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Introduction
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• Femtosatellite advantages
• Multiple spatial measurements 

in orbit

• Numerous of laboratory prototypes

• Cheap production and launch 

• Lot of femtosats can be 
launched together

• Motivation for novel algorithm for 
relative navigation 
• Low power supply

• GNSS-based navigation is inappropriate

• Angles only camera-based navigation 
is characterized by unobservability
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Communication antenna-based navigation should be investigated



• Considered:
• Chief satellites with known orbital and attitude motion at near circular orbit

• Deputy femtosatellites deployed from chief satellites

• Antennas of the satellites in the swarm are isotropic or half-wave antennas

• Deputy femtosatellites attitude is considered known

• It is necessary to estimate relative translational motion of 
femtosatellites swarm relative to chief satellites

• Reference frames:
• Inertial (IRF)

• Orbital (ORF)

• Body (BRF)

Problem statement
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ORF

IRF
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Motion system and measurement system
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• Motion equations:

Attitude motion in IRF

Orbital motion in ORF

• State vector of N femtosatellites to find: 

• Measurements vector of M+N(N-1)/2 RSSI 
(received signal strength indicator) between 
M chief and N deputy:

• Model of antenna signal
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Analytical observability of the system
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• Sufficient observability criteria: the system                        is observable on  , if:

1. , where 

2. Mapping of observability H is differentiable:

3. The Jacobi matrix J satisfies the uniform ratio of the major minors:
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Kou S.R. "Observability of Nonlinear Systems". Information and Control, 1973, Vol. 22, pp. 89-99.

The system is locally observable over the 
interval [0,T] if the mapping from the 
initial state x0 to output profile y(t) 
(t∈[0,T]) is local bijection (i.e., if the 
initial state can be reconstructed by the 
outputs on this interval)

Bartosiewicz, Z., “Local Observability of Nonlinear Systems,” Systems & Control 
Letters, Vol. 25, No. 4, 1995, pp. 295–298. doi:10.1016/0167-6911(94)00074-6



Numerical observability of the system
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• Criteria of observability: the system                        

is observable if and only if                 singular numbers are equal in modulus :

singular numbers

• If                   it cannot be stated that system does not local observable

• Some empirical criteria can be used. For example, can be introduced a threshold 
to separate the observed subspace in state vector space:

Andrew J. Whalen "Observability and Controllability of Nonlinear 
Networks: The Role of Symmetry"
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Extended Kalman filter application
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• Linearized dynamic model

• Linearized measurement model

• Prediction step
                                                

• Update step
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• 4 chief spacecrafts and 1 deputy femtosatellite

• Isotropic antennas 

• State vector

Example of the system with full observability
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• 1 chief and 1 deputy 

• Isotropic antennas 

• State vector

Example of the system with local observability
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Local observability of the system
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• 2 chiefs and 1 deputy

[ , , , , , ] [ , , , ]x y z x zx y z x z    = → =x x

System is unobservable
System is locally 
observable

The uniform ratio of the minors is 
not fulfilled (there is no sufficient 
observability condition)

The uniform ratio of 
the minors is fulfilled

• 1 chief and 1 deputy
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System is fully observable

Numerical modeling
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Local observability depending on chiefs relative motion
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• Relative distance between the chiefs is 
200-400m

[ , , , , , ]x y zx y z   =x

System is locally 
observable

The uniform ratio of the 
minors is not fulfilled

• 2 chiefs satellites and 3 deputies 

• Relative distance between the chiefs is 
50-100m
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• Relative motion observability including the deputies 
attitude motion using case of anisotropic antennas 
is currently under the investigation 

• 1 chief spacecrafts and 1 deputy femtosatellite

• Half-wave dipole antennas model 

• State vector 

• System matrix and measurement matrix:

Next steps: case of anisotropic antennas
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Conclusions
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• Possibility of relative motion estimation using measurements of 
communication signal magnitude is studied in this paper

• It is shown that for the case of isotropic antennas the system with one chief 
satellite is locally observable, and in case of two chiefs satellites the system 
is fully observable

• Depending on relative distance of two chiefs the uniform ratio of the 
minors can be not fulfilled and the system can be not observable

• As continuation of this study the case of measurements of anisotropic 
antennas signal magnitude is under the investigation

This study is supported by Russian Science Foundation, grant #24-11-00038, 
https://rscf.ru/project/24-11-00038/



Thank you for your attention!
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