Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)» Физтех-школа Прикладной Математики и Информатики Кафедра математического моделирования и прикладной математики

Направление подготовки / специальность: 03.03.01 Прикладные математика и физика (бакалавриат)

Направленность (профиль) подготовки: Математическое моделирование, вычислительная математика и физика

МОДЕЛИРОВАНИЕ ГРАВИТАЦИОННОГО ПОЛЯ АСТЕРОИДА СЛОЖНОЙ ФОРМЫ С РАВНОМЕРНО РАСПРЕДЕЛЕННОЙ МАССОЙ

(бакалаврская работа)

Студент: Юдицкая Анастасия Сергеевна

(подпись студента)

Научный руководитель: Ткачев Степан Сергеевич, канд. физ.-мат. наук, доц.

(подпись научного руководителя)

Консультант (при наличии):

(подпись консультанта)

Москва 2020

Аннотация

В работе решается задача моделирования гравитационного поля астероида. Форма астероида задается поверхностной сеткой. Масса известна и полагается равномерно распределенной по объему. Построена процедура, позволяющая численно определить коэффициенты разложения потенциала астероида. Проведена верификация на телах с известным потенциалом.

оглавление

Вв	едение		4
1.	Постановка задачи		5
2.	Определение коэффициентов	разложения	гравитационного
	потенциала астероида	••••••	9
3.	Верификации модели		
4.	Возмущающее ускорение		
5.	Примеры		
3a	ключение		
Ли	тература		

Введение

Проблема корректного моделирования гравитационного поля небесных тел является ключевой при решении задач сближения, посадки И исследования астероидов. Величиной, которая определяет значение ускорений, действующих на спутник со стороны притягивающего центра, является гравитационного потенциал.

Существует четыре основных способа представления гравитационного поля [1]: модель многогранника [2], «масконы» [3], геометрическая модель [4,5], разложение сферических гармоник [6].

В первой модели тело представляется моделью многогранника с постоянной плотностью. В работе [7] представлена формула потенциала произвольного многогранника, расщепленного на треугольные грани и ребра. Гравитационный потенциал в этой модели может быть рассчитан с высокой точностью и на поверхности тела, но точность потенциала связана с точностью определения формы.

Для метода моделирования «масконы» [3,8] точкам тела присваивается масса на равномерно распределенной сетке, масса всех точек равна массе астероида. В этой модели гравитационный потенциал сходится к истинному, когда число отдельных точек-масконов становится произвольно большим. Метод менее точен по сравнению с методом сферических гармоник [7].

В геометрической модели тело аппроксимируется какой-либо простой геометрической фигурой либо их объединением [4,5,9].

В модели сферических гармоник гравитационный потенциал представляется в виде бесконечного ряда сферических гармоник. На практике ряд содержит конечное число членов разложения. Коэффициенты разложения вычисляются для каждого тела один раз и зависят от распределения масс, что позволяет учитывать неоднородности. Именно эта модель используется в работе для описания гравитационного потенциала [6].

4

1. Постановка задачи

Рассматривается задача моделирования гравитационного поля объекта известной формы и массы. При расчете используется модель сферических гармоник, и фактически задача сводится к вычислению коэффициентов при гармониках. В качестве исходных данных используется база данных астероидов [10], которая представляет собой каталог, содержащий 3D-модели, орбитальные и физические параметры астероидов.

Гравитационный потенциал вычисляется в системе координат, определенной следующим образом: начало в центре масс тела, ось Z – вдоль средней оси вращения, ось X – совмещена с линией пересечения плоскости экватора с плоскостью нулевого меридиана, ось Y – дополняет систему до правой тройки. Выбор системы определяется системой координат, в которой задана геометрическая модель астероида [10] и производится дальнейшие расчеты, включая расчет гравитационного поля. На рис.1.1 приведен пример визуализации астероида Геркулина на сайте [10], а на рис.1.2 приведена визуализация данных (вершины и треугольники).

Рис.1.1 – Астероид (532) Геркулина

 $\begin{cases} x \\ x \end{cases}$

Рис.1.2 – Поверхностная сетка астероида (532) Геркулина Модель сферических гармоник гравитационного потенциала имеет вид[6]

$$U = \frac{G}{r_{trial}} \sum_{l=0}^{\infty} \frac{P_l \left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right) \right]}{r_{trial}^l} C_{l0}$$

$$+ \frac{G}{r_{trial}} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right) \right]}{r_{trial}^l} \left(C_{l,m} \cos\left(m\varphi_{trial}\right) + S_{l,m} \sin\left(m\varphi_{trial}\right) \right).$$

$$(1.1)$$

Здесь r_{trial} - расстояние до «пробной точки», $\theta_{trial}, \varphi_{trial}$ - зенитный и азимутальный углы для «пробной точки» рис.1.3, $P_{l,m}$ - присоединенный полином Лежандра, которые имеют вид:

$$P_{l,m}[x] = \frac{1}{2^{l}l!} (1 - x^{2})^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^{2} - 1)^{l} = \frac{1}{2^{l}} (1 - x^{2})^{m/2} \sum_{j=0}^{l} \frac{(-1)^{j} (2l - 2j)!}{j!(l - j)!(l - 2j - m)} x^{l-2j-m},$$

$$P_{l}[x] = \frac{1}{2^{l}} \sum_{j=0}^{l} \frac{(-1)^{j} (2l - 2j)!}{j!(l - j)!(l - 2j)!} x^{l-2j} = P_{l,0}[x],$$
(1.2)

где $C_{l,m}, S_{l,m}$ - коэффициенты разложения, которые требуется вычислить в работе, имеют вид:

$$C_{l,m} = \int_{body} (2 - \delta_{0m}) r_Q^l \frac{(l-m)!}{(l+m)!} P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta_Q\right) \right] \cos\left(m\varphi_Q\right) dM_Q,$$

$$S_{l,m} = \int_{body} (2 - \delta_{0m}) r_Q^l \frac{(l-m)!}{(l+m)!} P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta_Q\right) \right] \sin\left(m\varphi_Q\right) dM_Q.$$
(1.3)

Здесь r_Q - расстояние до точки тела, θ_Q, φ_Q - зенитный и азимутальный углы для точки тела (рис.1.3).

