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MOTIVATION: HYPERBOLIC TRAJECTORIES IN REAL MISSIONS

Future mission concepts

• Interstellar Probe mission

• Solar Gravitational Lens’ Focus mission

• “Sundiver” concept

Past missions

• Pioneer 10 & 11

• Voyager 1 & 2

• New Horizons

Possible trajectory of the SGLF mission
implementing the “Sundiver” concept

1990-2000

Birth of
smallsats

2000-2010

Regular launches
of single smallsats

2010-2020

Smallsats
formations

2020-2030

Single deep
space smallsats

2030-…..

Deep space
smallsat formations

Smallsats and their formations have great potential 
for deep space exploration
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CIRCULAR vs ELLIPTIC vs HYPERBOLIC RELATIVE MOTION

Hyperbolic reference orbit

General 2BP 
linearized equations

Simple solution
is to be obtained

Circular reference orbit

Hill-Clohessy-
Wiltshire (HCW) 

linearized equations

Simple time-explicit 
solution

Elliptic reference orbit

Tschauner-Hempel 
linearized equations

Simple true-anomaly-
explicit solution
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GOALS OF STUDY

1. To obtain a practical description of a relative motion in close hyperbolas

2. To find out what types of a hyperbolic relative motion are possible

3. To demonstrate how to design a formation in close hyperbolic trajectories
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EQUATIONS OF KEPLERIAN RELATIVE MOTION

r – chief’s radius-vector

rd – deputy’s radius-vector

ρ = rd - r – the relative position vector

rd
r

ρ

Each spacecraft moves along a hyperbola with 
the Sun at the focus; spacecraft do not interact

ሷ𝐫d = −
𝜇𝐫d

𝑟d
3

ሷ𝛒 = ሷ𝐫d − ሷ𝐫ሷ𝐫 = −
𝜇𝐫

𝑟3

Linearization under the assumption
𝜌

𝑟
≪ 1

ሷ𝛒 = −
𝜇

𝑟3
𝛒 −

3 𝐫 ∙ 𝛒 𝐫

𝑟2
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ASYMPTOTIC COORDINATE SYSTEM AND δ VARIABLE

Assume we know the reference hyperbola a, e, i, Ω, ω, τ

We define the Asymptotic Coordinate System (ACS) as following

• The origin – the attractive center (the Sun)

• e1 – along the outgoing asymptote

• e2 – complement to the right-handed basis

• e3 – along the orbital angular momentum

We introduce a new angle 𝛿

• 𝜈 – the chief’s true anomaly

• 𝜈 ∈ −𝜈𝑚𝑎𝑥, 𝜈𝑚𝑎𝑥 , 𝜈𝑚𝑎𝑥 = arccos
−1

e

• 𝛿 ≔ 𝜈𝑚𝑎𝑥 − 𝜈

• 𝛿 ∈ 0, 2𝜈𝑚𝑎𝑥 , ሶ𝛿 < 0,

• 𝛿
𝑡→+∞

0, 𝛿 = 𝑂
1

𝑟

e1

e2

r

ν
δ

6/15



SOLUTION OF THE LINEARIZED SYSTEM

𝐱 ∶=
𝛒
ሶ𝛒 , ∆t ∶= t − t0

Linearized system

ሶ𝐱 = 𝑨 t 𝐱

Solution

𝐱 t = 𝑼 t, t0 𝛏

𝑼 t, t0 is a fundamental matrix 
[Reynolds, 2022]: 

𝑼 t, t0 = 𝑼 𝐫 t , 𝐯 t , ∆t

𝛏 is a vector of constants 

We designate components
𝛏 = 𝛼−1 𝛼0 𝛽−1 𝛽0 𝛾−1 𝛾0 Т

Note: 𝛏 has units of distance (km)

Relates to the initial conditions via
𝛏 = 𝑼−1 t0, t0 𝐱 t0

𝑼 𝐫 𝛿 , 𝐯 𝛿 , ∆t 𝛿, 𝛿0𝐫 =
a(𝑒2 − 1)

