 2 (5.34)
aq % _ ﬂWyAt _ wyAt 1 q, WyAt q3 WyAt n wyAt )
dq do 2 2 do 2 Ao 2 2
aq; q1 wzAt  wyAt g, WAt wyAt 1 qz w;At
L 0q - L qo 2 2 qo 2 2 qo 2 d
Then the dq;/0q is:
—%— - 1 WAt _ G2 WxAt | wyAt q3z WAt  wyAt]
aq o 2 o 2 2 qo 2 2
9 aq q, Wylt w, At q, Wyt wy At w, At
e _ | %92 _ | D Zy2" _ W2at 1 - 2207 _ By Walt (5.35)
oq aq qo 2 2 o 2 o 2 2
94q3 Qi wAt WyAt gy wiAL  wxAt 1— q3 WAt
| aq . L do 2 2 do 2 2 do 2 h

Because A does not depends on T, dA; /0T is a null matrix, thus dq; /9T,
1s:

0
a_zlz = O3x3 (5.36)

Additionally, 0A; /0w, is:
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dqo —q1 —q2 —(qs3

A _ |0wrer| _ | 90 Uk qz
wrer |99 | |93 G0 1 (5.37)
OWrel —q2 1 do
5 do a3 4z
awi = l qs do _CI1] (5.38)
ret —q2 01 do
From the equations (5.26) and (5.27), the 9T, /0x and 0w, /0x
are expressed as follows:
T,
axk =[O3x3 I3 O343] (5.39)
a re
=l = [035 Ozps 1] (5.40)

5.2.1.2.2 Continuous-time model
The State-space model based on Quaternions can be also expressed in a

continuous-time form:

A=>Aow, A =1 (5.41)
Te =03 (5.42)
Wrel = 03x1 (5-43)
The linearized matrix of state transition model F is defined as:
5q 6q
ST, | =F| OT, (5.44)
OW,e SWrel

Where

F=| 0343 0353 0343 (5.45)

- [Wrel]x O3x3 0-513x3]
03,3 0353 0343

The linearized matrix H of the observable model is the same as in the equation
(5.19), because the h(x) is supposed that estimations of the state vector are

not continuous but discrete
From the continuous-time model, its linearized matrix F,,; shows that

6W,..; /8x results in a null matrix 03,9, and from the gain matrix K, in the equation

Kys1 = Pry HY, | [Hysy PBK + 1B-#Bk + 1BTE + R]E — 18 (5.7) Error!
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Reference source not found., is deducted that it is necessary angular velocity
measurements to estimate angular velocity by EKF.

As the mentioned above, the measurement model hg is suitable for the
continuous-time model. With regard to discrete-time model, its linearized matrix
Fp;sc shows that its component dw.,..;, /0x is different than a null matrix, it gives
the possibility to use the measurement models hgy,; and hg.

On the other hand, because of the high non-linearity of the measurement model

h it would require more analysis for future work.

53



6 Experiment and results

In this section, the results of the rotation matrix and angular velocity estimation
by means of a rotating table are presented.

The facilities are shown in the Figure 24, where Aruco marker is used to allows
to stablish the correspondences between the points in the coordinate system OXYZ
and the points located in the images. This marker is installed on the rotating table in
a way that the maker will be rotated around its axis-Z.

The camera FI8918W, previously calibrated in section 4.4, is used to capture

the Aruco marker’s movement every period of time At, where At = 1/15 seconds.

]

Figure 24 Rotary table rotates on the axis-Z

In order to estimate the rotation matrix and the angular velocity of the Aruco
marker the EKF is implemented in according to the section 5.

Let x = [q7,w,;"]" be the state vector of the continuous-time state space
model where q = [q4,q,,q3]T is the vector part of a unit quaternion A. This
quaternion represents the Aruco marker’s rotation matrix with respect to the camera.

The vector w,.,; = [Wx,Wy,WZ]T represents the local angular velocity, with

respect to the coordinate system OXYZ.

54



The process model is represented by the equations (5.41) and (5.43). The

observation model is based on the equation (5.23) and is defined as follows:

Z= [WZel] = hfs(q: Wiel)

The translation vector T, is not taken into account. The process model
integration is performed every period of time At by means of the Runge-Kutta 4%
order method.

The covariance matrix of the process noise Q is
— i 2 2 2 2 2 2
Q = diag([041,042, 043, Ogar Ogs, Og6])

where o, =1e-8, o, =1e-8, o/; =1e-8, o, =9.243e-5, 075 =1.329-

4, 02,=2.172e-5. The covariance of the observation noise R is

- s 2 2 2 2 2 2
R = diag([0/1,0/, 073, 074, 075, 076])

where ¢ =6.123e-4, 62,=1.318e-8, 6%5=3.377e-7, 64,=2.73e-4, 0.%,=6.069e-
4, 02,=3.627e-5.

