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MOTIVATION: HYPERBOLIC TRAJECTORIES IN REAL MISSIONS

Past missions
*  Pioneer 10 & 11
* Voyager1l &2
* New Horizons
Future mission concepts

* Interstellar Probe mission

* Solar Gravitational Lens’ Focus mission

*  “Sundiver” concept

Smallsats and their formations have great potential Possible trajectory of the SGLF mission
for deep space exploration implementing the “Sundiver” concept
Birth of Regular launches Smallsats Single deep Deep space
smallsats of single smallsats formations space smallsats smallsat formations
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CIRCULAR vs ELLIPTIC vs HYPERBOLIC RELATIVE MOTION

Circular reference orbit

.

Hill-Clohessy-
Wiltshire (HCW)
linearized equations

J

/

Simple time-explicit
solution

~N

Elliptic reference orbit

.

Tschauner-Hempel
linearized equations

Hyperbolic reference orbit

J

/

Simple true-anomaly-
explicit solution

\

General 2BP
linearized equations

Simple solution
is to be obtained
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GOALS OF STUDY

1. To obtain a practical description of a relative motion in close hyperbolas
2. To find out what types of a hyperbolic relative motion are possible

3. To demonstrate how to design a formation in close hyperbolic trajectories



EQUATIONS OF KEPLERIAN RELATIVE MOTION

r — chief’s radius-vector
ry— deputy’s radius-vector
p =r4 - r—the relative position vector

Each spacecraft moves along a hyperbola with
the Sun at the focus; spacecraft do not interact

ur . Urq . "
= p=1Fg—T

Linearization under the assumption g K1

. u( 3(r-p)r>
p=—3|P——03
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ASYMPTOTIC COORDINATE SYSTEM AND o VARIABLE

Assume we know the reference hyperbola (a,¢,i, Q, w, T)

We define the Asymptotic Coordinate System (ACS) as following
* The origin — the attractive center (the Sun)

* e, —along the outgoing asymptote

* e, —complement to the right-handed basis N

* e;—along the orbital angular momentum -7

We introduce a new angle 6

* v —the chief’s true anomaly

V € (—Viaxs Vmax)) Vmax = arccos (?)

© 0= Vpax —V

8 € (0,2V,,4,), 6 <0,

§——0, 5=0(§)

t—+o



SOLUTION OF THE LINEARIZED SYSTEM

Linearized system Solution
x=A()x x(t) = U(t, ty)E » € is a vector of constants
P Relates to the initial conditions via
= (), At:=t—t N
* (p) | &= U"(tg, to)x(to)
U(t, ty) is a fundamental matrix We designate components
[Reynolds, 2022]: E=(a_y ay B-1 PBo V-1 Yo)l!
U(t,ty) = U(r(t), v(t),At) Note: € has units of distance (km)
2 _ cos o n+sind
po_ e - [ U(r(8), v(6), At(5,8,)) LY
1—cosd +nsind n 0
’ 1
| |
We use ¢ instead of time
Heren :=+Vve? — 1
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LAURENT SERIES EXPANSION

U(r(8),v(5), At(5, )

1 _i_|_ _l+i 5+0(52) 0.175 -
5 2n 3 4n?
r = ﬂ 5 0.150 -
)
Voo -1+ % + 0(62) 0.125 -
0 ._‘E 0.100 -
o) E\ 0.075
1+—+0(6%) <
n 0.050 -
VYRl J8 L s
- 0.025 4
5+ 006
0 0.000 -

At (5, 8,) =Vi3<ﬂ+<

1 20 4n2 49
L ——MO)—ln n_= 5+0(52)>

2 oe 127

M, := e sinh H(6,) — H(6,), H is the hyperbolic anomaly

Let us exploit the natural asymptotic behavior: 6 — 0 +

0

250 500 750 1000 1250 1500

t, days

Angle 6 as a function of time
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O-EXPLICIT AND TIME-EXPLICIT ASYMPTOTIC SOLUTIONS

a_q, 3a_1. 27 6M, — 11 Note:
x(6) = 267 - 212 In Se +ap—a, 472 +0(61né), a_q, B—1, Y1 are first met with § 1
B o 3 B, Sa o, Lo, Vo are first met with §Y
5) =Pt -1 (P-1 0 -1) s 5
y(6) 5 + Bo + - (3 +277+4772 + 0(6),
z(8) = -1 + Yo — <)/_1 + ]/o> S+ 0(9). d-explicit
0 3 21 asymptotic solution
_ Ll Inw (1 3)1 (1) — Voo (4 _
S—nrn 2 + 7 2+1n2 r,ZT+O Z) T, = +00, where T = u(t T)
a_, a_,. (2 5  3M, Int, Time-explicit
X (Tr)= an - n_zln (ETTI) T o+ (an - 2?72) +O0(——),| asymptotic solution
T
B-1 B-1 2 2a_y — B4 Inz,
Tp)=—1, +—1In (— ) + Bo + +0 ,
Y () n " e " Po 2n T