1 − cos 𝛿 + 𝜂 sin 𝛿

cos 𝛿
− sin 𝛿

0

𝐯 =
v∞

𝜂

𝜂 + sin 𝛿
cos 𝛿 − 1

0

We use 𝛿 instead of time
Here 𝜂 ∶= 𝑒2 − 1
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LAURENT SERIES EXPANSION

𝐫 =
𝜇𝜂

v∞
2

1

𝛿
−

1

2𝜂
+ −

1

3
+

1

4𝜂2
𝛿 + 𝑂(𝛿2)

−1 +
𝛿

2𝜂
+ 𝑂(𝛿2)

0

𝐯 = v∞

1 +
𝛿

𝜂
+ 𝑂(𝛿3)

−
𝛿2

2𝜂
+ 𝑂(𝛿3)

0

Δt 𝛿, 𝛿0 =
𝜇

v∞
3

𝜂

𝛿
+

1

2
− M0 − ln

2𝜂

𝛿e
−

4𝜂2 + 9

12𝜂
𝛿 + 𝑂 𝛿2

M0 ≔ e sinh H(𝛿0) − H 𝛿0 , H is the hyperbolic anomaly

Let us exploit the natural asymptotic behavior: 𝛿 → 0 +𝑼 𝐫 𝛿 , 𝐯 𝛿 , ∆t 𝛿, 𝛿0

𝛿
, r

ad
ia

n
s

𝑡, days

Angle 𝛿 as a function of time
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𝛿-EXPLICIT AND TIME-EXPLICIT ASYMPTOTIC SOLUTIONS

𝑧 𝛿 =
𝛾−1

𝛿
+ 𝛾0 −

𝛾−1

3
+

𝛾0

2𝜂
𝛿 + 𝑜 𝛿 .

𝑦 𝛿 =
𝛽−1

𝛿
+ 𝛽0 +

𝛼−1

𝜂
−

𝛽−1

3
+

𝛽0

2𝜂
+

5𝛼−1

4𝜂2
𝛿 + 𝑜 𝛿 ,

𝑥 𝛿 =
𝛼−1

2𝛿𝜂
−

3𝛼−1

2𝜂2
ln

2𝜂

𝛿𝑒
+ 𝛼0 − 𝛼−1

6𝑀0 − 11

4𝜂2
+ 𝑂 𝛿 ln 𝛿 ,

Note: 
𝛼−1, 𝛽−1, 𝛾−1 are first met with 𝛿−1

𝛼0, 𝛽0, 𝛾0 are first met with 𝛿0

𝛿 = 𝜂
1

𝜏𝜋
− 𝜂

ln 𝜏𝜋

𝜏𝜋
2 + 𝜂

1

2
+ ln

𝑒

2

1

𝜏𝜋
2 + 𝑜

1

𝜏𝜋
2 , 𝜏𝜋 → +∞,    where 𝜏𝜋 ≔

v∞
3

𝜇
𝑡 − 𝜏

   

Time-explicit
asymptotic solution

𝛿-explicit
asymptotic solution
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POSSIBLE TYPES OF HYPERBOLIC RELATIVE MOTION

1. The relative motion is bounded if and only if 
𝛼−1 = 𝛽−1 = 𝛾−1 = 0,
otherwise it is unbounded

2. If the motion is bounded, the relative trajectory
is generally a line segment
(if 𝛼0, 𝛽0, 𝛾0 ≠ 0, then 𝑥, 𝑦, 𝑧 𝑇 tends to 𝛼0, 𝛽0, 𝛾0

𝑇)

• If at least one of 𝛼0, 𝛽0, 𝛾0 is zero, the geometry is more complicated
(for example, it can be a segment of parabola in certain 2D projections)

3. If the motion is unbounded, the relative trajectory
is generally an infinite ray

(𝑥 =
𝛼−1

2𝜂2 𝜏𝜋 + 𝑜 𝜏𝜋 , 𝑦 =
𝛽−1

𝜂
𝜏𝜋 + 𝑜 𝜏𝜋 , 𝑧 =

𝛾−1

𝜂
𝜏𝜋 + 𝑜 𝜏𝜋 )

