

ИПМ им. М.В. Келдыша РАН, Московский физико-технический институт, Москва, 24 июня 2025

Применение прямого метода Ляпунова для проектирования траекторий с малой тягой (выпускная квалификационная бакалаврская работа)

Студент: С.Е. Самаров, группа Б03-104

Научный руководитель: к.ф.-м.н., доцент М.Г. Широбоков

Мотивация и проблемы

Космические аппараты (КА) с малой тягой применяются:

- в задачах дистанционного зондирования Земли;
- при исследованиях магнитосферы и ионосферы Земли;
- для перелётов к Луне, малым телам и планетам Солнечной системы.

При решении оптимизационных задач возникают следующие проблемы:

- высокая чувствительность процедуры оптимизации к начальному приближению;
- многоэкстремальность задачи;
- осложнения, связанные с большим временем полёта и большим числом витков.

Методы решения проблем

- Петухов В.Г. (метод продолжения по параметру);
- Суслов К.С., Широбоков М.Г., Трофимов С.П. (метод осреднения);
- Ивашкин В.В., Крылов И.В. (решение задачи ПМП с помощью модифицированного метода Ньютона);
- Самохин А.С., Григорьев И.С. (лестница задач);

Прямой метод Ляпунова:

- Петропулос А. (применение Q-закона);
- Атмака Д., Понтани М. (применение функций Ляпунова с весовыми коэффициентами);
- Широбоков М.Г., Суслов К.С., Овчинников М.Ю. и др. (применение к задаче полета на Луну).

Открытые вопросы

- траектории, спроектированные на основе прямого метода Ляпунова, как правило, не являются оптимальными по затратам топлива и времени перелёта;
- заранее неизвестно, какая из применяемых функций Ляпунова даст оптимальную траекторию с точки зрения того или иного функционала качества;
- спроектированные на основе прямого метода Ляпунова траектории не имеют пассивных участков.

Цель и задачи работы

Цель

Научиться проектировать на базе прямого метода Ляпунова миссии

КА с малой тягой в околоземном пространстве.

Задачи:

- разработать методику проектирования траекторий межорбитальных околоземных перелётов;
- провести верификацию путем сравнения расчётов с Q законом
- управления малой тягой и принципом максимума Понтрягина;

применить разработанную методику к реальной задаче перелёта. 5/15

Постановка задачи

Постановка задачи

- КА с двигателем малой тяги движется в околоземном пространстве;
- даны произвольные исходная и целевая орбиты;
- поле тяготения Земли считается центральным.
 Найти управление, переводящее КА с исходной орбиты на целевую,
 рассмотреть случаи непрерывного управления и возможность экономии
 топлива при помощи введения пассивных участков.

Обозначения и общий вид уравнений движения

 $\Upsilon = \{h, e_x, e_y, i_x, i_y, L\}$ – модифицированные равноденственные элементы, $\mathbf{P} = (h, e_x, e_y, i_x, i_y)^T$ – вектор из первых пяти элементов,

 $\mathbf{U} = (S, T, W)^T$ – управляющее реактивное ускорение в проекциях на оси орбитальной системы координат,

V_{ex} – скорость истечения газов двигателя,

f – вектор силы тяги,

 $\dot{\mathbf{P}} = \mathbf{A}(\mathbf{P}, L) \cdot \mathbf{U}$ – система первых пяти уравнений движения КА,

$$\dot{m} = -\frac{|f|}{V_{ex}}$$
 – уравнение изменения массы.

Функция Ляпунова 1 и управляющее ускорение

Функция Ляпунова 1

$$V = \frac{1}{2} \left\{ (h - h^{\mathrm{u}})^{2} + (e_{x} - e_{x}^{\mathrm{u}})^{2} + (e_{y} - e_{y}^{\mathrm{u}})^{2} + (i_{x} - i_{x}^{\mathrm{u}})^{2} + (i_{y} - i_{y}^{\mathrm{u}})^{2} \right\},\$$
$$\dot{V} = \nabla_{\mathrm{P}} V \cdot \dot{\mathrm{P}} = \mathrm{Q}^{T}(\mathrm{P}) \cdot \mathrm{A} \cdot \mathrm{U} = (\mathrm{A}^{T} \cdot \mathrm{Q}(\mathrm{P}), \mathrm{U}) \to \min,$$

$\mathbf{U} = -\frac{\mathbf{A}^T \cdot \mathbf{Q}(\mathbf{P})}{|\mathbf{A}^T \cdot \mathbf{Q}(\mathbf{P})|} \cdot \frac{f_{\max}}{m}$ – управляющее ускорение в точке траектории.