Рис.1.3 – Определение зенитного и азимутального углов и радиуса Формулы для расчетов углов:

$$\theta = \operatorname{arctg} \frac{\sqrt{x^2 + y^2}}{z}, \ \varphi = \operatorname{arctg} \frac{y}{x},$$
(1.4)

где в качестве координат *x*, *y*, *z* используются координаты пробной точки и координаты точки тела $\mathbf{r}_{trial} = \begin{pmatrix} x_{trial} & y_{trial} & z_{trial} \end{pmatrix}^T$, $\mathbf{r}_Q = \begin{pmatrix} x_Q & y_Q & z_Q \end{pmatrix}^T$.

Для определения ускорения нужно взять градиент потенциала. Таким образом $\mathbf{f} = \nabla U = \frac{\partial U}{\partial r} \mathbf{e}_{\mathbf{r}} + \frac{\partial U}{\partial \theta} \mathbf{e}_{\theta} + \frac{\partial U}{\partial \varphi} \mathbf{e}_{\phi}$. Частные производные имеют следующий вид:

$$\frac{\partial U}{\partial r_{trial}} = -\frac{G}{r_{trial}^{2}} \sum_{l=0}^{\infty} (l+1) \frac{P_{l}\left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right)\right]}{r_{trial}^{l}} C_{l,0} - \\
- \frac{G}{r_{trial}^{2}} \sum_{l=1}^{\infty} \sum_{m=1}^{l} (l+1) \frac{P_{l,m}\left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right)\right]}{r_{trial}^{l}} (C_{l,m}\cos(m\varphi) + S_{l,m}\sin(m\varphi_{trial})), \\
\frac{\partial U}{\partial \theta_{trial}} = -\frac{G}{r_{trial}} \sum_{l=0}^{\infty} \frac{P_{l,l}\left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right)\right]}{r_{trial}^{l}} C_{l,0} + \\
+ \frac{G}{r_{trial}} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{1}{r_{trial}^{l}} \left(-P_{l,m+1}\left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right)\right] + m \operatorname{ctg}\left(\frac{\pi}{2} - \theta_{trial}\right)P_{l,m}\left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right)\right]\right) \times \\
\times (C_{l,m}\cos(m\varphi_{trial}) + S_{l,m}\sin(m\varphi_{trial})), \\
\frac{\partial U}{\partial \varphi_{trial}} = \frac{G}{r_{trial}} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{P_{l,m}\left[\sin\left(\frac{\pi}{2} - \theta_{trial}\right)\right]}{r_{trial}^{l}} \left(-C_{l,m}\sin(m\varphi_{trial}) + S_{l,m}\cos(m\varphi_{trial})\right). \\$$
(1.5)

Пересчет силы в декартовой системе координат осуществляется по формуле:

$$\begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\ \cos\theta\cos\varphi & \cos\theta\sin\varphi & -\sin\theta \\ -\sin\varphi & \cos\varphi & 0 \end{pmatrix} \begin{pmatrix} f_r \\ f_\theta \\ f_\varphi \end{pmatrix}$$

Таким образом, требуется построить процедуру, которая позволит получить коэффициенты (1.3), зная массу астероида. Затем, имея эти коэффициенты, можно вычислить потенциал (1.1) и ускорение.

2. Определение коэффициентов разложения гравитационного потенциала астероида

Схема вычисления коэффициентов $C_{l,m}$, $S_{l,m}$ представлена на рис.2.1.

Рис.2.1 – Схема решения задачи

В качестве входных данных имеем поверхностную сетку астероида, из которой требуется вычислить коэффициенты (1.3) разложения (1.1). Поверхностная сетка представлена в виде набора координат вершин и номеров вершин рис.2.2, которые составляют треугольники. На рис.1.2 поверхностная сетка представлена в графическом виде.

v -9.358130 3.765230 3.808200
v -9.116010 3.812660 3.855230
v -8.875540 3.864140 3.905210
v -8.636950 3.919300 3.957680
v -8.397120 3.970650 4.007310
v -8.156370 4.038010 4.056320
f 1 67 2 f 1 66 67 f 66 132 67 f 66 131 132 f 131 197 132 f 131 196 197 f 196 262 197

Рис.2.2 – Фрагмент файла, задающий поверхностную сетку

Далее при помощи свободно распространяемого ПО Gmsh [11] строится внутренняя сетка (рис.2.3) для астероида, и астероид дробится на тетраэдры. Данные о внутренней сетке представляются в виде набора координат вершин тетраэдров и номеров вершин, которые составляют тетраэдры.

Рис.2.3 – Внутренняя сетка астероида

× x

Из данных о внутренней сетке вычисляются радиус-векторы центров масс \mathbf{r}_{tetr} для каждого тетраэдра. Зная координаты центров масс и массу астероида, рассчитывается объем V_{tetr} и масса M_{tetr} для каждого тетраэдра.