Similarly, the state vector X is also used for the discrete-time state model, its
process model is represented by the equation (5.25) and (5.27). The
observation model is based on the equation (5.21) and is defined as follows:

q = hope(q)
The covariance matrix of the process noise Q is
Qx = diag([diklﬂsz; O-c?k?)' 03,(4, Uc?ks' O-c?kG])
where o7, =1e-8, o7 , =1e-8, a7, 5 =1e-8, o/ 4 =9.243e-5, o/ 5 =1.32%-

4,07 =2.172e-5. The covariance of the observation noise Ry is

Ry, = diag([arzkl,arzkz, 0r2k3' 0r2k4r Grzks' Grzke])
where of, =6.123e-4, of, =1.318e-8, o/ s =3.377e-7, o}, =2.73e-4,
0/ 5=6.069e-4, o7 ,=3.627e-5.
The covariance matrices of the process noise and observation noise were
determined experimentally by means of a graphical user interface (GUI) developed
in Python 3.7 during this thesis work. This GUI is implemented in order to fine-tune

the covariance matrix.
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An experiment has been performed where the rotating table rotates 90° around
the axis-Z. The next pictures shown three graphics defined as follows:

e Red line: Measurement without filter.

e Green line: Results for EKF using the continuous-time process model
integrated every period of time At by means of the Runge-Kutta 4" order
method.

e Blue lines: Results for EKF using the discrete-time process model.

The components of the vector g are shown in the Figure 25.

/
v
() Quaternion component (b) Quaternion component

(c) Quaternion component g3
Figure 25 Components of the vector part of the unit quaternion

In the next table , the mean (1) and standard deviation (o) for the vector q are

calculated for the first 30 seconds of the experiment, when the rotating table is static.
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It can be seen that as for the orientation, which is determined by the

quaternions, there was no significant improvement, this is because the measurement

models kg and h,,, is already accurate for orientation determination.

Table 1 Quaternion measurements for the first 30 seconds for a static rotating table

Mean (u) Standard deviation (o)
Hmeas Hcont EKF | BDiscEKF | Omeas | OcCont.EKF | ODisc.EKF
q, | 0.96463 | 0.96463 | 0.96463 | 0.00009 | 0.00010 | 0.00007
q, | 0.05652 | 0.05652 | 0.05652 | 0.00012 | 0.00012 | 0.00010
q3 | -0.05326 | -0.05326 | -0.05326 | 0.00043 | 0.00043 | 0.00026

In the Figure 26, the results for the angular velocity estimation are

can be noticed that there is a remarkable increase in precision.

shown.

Angular velocity (axis x)

=

(@) Angular velocity along the axis-X

(c) Angular velocity along the axis-Z

(b) Angular velocity along the axis-Y

Figure 26 Angular velocity (°/s) with respect to the coordinate system

OXYZ
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In the next table, it is shown the mean (u) and standard deviation (o)
measurements of the angular velocity for the first 30 seconds of the experiment,
when the rotating table is static. It can be seen that the precision increase can reach
up to 89.7% by means of the Discrete EKF, it is a better option than the Continuous-
time EKF which can reach up to 86.2%. However, It is important to mention that the
previous results depend on the efficiency for covariance matrices determination. On
the other hand, it is remarkable that an important precision increase is obtained with
regard to angular velocity estimation.

Table 2 Angular velocity measurements for the first 30 seconds for a static rotating
table

Mean (°/s) Standard deviation (°/s) Improve (%)
Mimeas | Bcont.EKF | BDiscEKF | Omeas | OcontEKF | ODiscEkF | CONLEKF | Disc. EKF
w, | 0.00237 | 0.0019 -0.0013 | 0.8411| 0.1503 0.0863 82.1 89.7
w, | 0.00008 | -0.0012 | -0.0036 | 1.005 0.1352 0.1117 86.5 88.8
w, ) -0.0016 | -0.0054 | 0.405 0.1205 0.0511 70.3 87.4
0.00216

In the Figure 27, The angle rotated around the axis-Z is shown, and as it is
expected, the estimated rotated angle is close to 90° with an error of not more than
0.1°.