Критерий останова интегрирования:

$$\max_{i \in [1,5]} \left| p_i - p_i^{\mathsf{H}} \right| \le \varepsilon$$

Функция Ляпунова 2 и управляющее ускорение

Функция Ляпунова 2

$$V = \frac{1}{2} \Big(q_1^2(\mathbf{P}) + q_2^2(\mathbf{P}) + q_3^2(\mathbf{P}) \Big),$$

$$q_1(\mathbf{P}) = \Big(\frac{h^2}{1 - e_x^2 - e_y^2} - a^{\mathrm{II}} \Big) \frac{1}{a^{\mathrm{II}}};$$

$$q_2(\mathbf{P}) = \Big(2 \operatorname{arctg} \sqrt{i_x^2 + i_y^2} - i^{\mathrm{II}} \Big) \frac{1}{i^{\mathrm{II}}};$$

$$q_3(\mathbf{P}) = \Big(e_x^2 + e_y^2 - (e^{\mathrm{II}})^2 \Big) \frac{1}{(e^{\mathrm{II}})^2}.$$

$$\mathbf{U} = -\frac{f_{max}}{m} \cdot \frac{\mathbf{A}^T \cdot \mathbf{J}^T \cdot \mathbf{Q}(\mathbf{P})}{|\mathbf{A}^T \cdot \mathbf{J}^T \cdot \mathbf{Q}(\mathbf{P})|} -$$
управляющее ускорение в точке траектории.

Критерий останова интегрирования:

$$|a - a^{\mathrm{u}}| < \varepsilon_a, \qquad |i - i^{\mathrm{u}}| \frac{180^{\circ}}{\pi} < \varepsilon_i, \qquad |e - e^{\mathrm{u}}| < \varepsilon_e$$

Коэффициент эффективности тяги

Для проектирования траекторий в работе вводится *параметр переключения тяги* $\eta_{\kappa p}$ и используется следующая модель управления:

• если
$$\eta > \eta_{\kappa p}$$
, то $\mathbf{U} = -\frac{\mathbf{A}^T \cdot \mathbf{J}^T \cdot \mathbf{Q}(\mathbf{P})}{|\mathbf{A}^T \cdot \mathbf{J}^T \cdot \mathbf{Q}(\mathbf{P})|} \cdot \frac{f_{\max}}{m}$,

• если $\eta \leq \eta_{\kappa p}$, то $\mathbf{U} = 0$.

Параметры исходной и целевой орбит и КА

	Исходная орбита	Целевая орбита
Большая полуось, км	7171.0	72731.0
Наклонение, град	98.0	98.0
Эксцентриситет	0.0	0.742462

Параметры КА с малой тягой

Двигатель	ПлаС34
Начальная масса КА, кг	90.0
Сила тяги, мН	22.0
Эффективная скорость истечения, км/с	12.753

Сравнение с Q – законом Петропулоса

	Функция Ляпунова 1	Функция Ляпунова 2	Q – закон Петропулоса	
Время перелета, дни	247.02	236.40	240.22	
Число витков	1360	1136	1149	
Расход топлива, кг	36.71	35.24	36.00	

Свойства траекторий с пассивными участками

Затраты топлива в зависимости от $\eta_{\kappa p}$

Сравнение с ПМП

	Время полета, дни		Число витков		Затраты топлива, кг	
	Оценка	Аналит.	Оценка	Аналит.	Оценка	Аналит.
	КЭТ на	оценка	КЭТ на	оценка	КЭТ на	оценка
	сетке	КЭТ	сетке	КЭТ	сетке	КЭТ
$\eta_{\mathrm{\kappa p}} = 0.09$	260.0	277.04	1391	1419	34.58	31.81
ПМП	260.0	277.04	1391	1419	23.74	23.12

Заключение

- На основе функций Ляпунова ФЛ1 и ФЛ2 спроектированы траектории околоземного перелёта КА с малой тягой без отключения тяги.
- Для траекторий на основе ФЛ1 целевая орбита асимптотически устойчива, а для траекторий на основе ФЛ2 не является асимптотически устойчивой.
- На траекториях на основе ФЛ2 КА расходует на 1.47 кг и на 0.76 кг меньше топлива, чем на траекториях на основе ФЛ1 и на основе Q – закона соответственно.
- Разработана методика проектирования траекторий с пассивными участками на базе прямого метода Ляпунова с использованием КЭТ.
- Установлено, что при межорбитальном перелёте с пассивными участками с ростом η_{кр} уменьшаются затраты топлива, однако увеличивается время полета.