Так как имеющиеся данные дискретные, то интегралы в формуле (1.3) заменяются суммами (2.1). Суммирование производится по всем тетраэдрам, на которые было разбито тело.

$$C_{l,m} = \sum_{all_tetr} r_{tetr}^{l} \frac{(l-m)!}{(l+m)!} P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta_{tetr}\right) \right] \cos\left(m\varphi_{tetr}\right) M_{tetr},$$

$$S_{l,m} = \sum_{all_tetr} r_{tetr}^{l} \frac{(l-m)!}{(l+m)!} P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta_{tetr}\right) \right] \sin\left(m\varphi_{tetr}\right) M_{tetr}.$$
(2.1)

В модели рассматриваются первые L членов разложения, поэтому коэффициенты $C_{l,m}$ и $S_{l,m}$ рассчитываются для l=0..L, m=0..l. Причем коэффициенты при m=0 принимают вид:

$$C_{l,0} = \sum_{all_tetr} r_{tetr}^{l} P_{l} \left[\sin\left(\frac{\pi}{2} - \theta_{tetr}\right) \right] M_{tetr},$$

$$S_{l,0} = 0.$$

Полиномы Лежандра $P_l[x]$ и $P_{l,m}[x]$ вычисляются по формуле (1.2). Явные формулы присоединенного полинома Лежандра низкого порядка представлены в таблице 2.1.

l	т	$P_{l,m}[x]$	$P_{l,m}\left[\sin\left(\frac{\pi}{2}-\theta\right)\right] = P_{l,m}\left[\cos\theta\right]$
0	0	1	1
1	0	x	$\cos heta$
1	1	$\sqrt{1-x^2}$	$\sin heta$
2	0	$\frac{1}{2}(3x^2-1)$	$\frac{1}{2}(3\cos^2\theta - 1)$
2	1	$3x\sqrt{1-x^2}$	$3\cos\theta\sin\theta$
2	2	$3(1-x^2)$	$3\sin^2\theta$
3	0	$\frac{1}{2}(5x^3-3x)$	$\frac{1}{2} (5\cos^3\theta - 3\cos\theta)$
3	1	$\frac{1}{2}\sqrt{1-x^2}(15x^2-3)$	$\frac{1}{2}\sin\theta(15\cos^2\theta-3)$
3	2	$15(1-x^2)x$	$15\sin^2\theta\cos\theta$
3	3	$15(1-x^2)^{3/2}$	$15\sin^3\theta$

Таблица 2.1 Полиномы Лежандра низкого порядка

Углы θ_{tetr} и φ_{tetr} (рис.1.3) в формуле (2.1) рассчитываются через координаты радиус-вектора центра масс тетраэдра для каждого тетраэдра по формулам (1.4), в качестве координат *x*, *y*, *z* используются координаты центра масс тетраэдра, которые определяются по формуле:

$$\mathbf{r}_{tetr} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2 + x_3 + x_4}{4} \\ \frac{y_1 + y_2 + y_3 + y_4}{4} \\ \frac{z_1 + z_2 + z_3 + z_4}{4} \end{pmatrix}.$$

Масса тетраэдра вычисляется по формуле:

$$M_{tetr} = mass \frac{V_{tetr}}{\sum_{all_tetr} V_{tetr}},$$

где объем определяется сооношением

$$V_{tetr} = \det \begin{pmatrix} 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \\ 1 & x_4 & y_4 & z_4 \end{pmatrix}.$$

После подсчета коэффициентов можно вычислить потенциал (1.1) и ускорение (1.5).

3. Верификации модели

Первый этап проверки модели состоит в сравнении результатов вычислений для тел простой формы, гравитационный потенциал которых известен. Рассматривается сфера и сплюснутый с полюсов средний земной эллипсоид вращения (сфероид) IERS96.

Модельные данные соответствуют разбиению поверхности тела в сферических координатах. Разбиение по θ строится так, чтобы площади поверхности шарового слоя были постоянны, по φ равномерное разбиение полуинтервала $[0,2\pi)$. Множество точек, задающих поверхность, – всевозможные комбинации координат (R,θ,φ) , где R – радиус сферы. В декартовой системе координат точки имеют вид:

 $x = R\sin\theta\cos\varphi,$

 $y = R\sin\theta\sin\varphi,$

 $z = R \cos \theta$.

Для эллипсоида:

- $x = a\sin\theta\cos\varphi,$
- $y = a\sin\theta\sin\varphi, ,$

$$z = b\cos\theta$$
,

где a – большая полуось, b = a(1 - f) – малая полуось, f – полярное сжатие. Поверхностная сетка строится по полученным точкам с помощью триангуляции.

Поверхностная сетка подается в качестве исходных данных в ПО GMSH, которое стоит внутреннюю сетку. Таким образом, тело разбито на тетраэдры, массу каждого тетраэдра считаем сосредоточенной в точке центра масс. Для этого разбиения тела вычисляется потенциал по формуле (1.1). Далее сравниваются результаты гравитационного потенциала, численно подсчитанного через разложение (1.1) и вычисленного аналитически через известные формулы. Аналитические формулы для расчета гравитационного

потенциала для сферы:
$$U = G \frac{M}{r}$$
, для эллипсоида $U = G \frac{M}{r} \left[1 - \left(\frac{a}{r}\right)^2 J_2 P_2(\cos \theta) \right]$ [12].

Рассматривается сфера радиусом R=20 м и массой M=10 кг. Расчет проводился во множестве точек вблизи поверхности. Полученные данные для сферы представлены в таблице 3.1 и на рис.3.1.