POSSIBLE TYPES OF HYPERBOLIC RELATIVE MOTION

The relative motion is bounded if and only if Note:
a_,=p_1=v-1=0, ~ These conditions are equal to three
otherwise it is unbounded linear equations on the initial state x(t,)

. . : initial relative velocity = 0
If the motion is bounded, the relative trajectory ( Y )

is generally a line segment
(if g, Bo, Yo # 0, then (x,y,2)T tends to (ag, By, Yo)T)

* If at least one of ay, By, ¥, is zero, the geometry is more complicated
(for example, it can be a segment of parabola in certain 2D projections)

If the motion is unbounded, the relative trajectory The hyperbolic case is much
is generally an infinite ray poorer in types of relative motion
(x = %Tn +o(ty), vy = %Tn +o(ty), z = %TT[ + o(t)) than the elliptic/circular case

* |Ifatleastoneof a_q,f_1,Y—1is zero, the geometry is more complicated
(for example, it can be a hyperbola in certain 2D projections)




THE REFERENCE TRAJECTORY

Heliocentric

Hyperbolic excess velocity v, = 20 ytgr ~ 95 kTm
Eccentricity e = 3.03 o
Impact parameter b = 0.28 AU -7

Pericenter distance r,; = 0.20 AU
Semi-major axis a = 0.10 AU
Initial chief’s position y = 1.52 AU (§, = 0.1807)

Final chief’s position 7 = 100 AU (65 =~ 0.0028)




EXAMPLE: BOUNDED MOTION

Relat;
I . o(6
ve trajecto,. a0 ¥ C
50.0 350 1
€
«~ 300 -
o
49.5 GL)
250 A
C
z, km S
49.0 g 200 -
o
.“2’ 150 -
48.5 E
L &J 100-{(1-\
©
\—/
504 ©
30.0
—60.0 30.5 L
—59.5 31.0 01
_59.0 1 I 1 1 | 1 1 1
-58.5 32.0 31.5 0 250 500 750 1000 1250 1500 1750
y, km ~58.0 ' x, km t, days
Unperturbed 2-body a1 =p_1=y-1=0 Error |pexact - papprox| between exact (2BP)
problem solution ap, = 30 km and first/second-order approximate solutions
First-order By = —60 km

_ s _ _s — _9
asymptotic solution Yo = 50 km x(6) = ao (1 T 17)’ y(8) = Bo (1 zn)’ 2(8) =vo (1 277) 12/15



EXAMPLE: REGULAR TETRAHEDRON FORMATION
Since the motion is bounded, for all deputies
a_1=p_1=y-1=0

Recalling that (x, y,z)T tends to (g, By, ¥o)T,
it is easy to find

T
El=<o —\/—gl 0 —31 0 —il>

3 2 2V3 /)

o %0 Lo L)

Ez—<0 —?l 0 El 0 _2‘/§lT
_ V6 1

Convert into initial relative position & velocity

p1(ty) =L [km]- (—0.87km —048km —0.28km )T

. mm mm mm
p1(to) =L [km] - (0.019 — —0.010 — —0.004 T) .



EXAMPLE: REGULAR TETRAHEDRON FORMATION SIMULATION

20

30

~

Evolution of a tetrahedron with [ = 60 km
from the epochat r = 1.52 AU
to the epochatr = 100 AU

Dashed lines — tetrahedron at the initial epoch
Solid lines — tetrahedron at the final epoch

Simulation was done numerically
in the unperturbed 2-body problem
with initial conditions calculated analytically

During all the flight time, the tetrahedron
was almost regular with the required size

No control or correction was applied!
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CONCLUSION

A new asymptotic representation for describing relative motion between spacecraft
in hyperbolic trajectories is developed

* Time-explicit formulae are obtained

Based on the representation, possible types of relative motion are classified

* Hyperbolic case turns out to be quite poor in terms of types compared to
elliptic/circular case

A way to design a spacecraft formation using the representation is proposed and
demonstrated by the regular tetrahedron example

Areas of application:
control & navigation problems solution;
formation deployment and maintenance;
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