Приложения (Back-up)

Апробация работы

Результаты работы докладывались на:

- 67 Всероссийской научной конференции МФТИ (31 марта 2025 г.),
- 51 Международной молодежной научной конференции «Гагаринские чтения» МАИ (16 апреля 2025 г.),
- научном семинаре отдела №7 ИПМ им. М.В. Келдыша РАН (29 апреля 2025 г.).

Новизна

- Для ФЛ1 и ФЛ2 получены формулы управляющего ускорения.
- Проведено сравнение свойств траекторий, спроектированных на основе ФЛ1, ФЛ2 и Q закона.
- Получена аналитическая оценка КЭТ снизу.
- Представлена методика проектирования траекторий с пассивными участками на основе прямого метода Ляпунова с использованием оценки КЭТ на сетке и аналитической оценки КЭТ.
- Проведено сравнение свойств траекторий, спроектированных на основе оценки КЭТ на сетке, аналитической оценки КЭТ, а также траекторий, оптимизированных в рамках ПМП 17/15

Модифицированные равноденственные элементы

$$h = \sqrt{\frac{a(1 - e^2)}{\mu}}$$
$$e_x = e \cos(\omega + \Omega)$$
$$e_y = e \sin(\omega + \Omega)$$
$$i_x = tg\left(\frac{i}{2}\right) \cos \Omega$$
$$i_y = tg\left(\frac{i}{2}\right) \sin \Omega$$
$$L = \theta + \omega + \Omega$$

$$\sigma = 1 + e_x \cos L + e_y \sin L,$$

$$\zeta = i_x \sin L - i_y \cos L,$$

$$\phi = 1 + i_x^2 + i_y^2$$

Система уравнений движения КА

$$\begin{cases} \frac{dh}{dt} = \frac{h^2}{\sigma} \cdot T, \\ \frac{de_x}{dt} = h \left\{ \sin L \cdot S + \left[\left(1 + \frac{1}{\sigma} \right) \cos L + \frac{e_x}{\sigma} \right] \cdot T - \frac{e_y \zeta}{\sigma} \cdot W \right\}, \\ \frac{de_y}{dt} = h \left\{ -\cos L \cdot S + \left[\left(1 + \frac{1}{\sigma} \right) \sin L + \frac{e_y}{\sigma} \right] \cdot T + \frac{e_x \zeta}{\sigma} \cdot W \right\}, \\ \frac{di_x}{dt} = h \frac{\varphi \cos L}{2\sigma} \cdot W, \\ \frac{di_y}{dt} = h \frac{\varphi \sin L}{2\sigma} \cdot W, \\ \frac{dL}{dt} = \frac{\sigma^2}{h^3} + h \frac{\zeta}{\sigma} \cdot W. \end{cases}$$

Матрица А системы уравнений движения

$$\begin{pmatrix} \frac{dh}{dt} \\ \frac{de_x}{dt} \\ \frac{de_y}{dt} \\ \frac{di_x}{dt} \\ \frac{di_y}{dt} \end{pmatrix} = \begin{pmatrix} 0 & h^2 \sigma^{-1} & 0 \\ h\sin L & h\left[\left(1 + \frac{1}{\sigma}\right)\cos L + \frac{e_x}{\sigma}\right] & -h\frac{e_y\zeta}{\sigma} \\ -h\cos L & h\left[\left(1 + \frac{1}{\sigma}\right)\sin L + \frac{e_y}{\sigma}\right] & h\frac{e_x\zeta}{\sigma} \\ 0 & 0 & h\frac{\phi\cos L}{2\sigma} \\ 0 & 0 & h\frac{\psi\sin L}{2\sigma} \end{pmatrix} \begin{pmatrix} S \\ T \\ W \end{pmatrix},$$

где

$$\begin{cases} \sigma = 1 + e_x \cos L + e_y \sin L, \\ \zeta = i_x \sin L - i_y \cos L, \\ \varphi = 1 + i_x^2 + i_y^2 \end{cases}$$

Матрица Якоби

$$\mathbf{J} = \begin{pmatrix} \frac{\partial q_1}{\partial h} & \frac{\partial q_1}{\partial e_x} & \frac{\partial q_1}{\partial e_y} & \frac{\partial q_1}{\partial i_x} & \frac{\partial q_1}{\partial i_y} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial q_n}{\partial h} & \frac{\partial q_n}{\partial e_x} & \frac{\partial q_n}{\partial e_y} & \frac{\partial q_n}{\partial i_x} & \frac{\partial q_n}{\partial i_y} \end{pmatrix}$$

Сглаживающая функция сигмоида

Сглаживающая функция *сигмоида* $\Sigma(x, c, d) = \frac{1}{1 + e^{-(x-c) \cdot d}}$