Таблица 3.1. – Усредненные относительные ошибки рассчитанного

потенциала сферы для разных разбиений при рассмотрении первых L членов

разложения

	Sphere 4	Sphere 15	Sphere 25	Sphere 35	Sphere 45	Sphere 60	Sphere 75	Sphere 90
Число хетр	8	21679	103039	276835	609545	1456329	2848267	4865154
	тетраэдров							
1	0	1,4524E-15	3,6902E-14	1,0965E-13	2,7401E-14	2,234E-13	9,0773E-14	5,5025E-13
2	0	2,5429E-05	7,1016E-05	5,6401E-05	4,3185E-05	2,9982E-05	2,1965E-05	1,6799E-05
3	0	2,5846E-05	7,1016E-05	5,6401E-05	4,3185E-05	2,9982E-05	2,1965E-05	1,6799E-05
4	0,001532	0,00035275	0,00015423	9,0061E-05	6,1354E-05	3,9203E-05	2,826E-05	2,1377E-05
5	0,001532	0,00035278	0,00015424	8,976E-05	6,1453E-05	3,9112E-05	2,8096E-05	2,1394E-05
6	0,001587	0,00022626	9,286E-05	6,3947E-05	4,8992E-05	3,316E-05	2,3988E-05	1,8397E-05
7	0,001587	0,00022387	9,3584E-05	6,404E-05	4,9062E-05	3,3167E-05	2,4009E-05	1,8395E-05
8	0,001586	0,00025421	0,00010426	6,2956E-05	4,7455E-05	3,2182E-05	2,3338E-05	1,7914E-05
9	0,001586	0,00025674	0,00010392	6,3127E-05	4,7459E-05	3,2177E-05	2,3337E-05	1,7914E-05
10	0,001585	0,00026395	0,00010819	6,9057E-05	5,19E-05	3,4798E-05	2,503E-05	1,9051E-05
11	0,001585	0,00026382	0,0001082	6,8966E-05	5,193E-05	3,4777E-05	2,5029E-05	1,9052E-05
12	0,001585	0,00025566	0,00010292	6,2962E-05	4,8117E-05	3,279E-05	2,3822E-05	1,8275E-05
13	0,001585	0,00025602	0,00010292	6,3004E-05	4,8083E-05	3,2781E-05	2,3817E-05	1,8275E-05
14	0,001585	0,00025411	0,00010208	6,5102E-05	4,9483E-05	3,3509E-05	2,4232E-05	1,8541E-05
15	0,001585	0,00027034	0,00010201	6,5047E-05	4,948E-05	3,3511E-05	2,4229E-05	1,8535E-05

Для каждого разбиения были посчитаны потенциалы в точках на нескольких «орбитах», далее рассчитывались относительные ошибки для каждой точки, в которой вычислялся потенциал. После этого вычислялось математическое ожидание и дисперсия для каждого L. Эти результаты представлены в таблицах 3.1 и 3.2 и на рис.3.1 представлены данные из таблицы 3.1 в виде графиков для каждого разбиения.

Таблица 3.2. – Дисперсия относительных ошибок рассчитанного

потенциала сферы для разных разбиений при рассмотрении первых L членов

	Sphere 4	Sphere 15	Sphere 25	Sphere 35	Sphere 45	Sphere 60	Sphere 75	Sphere 90
Число тетр Т	8	21679	103039	276835	609545	1456329	2848267	4865154
	1 600/Е 61	теграздров 1 5153Е 34	<u>леграздров</u> 4 1201Е 57	<u>теграздров</u> 2 4246Е 33	теграздров 6.0614Е 34	теграздров 2.6368Е 57	<u>теграздров</u> 2 4246Е 33	1 609/Е 61
1	1,0094E-01	1,51551-54	4,12011-37	2,4240E-33	0,0014E-34	2,03081-37	2,4240E-33	1,009412-01
2	3,8804E-10	2,8683E-09	1,8063E-09	1,0589E-09	5,1033E-10	2,7391E-10	1,602E-10	3,8804E-10
3	4,7788E-10	2,8691E-09	1,8064E-09	1,089E-0	5,1035E-10	2,7391E-10	1,6021E-10	4,7788E-10
4	1,3571E-07	1,9718E-08	5,3682E-09	2,0697E-09	6,7892E-10	2,8584E-10	1,3994E-10	1,3571E-07
5	1,3635E-07	1,9747E-08	5,4138E-09	2,0614E-09	6,8004E-10	2,8704E-10	1,3986E-10	1,3635E-07
6	5,5143E-08	4,9703E-09	9,8873E-10	2,805E-10	7,3439E-11	2,7408E-11	1,3313E-11	5,5143E-08
7	5,3926E-08	5,0959E-09	1,0056E-09	2,8718E-10	7,3784E-11	2,792E-11	1,3292E-11	5,3926E-08
8	7,4502E-08	8,0407E-09	1,7405E-09	5,4305E-10	1,4685E-10	5,4975E-11	2,4125E-11	7,4502E-08
9	7,6187E-08	7,9634E-09	1,7605E-09	5,4619E-10	1,4496E-10	5,4889E-11	2,4142E-11	7,6187E-08
10	7,4211E-08	7,872E-09	1,7924E-09	5,8136E-10	1,5912E-10	6,2166E-11	2,8329E-11	7,4211E-08
11	7,4334E-08	7,8755E-09	1,7921E-09	5,8144E-10	1,59E-10	6,2156E-11	2,8333E-11	7,4334E-08
12	7,3926E-08	7,4291E-09	1,6624E-09	5,1672E-10	1,385E-10	5,3162E-11	2,386E-11	7,3926E-08
13	7,3959E-08	7,429E-09	1,6635E-09	5,1626E-10	1,3846E-10	5,3123E-11	2,3856E-11	7,3959E-08
14	7,1352E-08	6,9524E-09	1,5547E-09	4,8686E-10	1,3285E-10	5,1704E-11	2,3624E-11	7,1352E-08
15	9,016E-08	6, 9309E- 09	1, 5584E-09	4, 8706E- 10	1, 3284E- 10	5, 1721E-11	2, 3643E- 11	9,016E-08

разложения

Как можно заметить из рис.3.1, при росте L ошибка уменьшается, также ошибка заметно меньше при рассмотрении более мелкого разбиения. При L=3,4,5,6 на рис.3.1 можно увидеть «горбы», которые при увеличении мелкости разбиения разглаживаются. Причина возникновения «горбов» требует дополнительного исследования.