Measurement:
n:90.089° 6:0.029 °
Disc. EKF:
pn:90.090°,0:0.0228 °
Cont. EKF:
p:90.089°,06:0.02767 °

Figure 27 Angle rotated (°) around the axis-Z
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The angle rotated is not calculated by angular velocity integration, but it is
measured taking into account the first rotation matrix to the current rotation matrix,

due to the fact that orientation estimation y more precise.
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Conclusion

This work is dedicated to the problem of estimating the orientation of an object
and its angular velocity by image processing. Two different approches were
considered: The rotation matrix determination by means of the measurement model
adapted for the use of quaternions, in addition the implementation of EKF for the
angular velocity estimation.

As result of using quaternions, simulations showed that there is no difference
with respect to the precision with its analog adapted measurement model for
Rodrgiues rotation formula. However, using measurement model based on
quaternions is a slight advantage in computing time.

Experiments for rotation matrix determination by means of quaternions showed
high precision. However, the estimation of the angular velocity from consecutives
rotation matrix has low precision, thus ,in order to improve the precision of the
angular velocity measurement the EKF is implemented.

The EKF has been implemented taking into account the matrix rotation
measurment ,which are express by quaternions, the result showed a significatly
accuracy increase for angular velocity estimation. As for the rotation matrix, which
is determined by the quaternions, there was no significant improvement, this is

because the measurement is already accurate.
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Appendix A. State-space model based on Rodrigues’
rotation formula

The angular motion of the object can be defined by means of its rotation matrix
R with respect to the CCS, and its angular velocity w,.,; , which is respect to the BF.

The continuous-time angular motion equation can be obtained using Poisson
equation for relative motion

R = RQ (A. 1)

Where () is skew-symmetric matrix of the vector w,.; :

0 —-w, w,
Q= [Wrel]x =\ W: 0 —Wy (A-Z)
—Wy, Wy 0

Due to the fact that the angular velocity w,..; depends on time, it is convenient
to perform an analysis for small enough interval of time [to, tf], where w,.,; can be
considered constant; Taking into account the mentioned above, the general solution
can be written as follow:

R(t) = Rye (A.3)

Where Ry(ty) =R, and t € [to, tf] , additionally, the solution can be
expressed in a discrete-time form:

Ry = Ryt At =, —t,_q, k=1,2,3,... (A.4)

Where At is small enough to assumed ();,_; to be constant in the interval of
time [t, ty_1]. Also At represents the period of time whereby the system is updated.

By mean of the definition of matrix exponential the equation can be expressed
as a Taylor series

Ric = Reoy (I + Queq At + 2 (Qp 4 AE)? + -+ (A.5)

Considering only the first two terms, a linear form can be given as follow:

Ry = Rp_1(I + Qp_1A0) (A.6)

Below is described the state-space model based on Rodrigues' rotation formula.
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The measurement model hy (v, T.) originally does not depends on the angular
velocity w,..;. However, due to the fact that the angular velocity is needed in every
angular motion, the angular velocity w,,; must be considered in the state vector x.

Let the state vector be x = [v7,T,.”,w,,;”]" and the observation model be defined

as follow:

_xpl_

yp

xp; ZXl Ev' ;ci

_\YDP2| _ |"%; VI,
hrod(x) |xps| T [th (v’ Tc)| (A7)

Yp3

Xp, hy,(,T,)

LYD4

It is important to notice that the previous observation model consists on the
projection of for points from the BF to the ICS.

In order to apply the Extended Kalman filter, it is required a linearization of the
state transition and observation model.

Let H,.,, be the linearized matrix of the observation model h,.,;(x) defined as:

Ohy, /0x
Ohy,/0x
Hrod - ahX3/ax (A-8)
Ohy,/0x
dhx; _ [0hx; Ohx, Ohx;1 .
ax [ v dT, 6wrel]' t=1..4 (A-9)
Where dhy, /0v and dhy, /0T were defined in the equation (2.37) and

(2.53) respectively, and dhy,/OW,.; tesults in a null matrix 05,;,, because hy, does

not depends on w,.;.
According to the state vector, the state transition model in continuous-time is

required to be in the next form:
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V= fi(0,T, Wie, 1) (A.10)

Te=f2(0,Tc,Wrep, t) (A.11)

Wie = [3(0, T, Wre, t) (A.12)

However, there is no a direct expression for previous differential system of
equations, therefore with Rodrigues' rotation formula it is preferable to work with

discrete-time system with the next form:

Vg = fl (vk—1; Tck_ll Wrelk_ll k — 1) (Al‘?’)
Tck = fo(Vk-1, Tck_lt Wiel_1» k—1) (A.14)
Wrely, = f3 (vk—lr Tck_lr Wrelg_1 k — 1) (A15)

The state transition model for v, can be derived from the equation (A.6), let

the rotation matrix R be defined as follow:

Rk == Rk—l[I + Qk—lAt] (A16)
Tk11 Tk12 Tk13

R, = [Tk,m Tk,22 Tk,23] (A.17)
Tk31 Tk32 Tk31

Where R _; is the matrix rotation at moment of time t;_;, Ri_; 1s defined as
function of v;,_ in the equation (2.16), and Q;_, is the skew-symmetric matrix of

the vector w,.;, . as in the equation (A.2). Thus, R, can be expressed as

Ry(Vi—1, Wrery_y)-
As it is widely known, from rotation matrix angle rotation a; can be

determined as follow:
Q) = arccos (@) (A.18)

Where Tr(Ry) is the trace of the matrix Rj,. The axis of rotation u; is defined

as:
U, = —2— |lu| =1 (A.19)
k— 2sinay’ kl— )
Where the vector b is:
b = [Tk,sz —Tk23 Tk,13 — Tk,31 Tk,21 — 7"k,12]T (A.20)

Then vy is obtained as a function of v;_; and wy¢;, _, as follow:
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Vg = fl(vk—lrwrelk_l) = ayty (A.21)
Due to the fact that the state transition models f, and f5 are unknown for T,

and w,, respectively, it is possible to consider them to be constant for small period

of time At.

T, =T (A.22)

Ck—-1
Wiel),, = Wrelp_q (A.23)
From the equations (A.13), (A.14) and (A.15) , Let F be the linearized matrix

of state transition model f defined in the equation defined as:

Fy df1/0x
F =|F,| =|0f,/0x (A.24)
F3l [ofs/o0x

From the equation (A.21), The linearized matrix F, is defined as follow:

_0A _ Ovk
F=22=2 (A.25)

Where v, can be written as a function of the state vector x:
Vg = ap (X) Uy (x) (A.26)
Then

6vk 6vk aak avk auk
= A.27
Ox day Ox ouy Ox ( )

Where avk/aak = Uy, and avk/auk = C(k13

ove _,, dak o
ax = Uy, ox +C(k (A28)

From the equation (A.18), let ¢ = (Tr(R,) —1)/2 , then da; /0x can be

expressed by mean of partial derivatives:

day _ day d¢ OTr ORy

dx  9¢ OTr ORy Ox (A.29)
Where day, /¢ = —1/y/1— 2, d¢p/dTr = 1/2, and d¢/dTr is:
2=[1000 100 0 1] (A.30)
From the equation (A.19), let { = 1/(2sinay) , then u,, can be written as:
uy, = {(a)b(Ry) (A.31)

Thus du; /0x can be defined as:
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Juy _ Ouy 97 day oduy, 0b ORy
dx 9 day 0x  Ob ARy Ox

Where ou, /0 = b, 0(/0a, = —cos(ay)/(2sin*(ay)), Ou,/ob=1/
(2sinay,), and db/0R, is:

(A.32)

v 0O 0 o0 O 01 0 -1 O
—=—=10 0 -1 0 00 1 0 0 (A.33)
“ o1 0 1000 0 0
The equation (A.16) can be rewritten as follow:
Rk = Rk—lM (A34)

Where M =1 + Q;,_,At, then by means of matrix calculus dR;/dx is

expressed as:

ORg—1

OR; _ [ORk—1M aRk M| ox

el el | B (A35)
ax

ORk—1  ORg—1 ORg—1

aR 0vg_ OT ¢, _ OWrely,_
el KR T | A
6vk_1 6TCk_1 awrelk_l
ORk—
Ry, T:_i 09x3 09x3
— =M QI3 I3Q®Ry4] oM (A.37)
0gx3  Ogy3 T
OR OR},— oM
L= [MT® 55,2 0oz I3 ® Riay,——| (A38)

Where & is Kronecker product operator, the partial derivative dRj,_,/0vj_4

was calculated in the equation (2.47), and M /OW,.,_, is:

01 0 -1 0 0 0 0 o1
=10 0 -1 0 0 0 1 0 of At (A.39)
00 0 0 010 -1 0

From the equation Error! Reference source not found. , the linearized matrix

oM

aWrelk_l

F, can be defined as follow:

oT oT
— 2 — Ck — Ck—1 Ck 1 Ck—1
FZ o [avk 1 Tep_4 awrelk_l] (A40)
F, = [03x3 I3 03,3] (A.41)

Similarly, from the equation (A.23) for the linearized matrix F:
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F.— % _ OWrely _ [awrelk_l OWrelj_q awrelk_l] (A 42)
3 X 6vk_1 6TCk_1 awrelk_l )

ax @
F3 =[03y3 03y3 I5] (A.43)
In this section was described how is the state-space modeling with Rodrigues

rotation formula.
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