Управляющее ускорение в точке траектории с учетом сглаживания

$$\mathbf{U} = -\Sigma(\eta, c, d) \cdot \frac{f_{max}}{m} \cdot \frac{(\nabla_{\mathbf{P}} V \cdot \mathbf{A})^{T}}{|(\nabla_{\mathbf{P}} V \cdot \mathbf{A})^{T}|}$$

Схема расчета расхода топлива при использовании ПМП

$$N = \frac{|\mathbf{f}| \cdot V_{ex}}{2} = const, \qquad |\mathbf{f}| = m \cdot |\mathbf{U}|,$$

$$\dot{m} = -\frac{|\mathbf{f}|}{V_{ex}} = -\frac{|\mathbf{f}|^2}{|\mathbf{f}| \cdot V_{ex}} = -\frac{|\mathbf{f}|^2}{2N} = -\frac{m^2 \cdot |\mathbf{U}|^2}{2N},$$

$$-\frac{\dot{m}}{m^2}=\frac{|\mathbf{U}|^2}{2N},$$

$$\frac{d}{dt}\left(\frac{1}{m}\right) = \frac{|\mathbf{U}|^2}{2N}.$$

Доказательство асимптотической устойчивости (1 из 2)

$$\dot{V} = 0 \iff |(\nabla_{\mathbf{P}} V \cdot \mathbf{A})^{T}| = 0$$
$$\nabla_{\mathbf{P}} V = \begin{pmatrix} h - h^{\mathrm{u}}, & e_{\chi} - e_{\chi}^{\mathrm{u}}, & e_{y} - e_{y}^{\mathrm{u}}, & i_{\chi} - i_{\chi}^{\mathrm{u}}, & i_{y} - i_{y}^{\mathrm{u}} \end{pmatrix}$$

 $(\nabla_{\mathbf{P}}V\cdot\mathbf{A})^{T}$

$$= \begin{pmatrix} (e_x - e_x^{\mathrm{u}})h\sin L - (e_y - e_y^{\mathrm{u}})h\cos L \\ (h - h^{\mathrm{u}})h^2\sigma^{-1} + (e_x - e_x^{\mathrm{u}})h\left[\left(1 + \frac{1}{\sigma}\right)\cos L + \frac{e_x}{\sigma}\right] + \left(e_y - e_y^{\mathrm{u}}\right)h\left[\left(1 + \frac{1}{\sigma}\right)\sin L + \frac{e_y}{\sigma}\right] \\ -(e_x - e_x^{\mathrm{u}})h\frac{e_y\zeta}{\sigma} + \left(e_y - e_y^{\mathrm{u}}\right)h\frac{e_x\zeta}{\sigma} + (i_x - i_x^{\mathrm{u}})h\frac{\varphi\cos L}{2\sigma} + \left(i_y - i_y^{\mathrm{u}}\right)h\frac{\varphi\sin L}{2\sigma} \end{pmatrix}$$

Доказательство асимптотической устойчивости (2 из 2)

Уравнение
$$(e_x - e_x^{\mu}) h \sin L - (e_y - e_y^{\mu}) h \cos L = 0$$

должно быть выполнено для $\forall L$. Это возможно только в том случае,

когда $e_x = e_x^{\mathfrak{q}}$; $e_y = e_y^{\mathfrak{q}}$

Подставляя эти выражения во второе уравнение и воспользовавшись тем, что оно должно

быть выполнено для $\forall L$, получаем равенства $h = h^{\mu}$.

Подставляя значения e_x^{μ} , e_y^{μ} , h^{μ} в третье уравнение и воспользовавшись тем, что оно

должно быть выполнено для $\forall L$, получаем равенства $i_x = i_x^{\mu}$; $i_y = i_y^{\mu}$.

По теореме Барбашина-Красовского асимптотическая устойчивость целевой орбиты доказана.