Рис.3.1 – Графики зависимости относительных ошибок гравитационного потенциала сферы от количества рассмотренных первых L членов разложения для различных разбиений.

Также рассматривается эллипсоид вращения IERS96 с параметрами: $a = 6378.13649 \kappa M$, 1/f = 298.25645, $G \times M = 3.986004418 \times 10^{14} M^3 c^{-2}$, $J_2 = 1,0826359 \times 10^{-3}$. Расчет так же проводился во множестве точек вблизи поверхности. Полученные данные для эллипсоида представлены в таблице 3.2 и на рис.3.2. Таблица 3.3. – Усредненные относительные ошибки рассчитанного потенциала эллипсоида для разных разбиений при рассмотрении первых L

	Ellipse 15	Ellipse 25	Ellipse 35	Ellipse 45	Ellipse 60	Ellipse 75
Число тетр	20616	97894	270736	580342	1381234	2705257
L	тетраэдров	тетраэдров	тетраэдров	тетраэдров	тетраэдров	тетраэдров
1	0,00024584	0,00024584	0,00024584	0,00024584	0,00024584	0,00024584
2	0,00014168	6,3129E-05	8,5406E-05	8,5687E-05	8,097E-05	7,6694E-05
3	0,00031161	0,00015112	0,00012296	0,00010146	8,1575E-05	7,6694E-05
4	0,00086962	0,0003726	0,00020109	0,00012376	0,00010066	9,0092E-05
5	0,00086998	0,00037267	0,00020114	0,00012427	0,00010023	8,9705E-05
6	0,00046903	0,00013637	8,0761E-05	8,5696E-05	7,9449E-05	7,5383E-05
7	0,00043403	0,00013761	8,1898E-05	8,5581E-05	7,9512E-05	7,5469E-05
8	0,00055331	0,00021778	0,00010636	7,6674E-05	7,4097E-05	7,1794E-05
9	0,00058474	0,00021849	0,00010458	7,6693E-05	7,4066E-05	7,1793E-05
10	0,00060271	0,00024405	0,00013705	0,00011722	9,7705E-05	8,7059E-05
11	0,00060061	0,00024411	0,00013794	0,00011707	9,7454E-05	8,7053E-05
12	0,00058685	0,00019356	8,9692E-05	6,841E-05	7,1327E-05	7,1023E-05
13	0,00055308	0,00018967	9,0103E-05	6,8231E-05	7,1461E-05	7,1018E-05
14	0,00050071	0,00016742	9,8803E-05	9,4103E-05	8,5451E-05	7,9172E-05
15	0,00113228	0,00016682	9,7583E-05	9,3716E-05	8,5571E-05	7,9064E-05

членов разложения

Таблица 3.4. – Дисперсия относительных ошибок рассчитанного потенциала эллипсоида для разных разбиений при рассмотрении L членов

	Ellipse 15	Ellipse 25	Ellipse 35	Ellipse 45	Ellipse 60	Ellipse 75
Число тетр	20616	97894	270736	580342	1381234	2705257
L	тетраэдров	тетраэдров	тетраэдров	тетраэдров	тетраэдров	тетраэдров
1	3,158E-08	3,158E-08	3,158E-08	3,158E-08	3,158E-08	3,158E-08
2	1,0518E-08	2,0851E-09	3,8114E-09	3,8364E-09	3,4256E-09	3,0734E-09
3	8,4544E-08	2,069E-08	1,0631E-08	6,9119E-09	4,5976E-09	3,5956E-09
4	9,4326E-07	1,426E-07	3,5942E-08	1,1391E-08	2,4588E-09	6,4005E-10
5	9,4773E-07	1,3987E-07	3,4745E-08	1,0548E-08	2,1734E-09	5,0748E-10
6	2,8471E-07	2,926E-08	6,1369E-09	2,3128E-09	1,402E-09	1,3824E-09
7	2,5566E-07	2,5456E-08	4,395E-09	1,3944E-09	1,0282E-09	1,2043E-09
8	5,0328E-07	5,9549E-08	1,1364E-08	2,4964E-09	5,2421E-10	5,007E-10
9	5,074E-07	6,5262E-08	1,2725E-08	3,2601E-09	7,9372E-10	6,1961E-10
10	4,7297E-07	5,6448E-08	1,1519E-08	3,0999E-09	8,9287E-10	7,2865E-10
11	4,7169E-07	5,5216E-08	1,1033E-08	2,9066E-09	8,2732E-10	7,0667E-10
12	4,5577E-07	5,3914E-08	1,0575E-08	2,6844E-09	7,4662E-10	6,6758E-10
13	4,3697E-07	4,8943E-08	9,1089E-09	2,1475E-09	5,8004E-10	5,9912E-10
14	3,6143E-07	2,9251E-08	5,4669E-09	1,527E-09	7,8671E-10	8,6251E-10
15	2,0095E-06	3,6684E-08	8,2821E-09	2,6145E-09	1,1211E-09	9,7864E-10

разложения

первых L членов разложения для различных разбиений.