• If at least one of 𝛼−1, 𝛽−1, 𝛾−1is zero, the geometry is more complicated
(for example, it can be a hyperbola in certain 2D projections)

The hyperbolic case is much

poorer in types of relative motion 

than the elliptic/circular case

Note: 
These conditions are equal to three
linear equations on the initial state 𝐱 t0

(initial relative velocity ≈ 0) 
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• Heliocentric

• Hyperbolic excess velocity v∞ = 20
AU

year
≈ 95

km

s

• Eccentricity e ≈ 3.03

• Impact parameter b = 0.28 AU

• Pericenter distance r𝜋 = 0.20 AU

• Semi-major axis 𝑎 = 0.10 AU

• Initial chief’s position 𝑟0 = 1.52 AU (𝛿0 ≈ 0.1807)

• Final chief’s position   𝑟𝑓 = 100 AU (𝛿𝑓 ≈ 0.0028)

b

r𝜋

THE REFERENCE TRAJECTORY

𝐯∞
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EXAMPLE: BOUNDED MOTION

𝑥 𝛿 = 𝛼0 1 +
𝛿

𝜂
, y 𝛿 = 𝛽0 1 −

𝛿

2𝜂
, 𝑧 𝛿 = 𝛾0 1 −

𝛿

2𝜂

𝒐(𝜹)

𝒐
(𝜹

𝟐
)

Error 𝛒𝑒𝑥𝑎𝑐𝑡 − 𝛒𝑎𝑝𝑝𝑟𝑜𝑥 between exact (2BP)

and first/second-order approximate solutions

𝑡, days

R
el

at
iv

e 
p

o
si

ti
o

n
 e

rr
o

r,
 m

𝛼−1 = 𝛽−1 = 𝛾−1 = 0Unperturbed 2-body
problem solution
First-order
asymptotic solution

𝛼0 = 30 km
𝛽0 = −60 km
𝛾0 = 50 km

𝑥, km𝑦, km

𝑧, km
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EXAMPLE: REGULAR TETRAHEDRON FORMATION

Since the motion is bounded, for all deputies
𝛼−1 = 𝛽−1 = 𝛾−1 = 0 

Recalling that 𝑥, 𝑦, 𝑧 𝑇 tends to 𝛼0, 𝛽0, 𝛾0
𝑇,

it is easy to find

𝝃1 = 0 −
6

3
𝑙 0 −

1

2
𝑙 0 −

1

2 3
𝑙

𝑇

𝝃2 = 0 −
6

3
𝑙 0  

1

2
𝑙 0 −

1

2 3
𝑙

𝑇

𝝃3 = 0 −
6

3
𝑙 0  0 0  

1

3
𝑙

𝑇

𝝆1(t0) = 𝑙 [km] ⋅ −0.87 km −0.48 km −0.28 km 𝑇

ሶ𝝆1(𝑡0) = 𝑙 [km] ⋅ 0.019
mm

s
−0.010

mm

s
−0.004

mm

s

𝑇

Convert into initial relative position & velocity
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Evolution of a tetrahedron with 𝑙 = 60 km
from the epoch at  r = 1.52 AU 

to the epoch at r = 100 AU 

Dashed lines – tetrahedron at the initial epoch
Solid lines – tetrahedron at the final epoch

During all the flight time, the tetrahedron
was almost regular with the required size

EXAMPLE: REGULAR TETRAHEDRON FORMATION SIMULATION

No control or correction was applied!

Simulation was done numerically
in the unperturbed 2-body problem

with initial conditions calculated analytically
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CONCLUSION

• A new asymptotic representation for describing relative motion between spacecraft
in hyperbolic trajectories is developed
• Time-explicit formulae are obtained

• Based on the representation, possible types of relative motion are classified
• Hyperbolic case turns out to be quite poor in terms of types compared to 

elliptic/circular case

• A way to design a spacecraft formation using the representation is proposed and 
demonstrated by the regular tetrahedron example

• Areas of application:
control & navigation problems solution;
formation deployment and maintenance;
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