Аналитическая оценка КЭТ снизу

Обозначение

/

$$\left(h^2 (k_1^2 + k_2^2) + \frac{2h^2}{(1-e)^2} (k_0 h + k_1 e_x + k_2 e_y)^2 + \frac{2h^2 (2-e)^2}{(1-e)^2} (k_1^2 + k_2^2) \right)^2 + \frac{2h^2 \operatorname{tg}^2 \frac{i}{2}}{(1-e)^2} (-k_1 e_y + k_2 e_x)^2 + \frac{h^2 \left(1 + \operatorname{tg}^2 \frac{i}{2}\right)}{2(1-e)^2} (k_3^2 + k_4^2) \right)^{\frac{1}{2}} = K,$$

где $\nabla_P V = (k_0, k_1, k_2, k_3, k_4).$

Оценка КЭТ снизу

$$\eta \ge \frac{|\nabla_P V \cdot A|}{K}.$$
 26/15

Результаты расчета траекторий с пассивными участками

Величина η _{кр}	Время полёта, дни		Моторное время, дни		Затраты топлива, кг	
	Оценка	Аналит.	Оценка	Аналит.	Оценка	Аналит.
	КЭТ на сетке	оценка КЭТ	КЭТ на сетке	оценка КЭТ	КЭТ на сетке	оценка КЭТ
0	247.02		247.02		36.71	
0.05	255.15	265.68	252.83	256.96	35.69	34.08
0.09	260.00	277.04	249.83	261.31	34.24	31.81
0.15	269.16	317.60	244.96	252.28	32.30	29.14
0.20	287.03	364.42	243.86	233.96	31.05	27.69
0.25	297.72	477.01	238.56	225.29	29.98	26.58

Траектория перелёта КА с малой тягой

Некомпланарные орбиты

	Исходная орбита	Целевая орбита
Большая полуось, км	7171.0	72731.0
Наклонение, град	51.6	98.0
Эксцентриситет, безразм	0.0	0.742462

Параметры КА с малой тягой

Двигатель	ПлаС34
Начальная масса КА, кг	90.0
Сила тяги, мН	22.0
Эффективная скорость истечения, км/с	12.753

Проектирование траекторий (некомпланарные орбиты)

	Функция Ляпунова 1	Функция Ляпунова 2	Q – закон Петропулоса
Время перелета, дни	278.37	288.98	361.31
Число витков	1437	1363	1165
Расход топлива, кг	39.25	43.1	54.00

Некомпланарные орбиты

Параметр с	Время полёта,		Число витков		Затраты топлива,	
сигмоиды	дни				КГ	
	Оценка	Аналит.	Оценка	Аналит.	Оценка	Аналит.
	$\eta_{ m \kappa p}$ на	оценка	$\eta_{ m \kappa p}$ на	оценка	$\eta_{ m \kappa p}$ на	оценка
	сетке	$\eta_{ m \kappa p}$	сетке	$\eta_{ m \kappa p}$	сетке	$\eta_{ m \kappa p}$
0	278.37		1437		39.25	
0.05	262.56	266.32	1430	1432	38.71	38.16
0.09	266.91	273.7	1432	1436	38.6	37.8
0.25	283.75	531.38	1504	1753	36.84	33.57
0.3	300.56	932.24	1567	2179	36.27	31.55

Графики зависимостей от $\eta_{\kappa p}$ (некомпланарные орбиты)

Сравнение с ПМП (некомпланарные орбиты)

	Время полета, дни		Число	Число витков		Затраты топлива, кг	
	Оценка	Аналит.	Оценка	Аналит.	Оценка	Аналит.	
	$\eta_{\kappa \mathrm{p}}$ на	оценка	$\eta_{ m \kappa p}$ на	оценка	$\eta_{ m \kappa p}$ на	оценка	
	сетке	$\eta_{ m \kappa p}$	сетке	$\eta_{ m \kappa p}$	сетке	$\eta_{ m \kappa p}$	
$\eta_{\mathrm{KP}} = 0.09$	266.91	273.7	1432	1436	38.6	37.8	
ПМП	266.91	273.7	1432	1436	30.16	29.34	
$\eta_{\kappa p} = 0$	278.37		1437		39.25		
ПМП	278.37		1437		28.95		

Список использованных источников

- 1. Петухов В.Г. Оптимальные многовитковые траектории выведения космического аппарата с малой тягой на высокую эллиптическую орбиту // Космические исследования, 2009, т. 47, № 3, 271–279 с.
- Suslov, K., Shirobokov, M., Trofimov, S. Approximate Finite Fourier Solution to the Periodically Perturbed Two-Body Problem // Journal of Guidance and Dynamics, 2024, Vol. 47, No.
- 3. Petropulos, A. E. Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coasting // AIAA Paper 2004-5089, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Rhode Island, USA, August 16-19, 2004
- 4. Ельников Р. В. Использование функции Ляпунова для вычисления локальнооптимального управления вектором тяги при межорбитальном перелёте с малой тягой // Космические исследования, 2021, т. 59, № 3, 255–264 с
- 5. Atmaca, D., and Pontani, M. *Near-Optimal Feedback Guidance for Low-Thrust Orbit Transfers* // Aerotecnica Missili & Spazio, 2024, Vol. 103, pp. 245-253.