Можно заметить из рис.3.2, ошибка заметно меньше при рассмотрении более мелкого разбиения. Результаты аналогичны предыдущему случаю.

Следующим этапом является сравнение коэффициентов $C_{l,m}, S_{l,m}$ для некоторых астероидов. Например, для астероида (433) Эрос (размер 34.4×11.2×11.2 км и масса 6.69×10^{15} кг) эти коэффициенты рассчитаны в работе [13]. С помощью построенной модели вычисляются коэффициенты и сопоставляются с известными коэффициентами. В таблице 3.5. представлены известные коэффициенты, взятые из работы [13], в таблице 3.6. посчитанные с помощью модели.

C_lm	m=0	m=1	m=2	m=3	m=4
I=0	1				
l=1	0	0			
I=2	-0,11731	-2,11E-06	0,053189		
I=3	-0,00374	0,004384	0,000607	-0,00145	
=4	0,038794	-9,52E-05	-0,00391	-1,79E-05	0,000369

Таблица 3.5 – Коэффициенты из работы [13]

S_lm	m=1	m=2	m=3	m=4
=1	0			
I=2	-1,81E-07	-0,01814		
l=3	0,003638	-0,00024	-0,00168	
=4	0,00013	0,001035	-7,12E-06	-0,00019

Таблица 3.6 – Посчитанные коэффициенты

C_lm	m=0	m=1	m=2	m=3	m=4
I=0	1				
l=1	7,25E-05	-1,8E-05			
I=2	-0,11809	7,12E-05	0,053548		
I =3	-0,00379	0,004308	0,000609	-0,00145	
I=4	0,039121	-0,00014	-0,00393	-1,6E-05	0,000371

S_lm	m=1	m=2	m=3	m=4
l=1	-0,01309			
I=2	9,41E-05	-0,01246		
l=3	0,002704	-0,00017	-0,00122	
I=4	4,3E-05	0,000606	-4,5E-06	-0,00012

В таблицах 3.5, 3.6. цветом выделены сильно различающиеся коэффициенты. Причиной несовпадения посчитанных коэффициентов с известными может являться различие методик расчета коэффициентов. Еще одной причиной является смещение центра масс относительно начала координат из-за разбиения астероида на тетраэдры. Вектор смещения имеет вид (0.96747e - 07, 0.96747e - 07, 0.96747e - 07).

4. Возмущающее ускорение

Коэффициенты $C_{l,m}, S_{l,m}$, представленные в таблице 3.6, посчитаны с ошибкой. В этом разделе рассматривается влияние этих ошибок на ускорение. Ускорение рассчитывается по формуле $\mathbf{f} = \nabla U = \frac{\partial U}{\partial r} \mathbf{e}_{\mathbf{r}} + \frac{\partial U}{\partial \theta} \mathbf{e}_{\theta} + \frac{\partial U}{\partial \varphi} \mathbf{e}_{\varphi}$, где частные производные имеют вид (1.5).

Если добавить ошибки, то компоненты ускорения имеют вид

$$\frac{\partial(U+\delta U)}{\partial r} = -\frac{G}{r^2} \sum_{l=0}^{\infty} (l+1) \frac{P_l \left[\sin\left(\frac{\pi}{2} - \theta\right) \right]}{r^l} \left[C_{l,0} + \delta C_{l,0} \right] - \frac{G}{r^2} \sum_{l=1}^{\infty} \sum_{m=1}^{l} (l+1) \frac{P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right]}{r^l} \left(\left[C_{l,m} + \delta C_{l,m} \right] \cos\left(m\varphi\right) + \left[S_{l,m} + \delta S_{l,m} \right] \sin\left(m\varphi\right) \right),$$

$$\begin{aligned} \frac{\partial (U+\delta U)}{\partial \theta} &= -\frac{G}{r} \sum_{l=0}^{\infty} \frac{P_{l,l} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right]}{r^{l}} \left[C_{l,0} + \delta C_{l,0} \right] + \\ &+ \frac{G}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{1}{r^{l}} \left(-P_{l,m+1} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right] + m \operatorname{ctg} \left(\frac{\pi}{2} - \theta\right) P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right] \right) \times \\ &\times \left(\left[C_{l,m} + \delta C_{l,m} \right] \cos(m\varphi) + \left[S_{l,m} + \delta S_{l,m} \right] \sin(m\varphi) \right), \end{aligned}$$

$$\frac{\partial (U+\delta U)}{\partial \varphi} = \frac{G}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{P_{l,m} \left[\sin \left(\frac{\pi}{2} - \theta \right) \right]}{r^{l}} \left(- \left[C_{l,m} + \delta C_{l,m} \right] \sin \left(m\varphi \right) + \left[S_{l,m} + \delta S_{l,m} \right] \cos \left(m\varphi \right) \right).$$

Следовательно, компоненты возмущающего ускорения принимают следующий вид:

$$\delta f_r = -\frac{G}{r^2} \sum_{l=0}^{\infty} (l+1) \frac{P_l \left[\sin\left(\frac{\pi}{2} - \theta\right) \right]}{r^l} \delta C_{l,0} - \frac{G}{r^2} \sum_{l=1}^{\infty} \sum_{m=1}^{l} (l+1) \frac{P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right]}{r^l} \left(\delta C_{l,m} \cos(m\varphi) + \delta S_{l,m} \sin(m\varphi) \right),$$

$$\delta f_{\theta} = -\frac{G}{r} \sum_{l=0}^{\infty} \frac{P_{l,l} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right]}{r^{l}} \delta C_{l,0} + \frac{G}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{1}{r^{l}} \left(-P_{l,m+1} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right] + m \operatorname{ctg} \left(\frac{\pi}{2} - \theta\right) P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right] \right) \times \left(\delta C_{l,m} \cos(m\varphi) + \delta S_{l,m} \sin(m\varphi) \right),$$

$$P_{l} \left[\sin\left(\frac{\pi}{2} - \theta\right) \right]$$

$$\delta f_{\varphi} = \frac{G}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{P_{l,m} \left[\sin\left(\frac{1}{2} - \theta\right) \right]}{r^{l}} \left(-\delta C_{l,m} \sin\left(m\varphi\right) + \delta S_{l,m} \cos\left(m\varphi\right) \right).$$

Здесь $\delta C_{l,m}, \delta S_{l,m}$ - ошибки, полученные при вычислении коэффициентов.

Для значений ошибок, полученных в работе, посчитано возмущающее ускорение в точках на нескольких «орбитах» (рис.4.1) и усреднено. Таким образом, среднее возмущающее ускорение имеет величину $\delta \mathbf{f} = (1.6497e - 08; 1.6279 - 07; 35284e - 07)_{\mathbf{e}_{r}, \mathbf{e}_{q}, \mathbf{e}_{q}}.$

Рис.4.1 – Астероид (433) Эрос и точки, в которых рассчитывалось возмущающее ускорение

5. Примеры

Для примера рассматриваются два астероида, для которых коэффициенты $C_{l,m}, S_{l,m}$ неизвестны. Для этих астероидов рассчитываются коэффициенты и зависимости точности гравитационного потенциала.

В качестве первого примера рассматривается астероид (532) Геркулина, его форма представлена на рис.1.1, масса 2.29×10¹⁹ кг, средний диаметр 167.79 км. Расчет проводился в точках вблизи поверхности астероида до 10 порядка разложения (L=10).

В таблице 5.1 представлены посчитанные коэффициенты $C_{l,m}, S_{l,m}$ для астероида (532) Геркулина до 5 порядка.

Таблица 5.1 – Вычисленные гармоники до 5 порядка для астероида

(532) Геркулина

C_lm	m=0	m=1	m=2	m=3	m=4	m=5
1=0	2,29E+19					
l=1	-5,297E+12	2,2155E+12				
1=2	-2,283E+22	1,3008E+20	4,3776E+21			
1=3	-2,635E+23	1,2472E+23	-1,551E+22	-1,113E+22		
l=4	5,6903E+25	1,9397E+25	-4,487E+24	-3,015E+23	-4,56E+22	
l=5	1,886E+27	-2,164E+26	-4,752E+25	9,4845E+24	4,4651E+23	-5,137E+23

S_lm	m=1	m=2	m=3	m=4	m=5
l=1	2,2444E+19				
1=2	1,7187E+20	-3,758E+19			
1=3	-4,406E+22	1,409E+22	1,8614E+22		
1=4	-4,935E+23	4,5242E+23	6,7105E+22	-1,204E+23	
l=5	1,4528E+26	-9,559E+24	-1,476E+25	8,5945E+23	1,6169E+24

Был произведен расчет гравитационного потенциала астероида во множестве точек вблизи поверхности для астероида с уточненной внутренней сеткой (192244 тетраэдра) и неуточненной внутренней сеткой (3021 тетраэдра). После этого проведено усреднение рассчитанных потенциалов для каждого L. Данные представлены в таблице 5.2.

Таблица 5.2 – Зависимость точности гравитационного потенциала от мелкости разбиения внутренней сетки для астероида (532) Геркулина

L	$\Delta U = U_{refined} - U$
2	-3,24531E-16
3	-3,24531E-16
4	-2,36013E-16
5	7,76451E-17
6	1,41284E-16
7	1,06115E-16
8	9,19506E-17
9	8,42728E-17
10	1,97529E-16

Для астероида с уточненной внутренней сеткой рассмотрена разница потенциалов между соседними порядками. Данные представлены в таблице 5.3.

Таблица 5.3 – Изменение точности расчета потенциала

последовательных порядков разложения для астероида (532) Геркулина

U(L=2)-U(L=1)	-1,64081E-13
U(L=3)-U(L=2)	1,07706E-28
U(L=4)-U(L=3)	6,33021E-15
U(L=5)-U(L=4)	3,97027E-15
U(L=6)-U(L=5)	2,14813E-15
U(L=7)-U(L=6)	-1,16211E-17
U(L=8)-U(L=7)	-1,12726E-16
U(L=9)-U(L=8)	2,34822E-17
U(L=10)-U(L=9)	2,66946E-16
U(L=11)-U(L=10)	-1,77514E-16

В качестве следующего примера рассматривается астероид (321) Флорентина, его форма представлена на рис.5.1, масса 2.11×10¹⁶ кг, средний диаметр 27.23 км. Расчет производился так же в точке вблизи поверхности астероида.

Рис.5.1 – Астероид (321) Флорентина

В таблице 5.4 представлены посчитанные коэффициенты $C_{l,m}, S_{l,m}$ для астероида (321) Флорентина до 5 порядка.

Таблица 5.4 – Вычисленные гармоники до 5 порядка для астероида (321) Флорентина

C_lm	m=0	m=1	m=2	m=3	m=4	m=5
1=0	2,11E+16					
1=1	-1,705E+09	-366125129				
1=2	-1,952E+15	7,7706E+12	-2,124E+14			
1=3	-1,398E+13	-3,863E+13	1,1711E+13	-3,757E+12		
1=4	4,2789E+14	3,3839E+12	1,1378E+13	-4,406E+11	-3,03E+11	
l=5	1,0692E+13	1,0296E+13	-2,245E+12	2,522E+11	-1,208E+11	-3,542E+10

S_lm	m=1	m=2	m=3	m=4	m=5
l=0	-6,606E+13				
l=1	1,3821E+12	-2,011E+14			
l=2	5,8657E+12	-5,875E+12	-2,269E+11		
l=3	-1,073E+12	7,4251E+12	1,8394E+11	-9,03E+11	
l=4	-9,889E+11	7,1971E+11	3,6065E+10	-3,514E+10	8610948393
l=5	3,9675E+11	-7,254E+11	-2,558E+10	2,7398E+10	802653686

Таблица 5.5 – Зависимость точности гравитационного по	отенциала от
мелкости разбиения внутренней сетки для астероида (321) Ф	Флорентина

L	$\Delta U = U_{refined} - U$
2	7,15751E-17
3	7,15751E-17
4	5,42436E-17
5	-9,26997E-17
6	-9,91868E-17
7	-1,09366E-16
8	-1,07883E-16
9	-1,08859E-16
10	-1,11509E-16

Был произведен расчет гравитационного потенциала астероида во множестве точек вблизи поверхности для астероида с уточненной внутренней сеткой (192244 тетраэдра) и неуточненной внутренней сеткой (3021 тетраэдра). После этого проведено усреднение рассчитанных потенциалов для каждого L. Данные представлены в таблице 5.5.

Для астероида с уточненной внутренней сеткой рассмотрена разница потенциалов между соседними порядками. Данные представлены в таблице 5.6.

Таблица 5.6 - Изменение точности расчета потенциала

последовательных порядков разложения для астероида (321) Флорентина

U(L=2)-U(L=1)	-2,11127E-14
U(L=3)-U(L=2)	3,36581E-29
U(L=4)-U(L=3)	1,09414E-15
U(L=5)-U(L=4)	7,99649E-16
U(L=6)-U(L=5)	5,10046E-16
U(L=7)-U(L=6)	-9,94072E-17
U(L=8)-U(L=7)	-6,75408E-17
U(L=9)-U(L=8)	-4,04864E-18
U(L=10)-U(L=9)	-9,99456E-17

В данном разделе были посчитаны коэффициенты $C_{l,m}, S_{l,m}$ для астероидов (532) Геркулина и (321) Флорентина. Из результатов расчетов, приведенных в таблицах 5.2 и 5.5, можно увидеть, как меняется точность

значения гравитационного потенциала при рассмотрении разной мелкости внутренней сетки астероида. В таблицах 5.3 и 5.6 можно увидеть, как меняется точность значения потенциала при рассмотрении разных порядков разложения.

Заключение

В предложена работе И реализована методика нахождения коэффициентов разложения гравитационного потенциала астероида в модели сферических гармоник для последующего расчета гравитационного потенциала и ускорения. Проведена верификация модели на телах, гравитационный потенциал которых известен – сфера и эллипсоид, также для известными коэффициентами проведено астероида с сравнение коэффициентов C_{lm}, S_{lm} и вычислено возмущение, которое возникает при коэффициентов. ошибках вычисления В качестве примеров были рассмотрены два астероида: (532) Геркулина, (321) Флорентина.

Литература

- 1. Feng J., Hou X., Armellin R. Survey on studies about model uncertainties in small body explorations // Prog. Aerosp. Sci. Elsevier Ltd, 2019. Vol. 110, № June. P. 100549.
- 2. Werner R.A. The gravitational potential of a homogeneous polyhedron or don't cut corners // Celest. Mech. Dyn. Astron. 1994. P. 253–278.
- Maruya M. et al. Navigation shape and surface topography model of Itokawa // Collect. Tech. Pap. - AIAA/AAS Astrodyn. Spec. Conf. 2006. 2006. Vol. 3. P. 1522–1540.
- 4. Riaguas A., Elipe A., Lara M. Periodic orbits around a massive straight segment // Celest. Mech. Dyn. Astron. 1999. № 73. P. 169–178.
- 5. P. Bartczak, Breiter P. Double material segment as the model of irregular bodies // Celest. Mech. Dyn. Astron. 2003. Vol. 103, № 86. P. 131–141.
- 6. Vallado D. Fundamentals of astrodynamics and applications. 1997. 945 p.
- 7. Werner R.A., Scheeres D.J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia // Celest. Mech. Dyn. Astron. 1996. Vol. 65, № 3. P. 313–344.
- 8. Muller P.M., W. Sjogren. Mascons : Lunar Mass Concentrations // Sci. New Ser. 1968. Vol. 161, № 3842. P. 680–684.
- Burov A.A. et al. Approximation for attraction field of irregular celestial bodies using four massive points // Acta Astronaut. 2019. Vol. 157. P. 225– 232.
- 10. https://3d-asteroids.space/asteroids/ [Electronic resource].
- 11. https://gmsh.info/ [Electronic resource].
- 12. Мирер С.А. Механика космического полета Орбитальное движение.
- Takahashi Y., Scheeres D.J. Gravity Field Characterization around Small Bodies // ProQuest Diss. Theses; Thesis (Ph.D.)--University Color. Boulder, 2013.; Publ. Number AAT 3592384; ISBN 9781303334054; Source Diss. Abstr. Int. Vol. 74-12(E), Sect. B.; 389 p. 2013. P. 389.